
SLIDE GUIDE

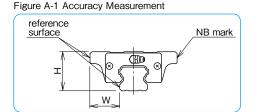
SLIDE GUIDE		SLIDE GUIDE SGL Type	
TYPES · · · · · · · · · · · · · · · · · · ·	- A-3	STRUCTURE AND ADVANTAGES	- A-50
ACCURACY MEASUREMENT METHOD	- A-4	BLOCK TYPES · · · · · · · · · · · · · · · · · · ·	- A-51
RIGIDITY AND PRELOAD · · · · · · ·	· A-5	ACCURACY	· A-51
LOAD RATING AND RATED LIFE	- A-6	PRELOAD · · · · · · · · · · · · · · · · · · ·	
MOUNTING	- A-7	RAIL LENGTH · · · · · · · · · · · · · · · · · · ·	
USE AND HANDLING PRECAUTIONS · ·	A-12	MOUNTING · · · · · · · · · · · · · · · · · · ·	
JOINT RAILS · · · · · · · · · · · · · · · · · · ·	A-13	GREASE FITTING · · · · · · · · · · · · · · · · · · ·	- A-53
DUST PREVENTION · · · · · · · · · · · · · · · · · · ·		LUBRICATION · · · · · · · · · · · · · · · · · · ·	A-53
ANTI-CORROSION · · · · · · · · · · · · · · · · · · ·		DIMENSION TABLE · · · · · · · · · · · · · · · · · · ·	· A-54
LUBRICATION · · · · · · · · · · · · · · · · · · ·		SLIDE GUIDE SGW Type	
FIBER SHEET · · · · · · · · · · · · · · · · · ·	A-16	STRUCTURE AND ADVANTAGES	۸ 70
REVERSE-SEAL · · · · · · · · · · · · · · · · · · ·			
BELLOWS · · · · · · · · · · · · · · · · · · ·		ACCURACY	
SEB TYPE AD PROFILE (ANTI-DEFORMING)	· A-19	PRELOAD	
SLIDE GUIDE Miniature SEE	3 Type	RAIL LENGTH · · · · · · · · · · · · · · · · · · ·	
STRUCTURE AND ADVANTAGES		MOUNTING	
TYPES	-	GREASE FITTING	
ACCURACY ·····		DIMENSION TABLE	
PRELOAD		DIMENSION TABLE	7,
LOAD RATING			
EQUIVALENT LOAD · · · · · · · · ·			
RAIL LENGTH · · · · · · · · · · · · · · · · · · ·			
MOUNTING			
MOUNTING SCREW · · · · · · · · · · · · · · · · · · ·	- A-25		
LUBRICATION · · · · · · · · · · · · · · · · · · ·	- A-25		
DIMENSION TABLE · · · · · · · · · · · · · · · · · · ·	- A-26∼		
SLIDE GUIDE Miniature SEF	RTVne		
STRUCTURE AND ADVANTAGES			
TYPES			
ACCURACY ·····			
PRELOAD			
RAIL LENGTH · · · · · · · · · · · · · · · · · · ·			
MOUNTING			
MOUNTING SCREW ·····			
LUBRICATION			
DIMENSION TABLE · · · · · · · · · ·			

SLIDE GUIDE

NB slide guides are high-precision and high-rigidity linear bearings designed to utilize the motion of rolling elements. They have numerous advantageous characteristics including low friction, no stick-slip, and smooth linear motion even under high load conditions. Since they can maintain their high-efficiency and high-functionality characteristics for an extended period of time, they meet a wide range of needs, from general industrial to precision machinery.

TYPES

Table A-1 Types


	rolling element	cross section and contact structure	advantages	page
	II.	retained ball, 2-row, 4-point contact (SEBS-B type)	 retained ball type available with all stainless steel components 2-row, compact small, light, cost effective 	P.A-20
tue		2-row, 4-point contact (SEB-A type)	 2-row, compact small, light, cost effective available in various types available in stainless steel 	P.A-20
	roller	cross roller (SER type)	 miniature roller guide cross roller, high precision available with all stainless steel components 	P.A-42
dity type	ball	4-row, 2-point contact (SGL type)	 high self-centering characteristics high load capacity due to relatively large ball elements high dust preventive control with side-seals and underseals available in stainless steel 	P.A-50
high-rigidity type	Q	4-row, 2-point contact (SGW type)	 high-moment resistant low-height design smooth motion due to large number of effective balls high dust preventive control with side-seals and underseals 	P.A-72

ACCURACY MEASUREMENT METHOD

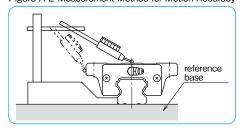
The accuracy of slide guides is measured by fixing the rail to the reference base. The accuracy is expressed in terms of the average value at the center portion.

Dimensional Tolerance and Paired Difference

The accuracy of the slide guide is obtained by measuring the height H. and width W. as shown in Figure A-1. The dimensional tolerance is measured for each of the blocks attached to the rail and is expressed in terms of the deviation from the basic dimension. The paired difference is obtained by measuring the blocks attached to the rail and is expressed in terms of the difference between the maximum and minimum values.

Motion Accuracy

The rail is first fixed to the reference base. The motion accuracy is obtained by measuring the difference in the indicator readings when the block is moved along the entire span of the rail.


Note: Gauge head is placed on the center of the block reference surface.

Notation for Number of Axes and Paired Difference

When more than one rail is used in parallel, the dimensional difference must be measured on more than one block on more than one rail. For measuring the paired difference for height H, please specify the number of axes (W2, W3) as the part number example shows. For measuring the paired difference for width W. please contact NB.

Note: When four rails are used as illustrated in Figure A-3, W4 should be specified in the part number. Please indicate the number of axes when ordering.

Figure A-2 Measurement Method for Motion Accuracy

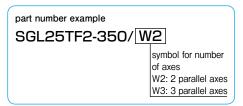
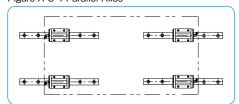



Figure A-3 4 Parallel Axes

RIGIDITY AND PRELOAD

The rolling elements of the slide guide deform elastically due to the applied load. The amount of deformation depends on the type of rolling element. It is proportional to the 2/3 power for ball elements. For rollers, it is proportional to the 9/10 power. In either case, the rate of deformation decreases as the applied load increases. Greater rigidity is achieved by applying a preload.

A preload causes internal stress within the slide guide block, resulting in some reduction in lifetime. However, when the guide is used under shock or vibration loading conditions, a preload will absorb the load and will actually help lengthen the life time. Because the preload causes elastic deformation of the rolling elements, it becomes less tolerable to the installation dimensional errors. Extreme care should be exercised in machining the installation surface.

Four levels of preload are available: clearance, standard, light, and medium. This allows the user to select the appropriate level for the application.

Figure A-4 Elastic Deformation of Rolling Elements

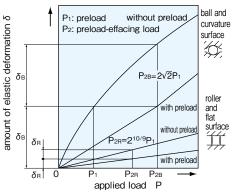
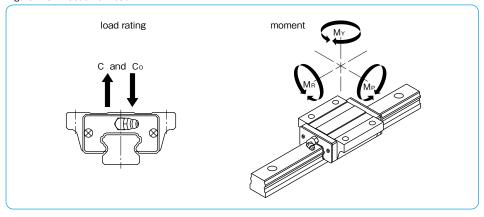


Table A-2 Level of Preload


			effe	ect of prelo	oad rigidity frictional resistance			applicable
preload	symbol	vibration absorption ability	self-aligning ability	lifetime			operating conditions	part number
clearance	то						light motion is required. installation errors to be absorbed.	SEB
standard	blank						minute vibration is applied. accurate motion is required. moment is applied in a given direction.	SEB,SGL SGW
light	T1						light vibration is applied. light torsional load is applied. moment is applied.	SEB,SGL SGW
medium	T2	increases	reduces	reduces	increases		shock and vibration are applied. over-hang load is applied. torsional load is applied.	SGL,SGW

LOAD RATING AND RATED LIFE

Loading Direction and Load Rating

A slide guide experiences load and moment, as shown in Figure A-5. For each load and moment, the basic load ratings and allowable static moments are defined.

Figure A-5 Direction of Load

Rated Life Calculation

Two types of rolling elements are used in NB slide guides: ball and roller elements. There is a different equation for calculating the rated life of each type.

For ball elements (SEB, SGL, and SGW types), the equation is

$$L = \left(\frac{f_C \cdot f_T}{f_W} \cdot \frac{C}{P}\right)^3 \cdot 50$$

For roller elements (SER type), the equation is

$$L = \left(\frac{f_{C} \cdot f_{T}}{f_{W}} \cdot \frac{C}{P}\right)^{10/3} \cdot 50$$

L: rated life (km) fc: contact coefficient

fr: temperature coefficient fw: applied load coefficient

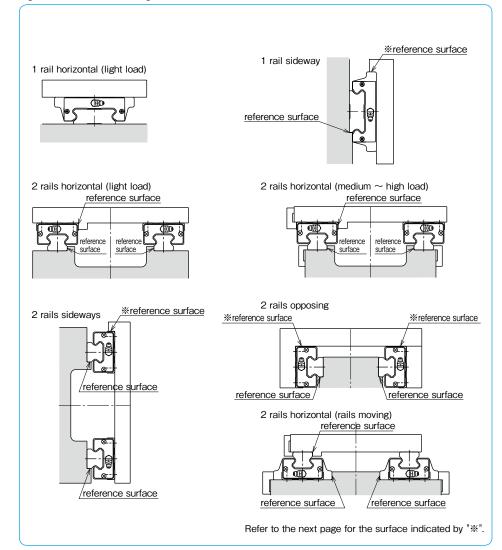
C: basic dynamic load rating (N) P: applied load (N)

* Refer to page Eng-5 for the coefficients.

* The contact coefficient is applied when two or more blocks are used in close contact.

If the stroke length and cycles are constant, life can be expressed in terms of time, the equation is

$$L_h = \frac{L \cdot 10^3}{2 \cdot \ell \, \text{s} \cdot \text{n}_1 \cdot 60}$$


L_h: life time (hr) ℓ s: stroke length (m)

L: rated life (km) n₁: number of cycles per minute (cpm)

MOUNTING

Slide guides have high load ratings in spite of their compact size. They can be used in various types of machinery and other equipment in various configurations. Figure A-6 shows some typical slide guide arrangements.

Figure A-6 Slide Guide Arrangements

Mounting Surface and Accuracy

NB slide guides are designed and fabricated to achieve high accuracy after mounting them to a machined mounting base. One typical way is to provide a shoulder on the mounting surface and align the reference surface of the rail or block against the shoulder (Figure A-7). To avoid corner interference, an undercut should be provided at the shoulder corner. Alternatively, the radius of the shoulder corner should be smaller than the radius of the slide guide block/rail corner.

The accuracy of the rail mounting surface affects the accuracy of the machinery or equipment along with the slide guide motion accuracy.

The accuracy of the mounting surface should be equivalent to that of the slide guide motion accuracy. The specified preload may not be achieved due to deformation of the block, for example, the mounted block surface is not flat (Figure A-8). Careful attention should therefore be given to achieve the specified flatness.

Note: Please contact NB for the rail straightness in case the mounting shoulder cannot be provided or the rigidity of the mounting surface is not enough.

Reference Surface Indication

Reference surfaces are provided to enable accurate and simplified mounting. They are located on the same side, as shown in Figure A-9, opposite to the NB mark.

Depending on the mounting arrangement, the standard reference surface may not ensure mounting accuracy (for example, 1 rail sideway or 2 rails opposing, Figure A-6, page A-7). In such cases, NB can provide a reference surface on the opposite side. Please specify the side when ordering.

Figure A-7 Profile of Mounting Reference Surface

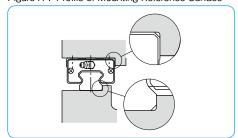


Figure A-8 Effect of Flatness

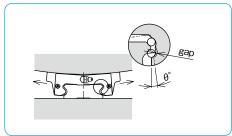
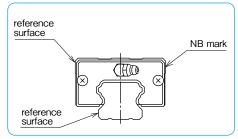



Figure A-9 Reference Surface

Mounting

In general, slide guides are used with 2 rails in parallel. In that case, one rail is on the so-called reference side and the other is on the so-called adjustable side.

Applications where shock/vibration and high load are involved/high accuracy is required. The effect of shock and vibration on accuracy is eliminated by using side pieces such as side plates (Figure A-10), tightening set screws (Figure A-11), or tapered gibs (Figure A-12).

Figure A-11 Using Tightening Set Screw

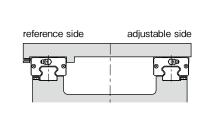
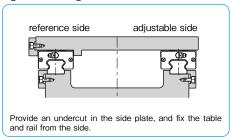



Figure A-10 Using Side Plate

Applications where light load and low speed are involved

Figures A-13~15 show the mounting methods when high accuracy is not required or the load capacity of the slide guide is sufficient due to a light load or low speed. In these cases, side pieces or reference surface may not be required.

Figure A-12 Using Tapered Gib

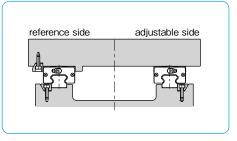


Figure A-14 No Reference Surface on Adjustable Side

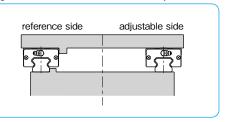


Figure A-13 Without Side Piece

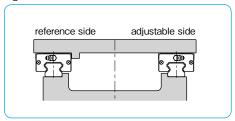
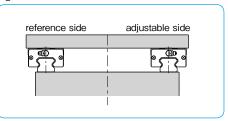
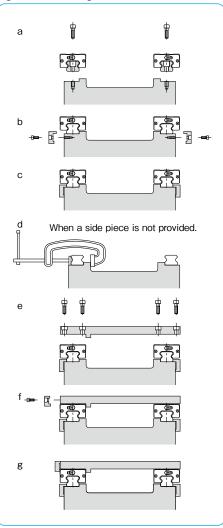



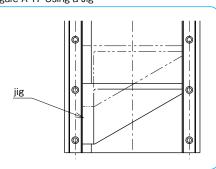
Figure A-15 Without Reference Surface



Mounting Procedure

When reference surfaces are provided for both the table and the base, please follow the following procedure to mount the slide guide.

- 1. Remove burrs, scratches, dust, etc. from the base and table. Apply a low viscosity oil to the base and the table. Place the slide guide on the base carefully. Temporarily fix the rail mounting screws. (Figure A-16a)
- 2. Tighten the screw for the side piece so that the installation reference surface and the rail reference surface are in close contact. (Figure A-16b) If a side piece is not provided, use a C clamp to position the mounting reference surface and the rail reference surface so that they contact each other. (Figure A-16d)
- 3. Tighten the mounting screws to the specified torque, and complete the mounting of the rail. The rail is designed so that its accuracy is optimum when the screws are tightened to the specified value. Please refer to the recommended torque table for each product type. (Figure A-16c)
- 4. Repeat steps 2 and 3 for the rail on the adjustable side.
- 5. Move the blocks at the mounting location of the table, and place the table gently. Then slightly tighten the screws. (Figure A-16e)
- 6. Fix the reference surface of the block against the table by the side piece. Tighten the mounting screws in a diagonal sequence. (Figure A-16f)
- 7. In the same manner, tighten the mounting screws for the blocks on the adjustable side. (Figure A-16g)
- 8. Finally, move the table through the stroke length to check if thrust is even. Please repeat 5 and 6 (2 to 6 when necessary) if thrust is not even. If thrust is even, please do a final tightening of the screws.


Figure A-16 Mounting Method

When the Reference Surface is Not Provided on the Adjustable Side

When a reference surface is not provided on the adjustable side, mount the 2 rails in parallel by using a jig, as mounted in Figure A-17. After mounting the reference-side guide, install the adjustable-side guide by moving the table to achieve parallelism.

Figure A-17 Using a Jig

When the Reference Surface is Not Provided on the Reference Side

When a reference surface is not provided on the reference side, mount the 2 rails by using a reference surface close to the slide guide.

Temporarily fix the slide guide to the base, and mount an indicator on a measurement plate. Please fix the measurement plate on two or more blocks. (Figure A-18)

Place the indicator against the reference surface of the base. Tighten the screws from one end of the rail to ensure straightness.

If there is no reference surface close-by, use a straight edge to achieve straightness. (Figure A-19)

Figure A-18 Using Base Reference Surface

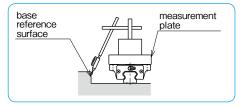
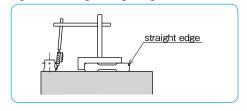
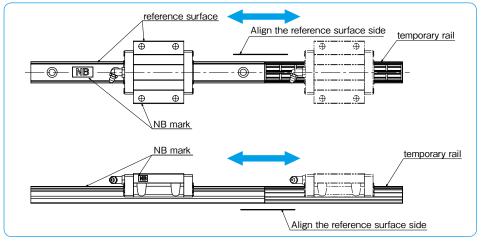



Figure A-19 Using a Straight Edge


A-10 A-11

USE AND HANDLING PRECAUTIONS

NB Slide Guides are accurately tuned precision components. Please pay special attention to the following notes.

- Please install the Slide Guide as a set. It is not recommended to remove the block for installation.
- When block removal is necessary, please use a temporary (plastic dummy) rail to prevent balls from dropping out.
- To put a guide block on the rail, as the pictures below show, align the reference surface and the height between the rail and a temporary rail. It is very important to maintain the original combination of block(s) and rail.

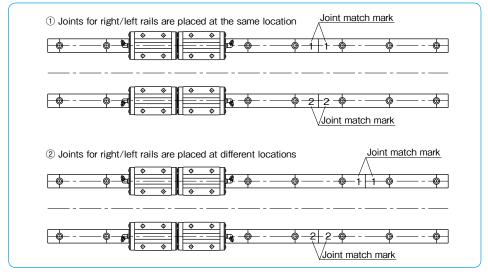
Figure A-20 How to Put Guide Block on

- Please do not turn around a block on the rail to change the grease-fitting orientation. Relocate fitting to the opposite end by removing red plug, and re-insert red plug to where fitting was originally.
- Never try to disassemble the block. This will most assuredly void warranty of the product.
- Please remove burrs, dust, or any other debris from the base and table before installation.
- Slide Guides are pre-lubricated for immediate use. Please relubricate with a similar type of grease regularly. Special lubricants must be matched with the same type of grease to prevent contamination.
- The SEB(S) and SER(S) Slide Guides have metal clip stoppers (picture below) to avoid a block fallout during shipment and assembly. Please remove the stoppers only after installation is finished with a screwdriver as these clips should not be used as 'mechanical' stoppers.

JOINT RAILS

Rails can be joined together to obtain a length which exceeds the maximum length. There are two ways to do this.

- Place the joints at the same location for the right and left rails so as to make the design and maintenance simple (Figure A-21 ①).
- Place the joints for the right and left rails at different locations so that the block does not move over the two joints at the same time so as to minimize the effect of the joint on accuracy (Figure A-21 ②).


Please keep the following points in mind when using joint rails.

- To avoid dislocation at joints due to shock loading, provide a shoulder at the joint on the installation side.
- If a shoulder cannot be provided, make sure that any excess load does not change the rail position.
- Use the joint marks provided for installation.
- Tightly butt the rails to be joined so that there is no gap between them.
- Make sure the reference surface side of the joint rails to be aligned.

Note: Joined rails are available for SGL and SGW series with standard grade, high grade, and with standard preload.

For joined rails on SEB series, please contact NB. Joined rails are not available for SER series.

Figure A-21 Examples of Joined Guide Rails

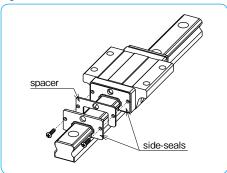
DUST PREVENTION

Seals

Side-Seal

(Series: SEB, SER, SGL, and SGW)

The side-seals prevent foreign particles and dust from entering the guide block in order to retain the motion accuracy, resulting in a long lifetime.

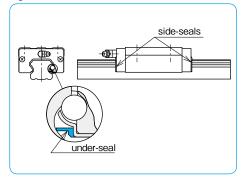

Under-Seal (Series: SGL and SGW)

Slide guides with side and under-seals are used in harsh environments or to prevent dust entering from below.

Double Side-Seal Option (Series: SGL)

With this option, the prevention against dust is greatly improved. This option is ideal for use in applications where bellows or covers are not able to be fitted over the slide guide system.

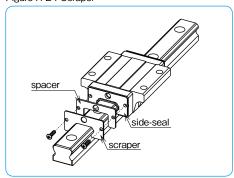
Figure A-23 Double Side-Seal


No Side-Seal (Series: SEB and SER)

When the presence of dust or debris is extremely low and only minor motion resistance is desired, a no side-seal option is available. Be aware that, with this option, dust prevention can not be expected.

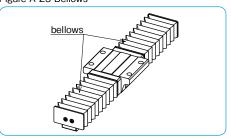
Double Side-Seal + Scraper Option (Series: SGL)

Double side-seal plus scraper is also optional. Please contact NB for details.


Figure A-22 Side-Seal and Under-Seal

Scraper Option (Series: SGL)

When the application environment has unfavorable foreign matter or debris such as welding splatter or cutting debris, the scraper option provides an effective protective measure for the slide guide system.


Figure A-24 Scraper

Bellows Option (Series: SGL)

This option fully covers the guide rail preventing dust, debris, and other foreign particles from disrupting the smooth linear motion. (Refer to page A-18 for further details)

Figure A-25 Bellows

Special Rail Mounting Caps

For SGL and SGW guides, special rail mounting caps are available to prevent dust from entering the mounting holes.

These caps are installed, after the rail is fixed to the base, by using a jig and slowly inserting them into the holes until their top surface is flush with the rail surface.

Figure A-26 Special Cap

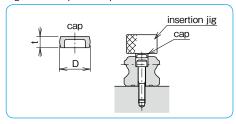


Table A-3 Special Cap

	dimensions		applicable part number			
part number	D	t	SGL-F,E,	SGL-HTF,HYF	SGW	
	mm	mm	TF,TE	HTE,HYE,HTEX	SGW	
F 3	6.1	1.3	15	_	_	
F 4	7.6	1.1	15D	15	17,21,27	
F 5	9.7	2.5	20	20	_	
F 6	11.2	2.7	25,30	25	35	
F 8	14.3	3.65	35	30,35	_	
F12	20.3	4.65	_	45	_	

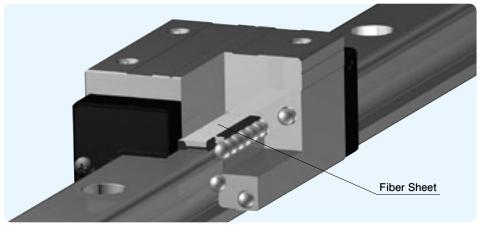
ANTI-CORROSION

For anti-corrosion, the SEB/SER series and SGL-F/TF types are available in stainless steel material. Low temperature black chrome treatment can be specified for the SGL and SGW series. This treatment (LB) is suitable for applications where corrosion resistance is a requirement.

LUBRICATION

Lithium soap based grease is applied to NB slide guides prior to shipment for immediate use. Please relubricate with a similar type of grease periodically depending on the operating conditions.

The Fiber Sheet and Reverse-Seal are available which significantly extends relubrication period (refer to page A-16, A-17).


For use in clean rooms or vacuum environments, slide guides without grease or slide guides with customer specified grease are also available. Please contact NB.

NB also provides low dust generation grease. Please refer to page Eng-39 for details.

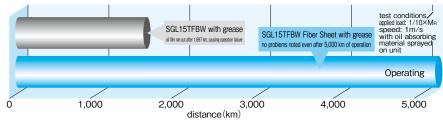
FIBER SHEET

The Fiber Sheet for the SGL and SGW types, significantly extends lubricant replenishment intervals and has an excellent durability even under harsh conditions with dust and debris that absorb lubricant. Embedded in a block body, as shown in Figure A-27, it does not change the length of the block. In addition, the Fiber Sheet does not require any change in mounting dimensions, which allows replacement with existing products without a design change.

Figure A-27 Magnified View of the Fiber Sheet

Simplified Lubrication Management

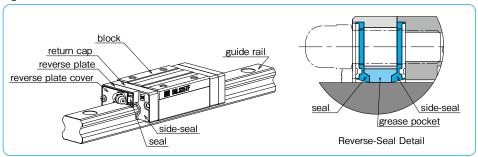
NB's Fiber Sheet is a fiber material with a porous structure containing the lubricant oil. The oil is supplied to the ball elements at the proper time and with the proper amount by the principle of capillarity, greatly increasing the relubrication period.


Figure A-28 Durability Test

Outstanding Durability Even Under Poor Operating Conditions

An acceleration test was performed with oil absorbing material sprayed on the units to validate the SGL type's lubrication performance and durability even under poor operating conditions.

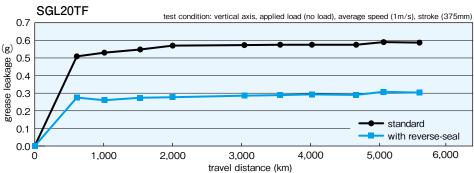
Figure A-29 Lubrication Acceleration Test



REVERSE-SEAL

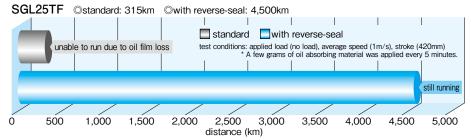
NB's Reverse-Seal is a seal unit that consists of revserse plate, seal, and cover.

This seal unit has another side-seal in the reverse orientation to the block, which achieves maintenance free by reducing grease loss.


Figure A-30 Reverse-Seal

Reducing Grease Leakage

The space between two seals holds grease to minimize a grease leakage from the block.

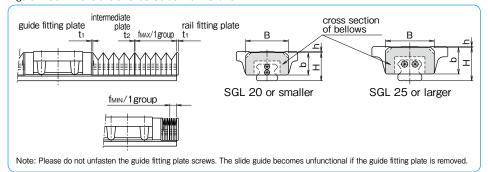

Figure A-31 Grease-leak Test Data

Maintenance Free

Reverse-seal makes a "grease pocket" between two seals that realizes maintenance free by reducing grease leakage and loss.

Figure A-32 Grease Dry-up Test Data

Applicable Part Number


Reverse-Seal (BR option) is available on SGL15,20, and 25.

BELLOWS

By protecting the entire length of the guide rail, dust prevention is greatly enhanced.

Please refer to Figure A-33 for dimensions. External dimensions and the stroke length of slide guide will change with use of bellows.

Figure A-33 Dimensions of Slide Guide with Bellows

part number	В	Н	h	b	t ₁	t ₂	fmax/1group	fmin/1group
SGL15F/TF/E/TE			1					
SGL15HTE/HYE/HTEX	33	23	'	19			32	
SGL15HTF/HYF			5					
SGL20F/TF/E/TE	41	27	1	01.5			40	
SGL20HTF/HYF/HTE/HYE/HTEX	41	21	3	21.5			40	
SGL25F/TF/E/TE			1					
SGL25HTF/HYF	47	32	8	25.5	1.5		44	
SGL25HTE/HYE/HTEX			4			1.0		6.5
SGL30F/TF/E/TE			2			1.0		0.5
SGL30HTE/HYE/HTEX	58	40		31			56	
SGL30HTF/HYF			5					
SGL35F/TF/E/TE			2					
SGL35HTE/HYE/HTEX	68	46		37			68	
SGL35HTF/HYF			9					
SGL45HTE/HYE/HTEX	84	59	1	50	2.0		72	
SGL45HTF/HYF	04	59	11	50	2.0		12	

Note: 1 group indicates the minimum unit of bellows. Please specify the required stroke length.

When bellows are fitted to the guide block, the grease fitting cannot be installed.

The allowable temperature is up to 60°C if the system has a bellows option.

Please contact NB for details on the installation of bellows, as well as for special application usage.

Calculation Method of Length of Bellows and Slide Guide Rail

Example: In this case, one(1) piece of SGL15TE guide block is mounted on a rail with bellows; the required stroke is 440mm.

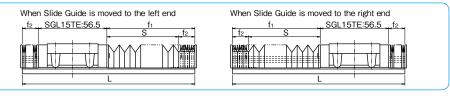
Number of groups required for a stroke of 440mm is calculated as follows.

$$\frac{\text{Stroke}}{\text{f_{MAX}} - \text{f_{MIN}}} = \frac{440}{32 - 6.5} = 17.2 = 18 \text{ groups (round up)}$$

When 18 groups of bellows are fitted, the maximum length f₁ is calculated:

 f_1 =guide fitting plate+1group f_{MAX} ×number of groups+Intermediate plate× (number of groups-1) =1.5+32×18+1.0× (18-1) =594.5

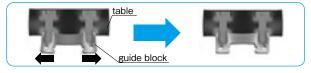
When 18 groups of bellows are fitted, the minimum length f2 is calculated:


f₂=guide fitting plate+1group f_{MIN}× number of groups+intermediate plate× (number of groups-1) =1.5+6.5×18+1.0× (18-1) =135.5

With these calculation results, stroke limit (S) and length of the guide rail needed (L) are obtained as follows:

 $S = f_1 - f_2 = 594.5 - 135.5 = 459$

 $L = f_1 + f_2 + SGL15TE block = 594.5 + 135.5 + 56.5 = 786.5 = 786.5 = 787$ (round up)


Figure A-34 External Diagram of Slide Guide with Bellows Attached

SEB TYPE AD PROFILE (Anti-Deforming)

The AD profile guide block can dissipate possible deformation by improved installation plane profile.

Figure A-35 SEB type AD profile

Note:

When NB's unique AD Profile type miniature guide block is selected, the following precautions should be taken into consideration to perform to its utmost advantage.

- ●To obtain maximum AD (Anti-Deforming) effect, flatness of the mounting surface should be finished the same as motion accuracy of the slide guide.
- When the table is designed with one guide block on one guide rail, the utmost AD effect is anticipated.
- All screws on the slide guide block should be tightened to the equal torque value.
- The AD profile type guide block is available only with standard preload.
- •AD profile type guide blocks are available only with following part numbers of slide guide block.

Applicable Part Number

Table A-4 AD profile Applicable Part Number

	part number				
SEBS 7B	SEBS 7BM		SEBS 7A		
SEBS 7BY	SEBS 7BYM	_	SEBS 7AY		
SEBS 9B	SEBS 9BM	SEB 9A	SEBS 9A		
SEBS 9BY	SEBS 9BYM	SEB 9AY	SEBS 9AY		
SEBS12B	SEBS12BM	SEB12A	SEBS12A		
SEBS12BY	SEBS12BYM	SEB12AY	SEBS12AY		
SEBS15B	SEBS15BM	SEB15A	SEBS15A		
SEBS15BY	SEBS15BYM	SEB15AY	SEBS15AY		
SEBS20B	SEBS20BM	SEB20A	SEBS20A		
SEBS20BY	SEBS20BYM	SEB20AY	SEBS20AY		

part number structure

SEBS 15B UU 2-589 N P AD

AD profile

*Please contact NB for details.

SLIDE GUIDE Miniature SEB Type

The NB slide guide SEB type is a linear motion bearing in which the ball elements roll along two raceway grooves. This is the smallest and lightest slide guide series offered by Nippon Bearing. The compact design allows for the size and weight of machinery and other equipment to be reduced.

STRUCTURE AND ADVANTAGES

The SEB type slide guide consists of a rail with precisely machined raceway grooves and a block assembly consisting of the main body, return caps and ball elements.

Retained Ball

Because of the ball retainers, the SEBS-B type is able to be removed from the guide rail, simplifying its installation and resulting in lower assembly costs.

All Stainless Steel Type

By using stainless steel for the return caps, the SEBS-BM type is made from all stainless steel components, making it the ideal choice for special environments such as high temperature, clean room, or vacuum applications.

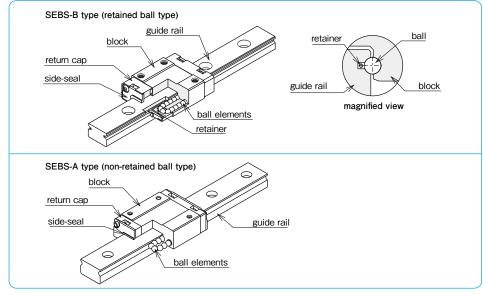
Moment Resistant

A wide block (WB/WA) type, a long block (BY/AY) type, and a wide/long block (WBY/WAY) type are moment resistant slide guide types. The most

Figure A-36 Structure of SEB type Slide Guide

suitable type can be selected for any demanding operating condition.

Tapped Hole Rail Type


For the SEB rails, counterbore (standard) and optional tapped hole (N) types are available enabling various installation methods.

Compact Design

SEB type has a 2-row, 4-point contact structure. This structure minimizes the installation height, which contributes to light-weight and miniaturization of machinery and equipment.

AD Profile

AD profile dissipates guide block deformation caused by installation. (refer to page A-19)

TYPES

The SEB(S) type slide guides are categorized according to their block shape and the rail installation method.

****All the SEB blocks are made of stainless steel (SEBS marking).** short block standard block long block standard type rail(counterbore) standard type rail(counterbore) standard type rail(counterbore) N type rail(tapped hole) N type rail(tapped hole) N type rail(tapped hole) SEBS-BS type SEBS-B type SEBS-BY type SEBS-B-N type SEBS-BY-N type SEBS-BS-N type P.A-26 P A-26 retained ball type SEBS-BSM type SEBS-BM type SEBS-BYM type all stainlless steel SEBS-BSM-N type SEBS-BM-N type SEBS-BYM-N type P A-26~ P A-26 P A-26 SEBS-WB type SEBS-WBY type SEBS-WBS type SEBS-WBS-N type SEBS-WB-N type SEBS-WBY-N type P.A-30 P.A-30 P.A-30 SEB-A type SEB-AY type SEB-A-N type SEB-AY-N type ball type non-retained P.A-34~ P.A-34 SFR-WA type SEB-WAY type SEB-WA-N type SEB-WAY-N type wide type P.A-38⁻ P.A-38~

ACCURACY

The SEB(S) slide guides are available in two grades of accuracy: high grade and precision grade (P).

Table A-6 Accuracy unit: mm accuracy grade high precision Р accuracy symbol blank allowable dimensional difference in height H ±0.020 ±0.010 paired difference for height H 0.015 0.007 allowable dimensional difference in width W ±0.025 ±0.015 paired difference for width W 0.020 0.010 running parallelism of surface C to surface A refer to figure A-39,40 running parallelism of surface D to surface B

Figure A-37 Accuracy

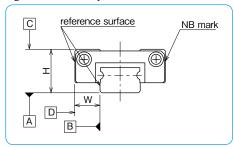
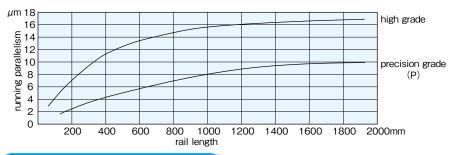



Figure A-38 Motion Accuracy

PRELOAD

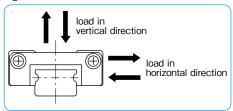
SEB(S) slide guides are available with a standard preload (blank), light preload (T1), and a positiveclearance (T0).

Table A-7 Preload Symbol and Radial Clearance unit: µm Table A-8 Operating Conditions and Preload

rabie / / / roload Symbol and radial cloarance and a				
	pre	eload and sym	bol	
size	clearance T0	standard blank	light [*] T1	
2		_		
3	+1~+3	_	_	
5		-1~0		
7				
9	+3~+6		-4~-2	
12		-3~0		
15	+4~+8		-7~-3	
20	+4~+6		_/~=3 	
3W	+1~+3	_	_	
5W	71.973	−1~0	_	
7W				
9W	+3~+6	-3~0	-4~-2	
12W		_3~0		
15W	+4~+8		-7~-3	

preload	symbol	operating conditions			
clearance	то	light motion is required. installation errors to be absorbed.			
standard	blank	minute vibration is applied. accurate motion is required. moment is applied in a given direction.			
light*	T1	light vibration is applied. light torsional load is applied. moment is applied.			
= 1		1 # : 11			

^{*} Frictional resistance may be affected by preload.


LOAD RATING

The load rating for SEB(S) slide guides depends on the direction of load.

Table A-9 Load Rating

		retained ball type	non-retained ball type
basic dynamic	vertical	1.00×C	1.00×C
load rating	horizontal	0.89×C	1.13×C
basic static	vertical	1.00×Co	1.00×Co
load rating	horizontal	0.84×Co	1.19×Co

Figure A-39 Direction of Load

EQUIVALENT LOAD

For a guide to which vertical load and horizontal load are applied at the same time, calculate its static equivalent load using the following equation.

P=Pa+X·Ps

P: equivalent load Pa: vertical load Ps: horizontal load X: 0.84 for SEB-A type; 1.19 for SEBS-B type

RAIL LENGTH

Slide guides with most commonly used lengths are available as standard. For slide guides with a nonstandard length, unless otherwise specified, the distance from one end of the rail to the first hole center (N) will be within the ranges listed in Tables A-10 and A-11, satisfying the following equation.

$L=M\cdot P+2N$

L: length (mm) M: number of pitches P: hole pitch (mm) N: distance from the end of the rail to the first hole center (mm)

Table A-10 N Dimension (standard type) unit:mm

rabio // To It Dimension (etahadra type)				
-!	N			
size	and over	less than		
2		7		
3		8		
5	3	10.5		
7		10.5		
9		14		
12	4	16.5		
15		24		
20	6	36		
·				

Figure A-40 Rail

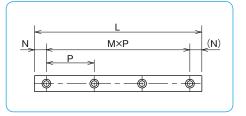


Table A-11 N Dimension (wide type)

unit: mm

size	N			
Size	and over	less than		
3W	3	10.5		
5W		14		
7W	4	19		
9W		19		
12W	5	25		
15W	3	25		

MOUNTING

Mounting Surface Profile

Slide guides are mounted by pushing the reference surface of the rail and the block against the shoulder provided on the mounting surface. An undercut or a radius corner should be provided at the corner of the shoulder to prevent interference. The recommended shoulder height values on the mounting reference surface are shown in Table A-12. (Table A-13 for corner radius)

Figure A-41 Mounting Surface Profile-1

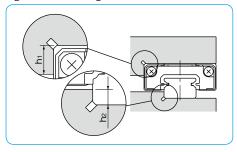


Table A-12 Shoulder Height on the Mounting

Reference	Surface	unit∶mm
size	shoulder height on the block side	shoulder height on the rail side
SIZE	h ₁	h ₂
2	1	0.5
3	1.2	0.8
5	2	1
7	2.5	1
9	3	1.5
12	4	2
15	5	3.5
20	5	5
3W	1.5	0.8
5W	2	1
7W	2	1.5
9W	3	
12W	4	2.5
15W	5	

Figure A-42 Mounting Surface Profile-2

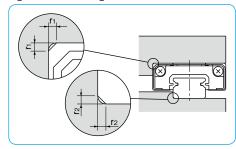


Table A-13 Maximum Corner Radius Values

block mounting part

0.3

unit: mm

rail mounting part

0.3

size **r**2 2 0.1 0.1 3 0.15 5 7 9 0.3 0.3 12 15 20 0.5 ЗW 0.15 0.1 5W 7W

Recommended Torque Values

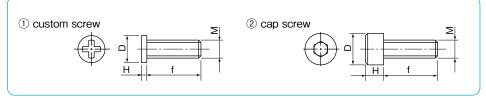
The screws to fasten the rail should be tightened to an equal torque using a torque wrench in order to secure the motion accuracy. The recommended torque values are given in Table A-14. Please adjust the torque depending on the operating conditions.

9W

12W 15W

Table A-14	Recor	nmeno	ded lo	rque				unit	:N·m
size	M1	M1.4	M1.6	M2	M2.6	МЗ	M4	M5	М6
recommended torque	0.03	0.10	0.15	0.3	0.65	1.0	2.3	4.7	8.0

(for stainless steel screw A2-70)


MOUNTING SCREW

Extremely small custom screws are available from NB.

Table A-15 Mounting Screw (stainless steel)

type	shape	size	D	Н	pitch	f
туре	Shape	Size	mm	mm	mm	mm
		M1	1.8	0.45	0.25	3, 4, 5
custom	Figure A-43①	M1.4	2.5	0.8	0.3	2.5, 3, 4
screw	Figure A-45	M1.6	2.3	0.5	0.35	4, 5, 6
		M2	3	0.6	0.4	6
	Figure A-43②	M2	3.8	2	0.4	4, 5, 6, 8, 10
cap screw	Figure A-43©	M2.6	4.5	2.6	0.45	4, 5, 6, 8, 10

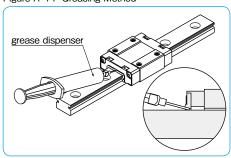
Figure A-43 Mounting Screw

LUBRICATION

A high grade lithium soap based grease is applied to the NB slide guides prior to shipment for immediate

Please relubricate with a similar type of grease periodically depending on the operating conditions.

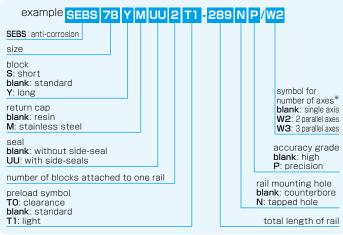
For use in clean rooms or vacuum environments, NB slide guides without grease are available upon


Please contact NB for customer specified grease

A special syringe lubricant dispenser (refer to Figure A-44) is available from NB as an option. In particular, the SEBS-B retained ball type has a special structure that allows the user to replenish lubricant easily (refer to page Eng-42), as the magnified view of Figure A-44 shows.

Please refer to page Eng-39 for details on the low dust generation grease.

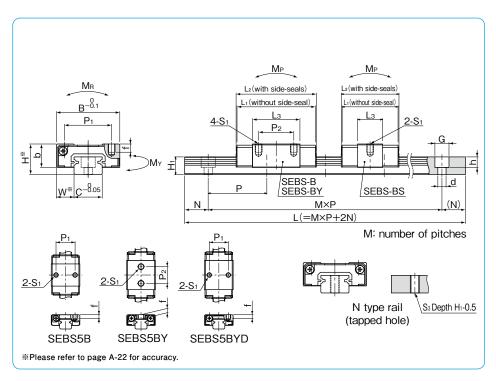
Figure A-44 Greasing Method


A-24

SEBS-BS/B/BY TYPE SEBS-BSM/BM/BYM TYPE

- Retained Ball Type -

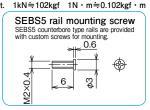
part number structure



* The symbol for the number of axes does not mean the number of rails ordered.

204 2		assembly o	dimensions				block	dimen	sions			
part n	umber	Н	W	В	L ₁	L2	P ₁	P ₂	S ₁	f	Lз	b
resin	stainless											
return cap	return cap	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm
SEBS 5B	SEBS 5BM				16.5	16.9	8	_	M2	1.5	9.3	
SEBS 5BY	SEBS 5BYM	6	3.5	12	10.5	10.0	_	7	M2.6	1.8	10.0	4.5
SEBS 5BYD	SEBS 5BYDM				19.5	19.9	8	_	M2	1.5	12.3	
SEBS 7BS	SEBS 7BSM				18.2	19		_			8.8	
SEBS 7B	SEBS 7BM	8	5	17	22.2	23	12	8	M2	2.5	12.8	6.5
SEBS 7BY	SEBS 7BYM				31.7	32.5		13			22.3	
SEBS 9BS	SEBS 9BSM				20.5	21.3					10.1	
SEBS 9B	SEBS 9BM	10	5.5	20	30	30.8	15	10	МЗ	3	19.6	7.8
SEBS 9BY	SEBS 9BYM				39.5	40.3		16			29.1	

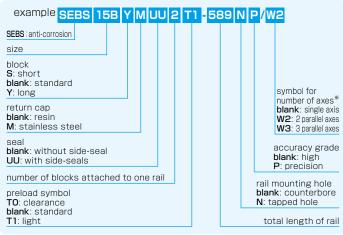
part number										stan	dard L r	rail ler nm	ngth			
SEBS 5B	40	55	70	85	100	115	130	145	160							
SEBS 7B	40	55	70	85	100	115	130	145	160	175	190	205	220	235	250	265
SEBS 9B	55	75	95	115	135	155	175	195	215	235	255	275	295	315	335	355


Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance.

		guide rail dime	nsions	;		basic lo	ad rating	allowab	le static	moment		mass		
H ₁	C	d×G×h	S ₃	N	P	dynamic	static	MР	MY	MR	bloo	ck g	guide	block size
						С	Co	M _{P2}	M _{Y2}		resin	stainless	rail	Size
mm	mm	mm		mm	mm	kN	kN	N⋅m	N⋅m	N⋅m	return cap	return cap	g/100mm	
						0.52	0.75	1.13 7.86	0.95 6.59	1.96	3	4		5B
4	5	2.4×3.5×0.8	M2.6			0.64	1.00	1.94	1.63	2.62	4	5	13	5BY
				5	15	0.04	1.00	12.0	10.0	2.02	7	,		5BYD
				3	13	0.92	1.05	1.57 13.6	1.32 11.4	3.86	7	10		7BS
4.7	7	2.4×4.2×2.3	мз			1.28	1.69	3.66 25.4	3.07 21.3	6.18	9	12	21	7B
						1.90	2.95	10.4 59.1	8.74 49.6	10.8	15	18		7BY
						1.05	1.26	2.17 18.2	1.82 15.2	5.90	11	15		9BS
5.5	9	3.5×6×3.5	М4	7.5	20	1.70	2.53	7.78 48.2	6.53 40.4	11.8	18	22	31	9B
						2.26	3.80	16.8 91.7	14.1 77.0	17.7	27	31		9BY

M_{P2} and M_{Y2} are allowable static moments when two blocks are used in close contact. 1kN≒102kgf 1N⋅m≒0.102kgf⋅m

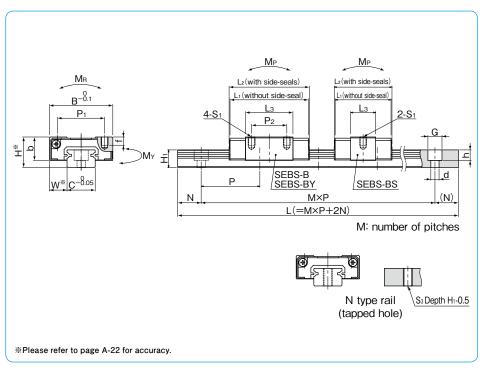
							length mm
						counterbore	tapped hole (N type)
						600	300
280	295	310				1,300	700
375	395	415	435	455	475	1,480	1,000



SEBS-BS/B/BY TYPE SEBS-BSM/BM/BYM TYPE

- Retained Ball Type -

part number structure



* The symbol for the number of axes does not mean the number of rails ordered.

nort n	umber	assembly	dimensions				block	dimen	sions			
part n	umber	Н	W	В	L ₁	L2	P ₁	P ₂	S ₁	f	Lз	b
resin return cap	stainless return cap	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm
SEBS12BS	SEBS12BSM				24.2	24.6		-			10.6	
SEBS12B	SEBS12BM	13	7.5	27	33.8	34.2	20	15		3.5	20.2	10
SEBS12BY	SEBS12BYM				45.7	46.1		20	М3		32.1	
SEBS15BS	SEBS15BSM				30	30.4		_	IVIO		15	
SEBS15B	SEBS15BM	16	8.5	32	42.6	43	25	20		4	27.6	12
SEBS15BY	SEBS15BYM				58.6	59		25			43.6	
SEBS20B	SEBS20BM	25	13	46	65.9	65.9	38	38	M4	6	44.7	17.5
SEBS20BY	SEBS20BYM	25	13	40	85.7	85.7	38	38	IVI4	U	64.5	17.5

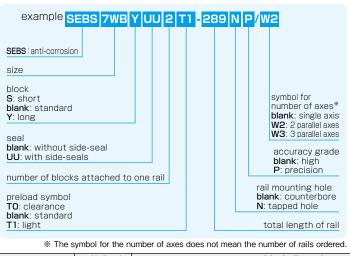
part number										stan	dard i	rail ler nm	ngth			
SEBS12B	70	95	120	145	170	195	220	245	270	295	320	345	370	395	420	445
SEBS15B	70	110	150	190	230	270	310	350	390	430	470	510	550	590	630	670
SEBS20B	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000		

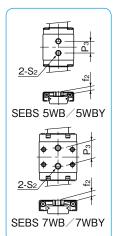
Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance.

		guide rail dime	nsions	3		basic lo	ad rating	allowab	le static	moment		mass		
H ₁	C	d×G×h	S ₃	N	P	dynamic	static	MР	MY	MR	bloo	ck g	guide	block size
						С	Co	M _{P2}	M _{Y2}		resin	stainless	rail	3126
mm	mm	mm		mm	mm	kN	kN	Ν·m	Ν·m	Ν·m	return cap	return cap	g/100mm	
						1.90	1.91	3.63 32.4	3.04 27.2	11.9	21	30		12BS
7.5	12		М4	10	25	3.09	3.82	12.4 81.3	10.4 68.2	23.9	35	44	59	12B
		3.5×6×4.5				4.34	6.21	30.7 170	25.7 143	38.8	53	62		12BY
		3.5 × 0 × 4.5				3.49	3.38	8.56 67.5	7.18 56.6	26.2	40	53		15BS
9.5	15		М5	15	40	5.65	6.76	29.2 175	24.5 147	52.4	64	77	97	15B
						7.93	10.9	72.4 379	60.7 318	85.1	98	110		15BY
15	20	6×9.5×8.5	М6	20	60	11.4	14.5	103 591	87.0 496	149	228	266	205	20B
13	20	0.73.3.76.3	IVIO	20	00	14.8	21.2	210 1,080	176 914	217	323	360	203	20BY

M_{P2} and M_{Y2} are allowable static moments when two blocks are used in close contact. 1kN≒102kgf 1N⋅m≒0.102kgf⋅m

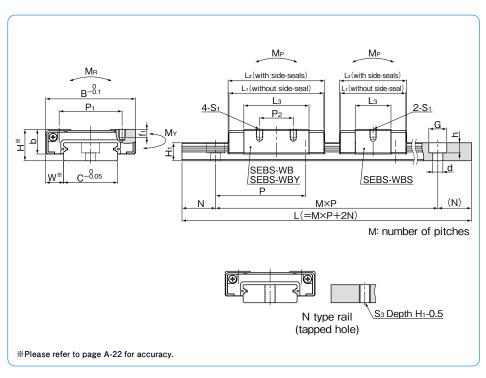
		maximum	length mm
		counterbore	tapped hole (N type)
470	495		
		1,480	1,000


A-28


SEBS-WBS/WB/WBY TYPE

- Retained Ball · Wide Type -

part number structure



	assembly	dimensions					bl	ock dir	nensio	ns				
part number	H	W	В	L ₁	L2	P ₁	P ₂	S ₁	f1	Lз	Рз	S ₂	f ₂	b
part nambor														
	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm		mm	mm
SEBS 5WB	6.5	3.5	17	21.5	21.9					14.3	6.5	М3	2.3	_
SEBS 5WBY	0.5	3.5	17	27.5	27.9	_	_	_	_	20.3	11	IVIS	2.3	5
SEBS 7WBS				21.1	21.9		_			10.7	_	_	_	
SEBS 7WB	9	5.5	25	30.6	31.4	19	10			20.2	12	M4	3.5	7
SEBS 7WBY				39.3	40.1		19	мз	2.8	28.9	18	IVI4	3.3	
SEBS 9WBS				24.2	25	21	_	IVIO		13				
SEBS 9WB	12	6	30	37.5	38.3	-1	12			26.3	_	_	_	9
SEBS 9WBY				49.5	50.3	23	24		3	38.3				

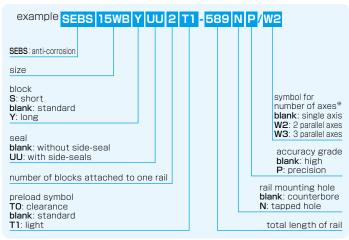
part number									st		d rail l	ength			
SEBS 5WB	50	70	90	110	130	150	170	190							
SEBS 7WB	50	80	110	140	170	200	230	260	290	320	350	380	410	440	470
SEBS 9WB	50	80	110	140	170	200	230	260	290	320	350	380	410	440	470

Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance. The minimum standard rail can not be used for SEBS 9 WBY.

		guio	de rail dimens	ions			basic loa	ad rating	allowab	le static	moment	ma	ass	blook
H ₁	С	B ₁	d×G×h	S₃	N	P	dynamic	static	MР	MY	MR	block	guide	block size
							С	Co	M _{P2}	M _{Y2}			rail	3126
mm	mm	mm	mm		mm	mm	kN	kN	Ν·m	Ν·m	Ν·m	g	g/100mm	
4	10		3×5.5×3	мз	5	20	0.71	1.17	2.60 15.2	2.18 12.8	5.99	7	26	5WB
4	10		3 × 5.5 × 5	IVIO	5	20	0.91	1.68	5.16 27.3	4.33 22.9	8.56	10	20	5WBY
							1.05	1.26	2.17 18.2	1.82 15.2	9.07	12		7WBS
5.2	14	_	3.5×6×3.2				1.71	2.53	7.78 48.2	6.53 40.4	18.1	20	51	7WB
				M4	10	30	2.26	3.80	16.8 91.7	14.1 77.0	27.2	28		7WBY
				IVI4	10	30	1.73	2.01	4.35 33.3	3.65 27.9	18.6	21		9WBS
7.5	18	_	3.5×6×4.5				2.96	4.36	18.1 103	15.2 86.6	40.4	37	96	9WB
							3.87	6.38	37.4 192	31.4 161	59.0	52		9WBY

M_{P2} and M_{Y2} are allowable static moments when two blocks are used in close contact. 1kN≒102kgf 1N⋅m≒0.102kgf⋅m

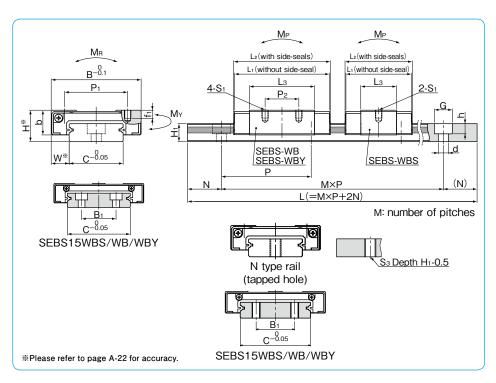
				length mm
		C	ounterbore	tapped hole (N type)
			600	500
			1,300	700
500	530		1,480	1,000


A-30 A-31

SEBS-WBS/WB/WBY TYPE

- Retained Ball · Wide Type -

part number structure



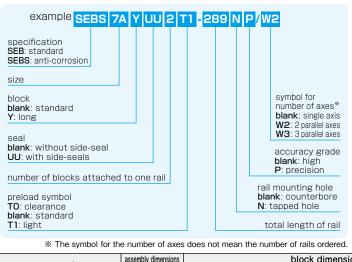
* The symbol for the number of axes does not mean the number of rails ordered.

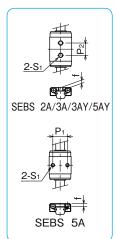
				or axes (
	assembly (dimensions					bl	ock dir	nensio	ns				
part number	Н	W	В	L ₁	L2	P ₁	P ₂	S ₁	f ₁	L3	Рз	S ₂	f ₂	b
	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm		mm	mm
SEBS12WBS				29.7	30.1		_			15.9				
SEBS12WB	14	8	40	42.8	43.2	28	15	МЗ	3.5	29	-	_	_	11
SEBS12WBY				58.3	58.7		28			44.5				
SEBS15WBS				39.4	39.8		_			24				
SEBS15WB	16	9	60	54.2	54.6	45	20	M4	4.5	38.8	-	_	_	13
SEBS15WBY				73.3	73.7		35			57.9				

part number									st		d rail l	ength			
SEBS12WB	70	110	150	190	230	270	310	350	390	430	470	510	550	590	630
SEBS15WB	70	110	150	190	230	270	310	350	390	430	470	510	550	590	630

Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance. The minimum standard rail can not be used for SEBS 15 WBY.

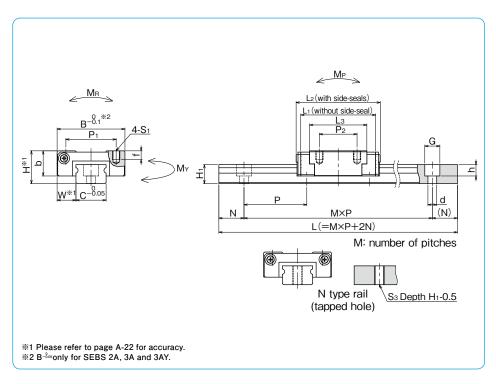
		guio	de rail dimens	ions			basic loa	ad rating	allowab	le static	moment	ma	iss	block
H ₁	С	Вı	d×G×h	S₃	N	P	dynamic	static	MР	MY	MR	block	guide	size
							С	Co	M _{P2}	M _{Y2}			rail	3126
mm	mm	mm	mm		mm	mm	kN	kN	Ν·m	Ν·m	Ν·m	g	g/100mm	
							2.53	2.86	7.38 54.3	6.19 45.6	35.1	43		12WBS
8	24	_					4.10	5.73	26.4 150	22.1 126	70.2	71	137	12WB
							5.45	8.60	57.1	47.9	105	106		12WBY
			4.5×8×4.5	M5	15	40	0.40	0.00	292	245	100	100		
			4.5 ^ 6 ^ 4.5	IVIS	13	40	5.15	5.91	22.9	19.2	125	98		15WBS
							3.13	5.51	146	122	123	30		TOWDO
9.5	42	23					7.49	10.1	62.2	52.2	215	148	286	15WB
3.5	72	20					7.43	10.1	335	281	213	170	200	IOWB
							9.95	15.2	134	113	323	216		15WBY
							0.55	10.2	663	556	020	210		


M_{P2} and M_{Y2} are allowable static moments when two blocks are used in close contact. $1kN = 102kgf - 1N \cdot m = 0.102kgf \cdot m$


						maximum	
						counterbore	tapped hole (N type)
670	710					1.480	1.000
670	710	750	790	830	870	1,400	1,000

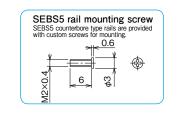
SEB-A/AY TYPE

part number structure



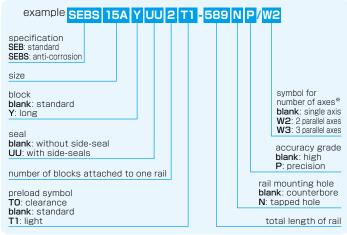
nort r	number	assembly of	dimensions				block	dimen	sions			
parti	·	H	W	В	L ₁	L2	P ₁	P ₂	S ₁	f	Lз	b
standard	anti-corrosion	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm
	SEBS 2A	3.2	2	6	12.9	14.3	-	4	M1.4	1.05	9.3	2.5
	SEBS 3A	4	2.5	8	10.5	11.8	l	3.5	M1.6	1.3	6.5	3
_	SEBS 3AY	4	2.5	0	14.5	15.8	l	5.5	M2	1.3	10.5	3
	SEBS 5A	6	3.5	12	15.6	17	8	ı	M2	1.5	9.8	4.5
	SEBS 5AY	0	5.9	12	19.2	20.6	l	7	M2.6	1.8	13.4	4.5
_	SEBS 7A	8	5	17	21.9	24	12	8	M2	2.5	15.1	6.5
	SEBS 7AY	O	,	17	31	33	12	13	IVIZ	2.3	24.6	0.5

part r	number								;	standa	ard ra L	il leng	gth			
standard											mm					
_	SEBS 2A	32	40	56	80	104										
_	SEBS 3A	30	40	60	80	100										
_	SEBS 5A	40	55	70	85	100	115	130	145	160						
_	SEBS 7A	40	55	70	85	100	115	130	145	160	175	190	205	220	235	250


Joint rails are used when the required length exceeds the maximum standard length listed in the dimension tables. Please contact NB for details. Only N type rail is available for SEBS 2A and SEBS 3A.

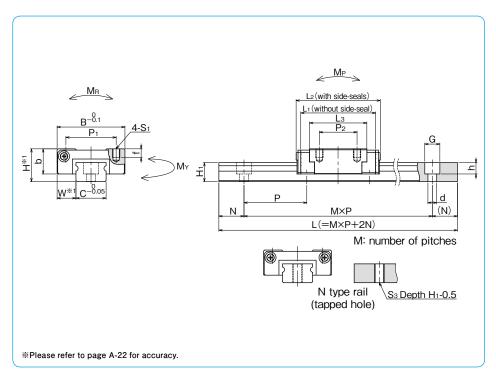
		guide rail dime	nsions	3		basic loa	ad rating	allowab	le static	moment	ma	iss	block
H ₁	С	d×G×h	S ₃	N	Р	dynamic	static	MР	MY	MR	block	guide	size
						С	Co	M _{P2}	M _{Y2}			rail	3126
mm	mm	mm		mm	mm	kN	kN	Ν·m	Ν·m	Ν·m	g	g/100mm	
2	2		М1	4	8	0.21	0.38	0.53	0.64	0.41	0.8	2.8	2A
		_	IVI I	4	0	0.21	0.50	2.77	3.30	0.41	0.0	2.0	EA
						0.25	0.36	0.39	0.46	0.57	1		ЗА
2.6	3		M1.6		10	0.23	0.30	2.42	2.88	0.57	1	5	JA
2.0	ა	_	WI 1.6		10	0.35	0.58	0.97	1.16	0.93	2)	ЗАҮ
						0.33	0.56	5.18	6.18	0.93	2		SAI
						0.59	0.81	1.32	1.58	2.11	4		5A
4	5	2.4×3.5×1	M2.6	5		0.59	0.61	8.05	9.60	2.11	4	13	5A
4	5	2.4 ^ 3.3 ^ 1	IVIZ.0	3		0.74	1.11	2.39	2.86	2.90	5	13	5AY
					4.5	0.74	1.11	13.2	15.7	2.90	5		SAT
				1	15	1.00	1.41	3.07	3.66	5.18	11		7A
4.7	7	2.4×4.2×2.3	142			1.08	1.41	18.9	22.6	5.16	11	21	/A
4.7	/	Z.4 × 4.2 × 2.3	IVI3			1.50	0.40	8.74	10.4	0.07	10	21	747
						1.59	2.48	45.1	53.8	9.07	16		7AY

 M_{P2} and M_{Y2} are allowable static moments when two blocks are used in close contact. $1kN = 102kgf 1N \cdot m = 0.102kgf \cdot m$


					cimum erbore		mm le (N type)
				standard	anti-corrosion	standard	anti-corrosion
				_	_	_	150
				_	_	_	150
				_	600	_	300
265	280	295	310	-	1,300	_	700

SEB-A/AY TYPE

part number structure


* The symbol for the number of axes does not mean the number of rails ordered.

nort n	umber	assembly o	dimensions				block	dimen	sions			
part ii	umber	Н	W	В	L ₁	L2	P ₁	P ₂	S ₁	f	Lз	b
standard	anti-corrosion	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm
SEB 9A	SEBS 9A	10	5.5	20	28.1	29.5	15	10		3	20.4	7.8
SEB 9AY	SEBS 9AY	10	5.5	20	38.1	40	15	16		3	30.4	7.0
SEB12A	SEBS12A	10	7.5	27	30	33.5	00	15		٥.	22.8	10
SEB12AY	SEBS12AY	13	7.5	21	42	45.5	20	20	М3	3.5	34.7	10
SEB15A	SEBS15A	16	8.5	32	38.5	42	25	20		4	29.5	12
SEB15AY		10	0.5	32	54.5	58	25	25		4	45.4	12
SEB20A	SEBS20A	25	13	46	55.7	61	38	38	M4	6	45.7	17.8
SEB20AY	SEBS20AY	20	13	40	79.5	85	30	30	IVI4	U	69.5	17.0

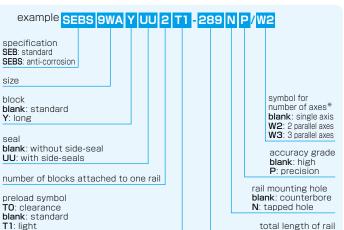
All the SEB blocks are made of stainless steel (SEBS marking).

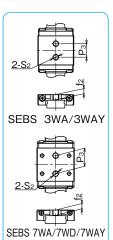
part r	number								,	stand	ard ra L	il leng	gth			
standard	anti-corrosion										mm					
SEB 9A	SEBS 9A	55	75	95	115	135	155	175	195	215	235	255	275	295	315	335
SEB12A	SEBS12A	70	95	120	145	170	195	220	245	270	295	320	345	370	395	420
SEB15A	SEBS15A	70	110	150	190	230	270	310	350	390	430	470	510	550	590	630
SEB20A	SEBS20A	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	

Joint rails are used when the required length exceeds the maximum standard length listed in the dimension tables.

rail size	guide rail	block			allowab	au rating	basic lo		guide rail dimensions d×G×h S₃ N F				
rail	rail	Dioon	MR	MY	MР	static	dynamic	Р	N	S₃	d×G×h	С	H ₁
/100mm				M _{Y2}	M _{P2}	Co	C						
	g/100mm	g	Ν·m	Ν·m	Ν·m	kN	kN	mm	mm		mm	mm	mm
9A		10	11 5	9.11	7.64	2.53	1 02						
30	20	19	11.5	51.3	43.1	2.55	1.92	20	7.5		2576725	١	==
9AY	30	20	17.0	20.8	17.5	204	2.62	20	7.5		3.5 ^ 6 ^ 5.5	9	3.5
JAT		20	17.9	105	88.5	3.94	2.02						
104		07	00.0	12.4	10.4	0.00	0.00			IVI4			
12A	- 00	3/	20.0	68.0	57.0	3.20	2.60	٥.	40			40	7.
60	60		20.0	30.7	25.7	- 04	0.05	25	10			12	7.5
12AY		55	32.6	151	127	5.21	3.65				0.5.4.6.4.5		
1-4		-00	40.0	29.2	24.5	- o-					3.5 × 6 × 4.5		
15A	400	68	43.9	157	131	5.67	4.74	40					
100	100				60.7			40	15	M5		15	9.5
15AY		101	71.4			9.22	6.65						
20A		226	114			11.1	8.99						
209	209			_				60	20	M6	6×9.5×8.5	20	15
20AY		338	182	_	-	17.8	12.4						
1	- 1	19 28 37 55 68 101 226 338	11.5 17.9 20.0 32.6 43.9 71.4 114	51.3 20.8 105 12.4 68.0 30.7 151 29.2	43.1 17.5 88.5 10.4 57.0 25.7 127 24.5	2.53 3.94 3.20 5.21 5.67 9.22 11.1 17.8	1.92 2.62 2.60 3.65 4.74 6.65 8.99	20 25 40	7.5 10 15 20	M5	3.5×6×3.5 3.5×6×4.5 6×9.5×8.5	9 12 15 20	5.5 7.5 9.5

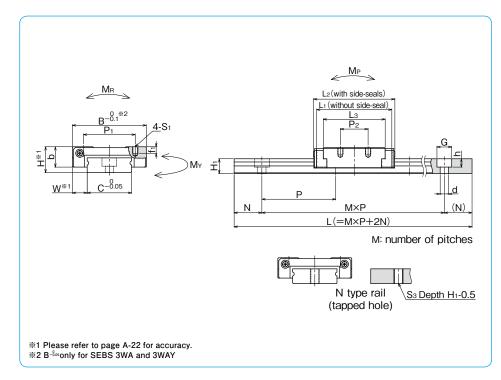
M_{P2} and M_{Y2} are allowable static moments when two blocks are used in close contact. 1kN≒102kgf 1N⋅m≒0.102kgf⋅m


							max	kimum	length	mm
							count	erbore	tapped ho	le (N type)
							standard	anti-corrosion	standard	anti-corrosion
355	375	395	415	435	455	475	500		500	
445	470	495					500	4 400	500	1 000
670								1,480		1,000
							1,900		1,900	


SEB-WA/WAY TYPE

- Wide block -

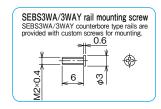
part number structure


 $\mbox{\%}$ The symbol for the number of axes does not mean the number of rails ordered.

nart n	umber	assembly	dimensions					bl	ock di	mensi	ons				
part ii	umber	H	W	В	L ₁	L2	P ₁	P ₂	S ₁	f ₁	Lз	P 3	S ₂	f ₂	b
standard	anti-corrosion	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm		mm	mm
	SEBS 3WA	4.5	3	12	14.2	15					9.7	4.5	M2	1.7	3.5
	SEBS 3WAY	4.5	3	12	19	19.8					14.5	8	IVIZ	1.7	3.3
	SEBS 7WA				20.1	20	18	12	M2.6	2.5	22.1	10			
_	SEBS 7WD	9	5.5	25	30.1	32	10	10		0.0	22.1	12	M4	3.5	7
	SEBS 7WAY				39.6	41	19	19	М3	2.8	31.6	18			
SEB 9WA	SEBS 9WA				35.9	38	21	12	M2.6	3	28.4				
SEB 9WD	SEBS 9WD	12	6	30	33.9	30	41	12	MO	2.8	20.4	_	_	_	9
SEB 9WAY	SEBS 9WAY				48	50	23	24	М3	3	40.4				

All the SEB blocks are made of stainless steel (SEBS marking).

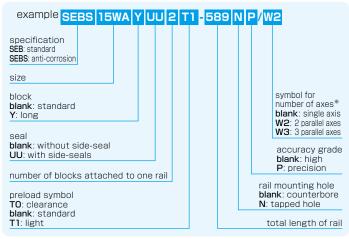
part r	number								;	standa	ard ra L	il leng	gth			
standard	anti-corrosion										mm					
_	SEBS 3WA	40	55	70	85	100										
_	SEBS 7WA	50	80	110	140	170	200	230	260	290	320	350	380	410	440	470
SEB 9WA	SEBS 9WA	50	80	110	140	170	200	230	260	290	320	350	380	410	440	470


Joint rails are used when the required length exceeds the maximum standard length listed in the dimension tables. Please contact NB for details. SEB9WAY block lengths exceed the minimum standard rail length.

		guio	de rail dimens	ions			basic loa	ad rating	allowab	le static	moment	ma	ass	block
H ₁	С	B ₁	d×G×h	S₃	N	P	dynamic		MР	MY	MR	block	guide	size
							С	Co	M _{P2}	M _{Y2}			rail	3120
mm	mm	mm	mm		mm	mm	kN	kN	Ν·m	Ν·m	Ν·m	g	g/100mm	
2.6	6		2.4×4×1.5	мз	5	15	0.33	0.54	0.83 4.74	0.99 5.65	1.67	3	10	ЗWА
2.0	0		2.4 ^ 4 ^ 1.5		3	13	0.44	0.81	1.81 9.24	2.15 11.0	2.51	4	10	3WAY
							1 40	0.10	6.53	7.78	15.0	21		7WA
5.2	14	_	3.5×6×3.2				1.43	2.12	38.2	45.6	15.2	21	51	7WD
					10	30	1.90	3.19	14.1 73.8	16.8 87.9	22.8	30		7WAY
				M4	10	30	2.49	3.66	15.2	18.1	33.9	38		9WA
7.5	18	_	3.5×6×4.5				2.43	5.00	77.6	92.5	5	30	96	9WD
							3.25	5.35	31.4 149	37.4 178	49.5	55		9WAY

M_{P2} and M_{Y2} are allowable static moments when two blocks are used in close contact. 1kN≒102kgf 1N⋅m≒0.102kgf⋅m

			ximum		
			erbore		
		standard	anti-corrosion	standard	anti-corrosion
		_	500	_	150
		_	1,300	_	700
500	530	1,900	1,480	1,900	1,000


L2(with side-seals) L₁ (without side-seal)

SEB-WA/WAY TYPE

- Wide block -

part number structure

* The symbol for the number of axes does not mean the number of rails ordered.

nort n		assembly	dimensions					ble	ock di	mensi	ons				
part ii	umber	Н	W	В	L ₁	L2	P₁	P ₂	S ₁	f1	Lз	P 3	S ₂	f ₂	b
standard	anti-corrosion	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm		mm	mm
SEB12WA	SEBS12WA			40	40.7	44	00	15		2.5	33.5				44
SEB12WAY	SEBS12WAY	14	8	40	55	58.5	28	28	М3	3.5	47.8	_	_	_	11
SEB15WA	SEBS15WA	16	9	60	51.2	55	45	20	M4	4.5	42			_	13
SEB15WAY	SEBS15WAY	10	9	60	70.5	74	45	35	IVI4	4.5	61.1				13

All the SEB blocks are made of stainless steel (SEBS marking).

**	<u>W</u>	*1	C-8.05			Мү :	i E	N	P		M×P			d (N)
				1			*	· · >-		1 (=	=M×P+	2N)		< \1.4/ >
SEB 15WA/15WAY N type rail (tapped hole) SEB 15WA/15WAY **Please refer to page A-22 for accuracy.														
 ₩Р	lease	refer t	o page A-22 for	r accu	racy.									
guide rail dimensions basic load rating allowable static moment mass bleak														
Hı	С	B ₁	d×G×h	S ₃	N	Р	dynamic C		Mp Mp2	My My2	MR	block	guide rail	block size
mm	mm	mm	mm		mm	mm	kN	kN	N·m	N·m	N·m	g	g/100mm	
8	24			3.64 5.21 25.7 30.7 63.8 77 12WA										
o	24	4 — 125 136 138 138 12WAY												

							8.35	12.7	525	625	271	222		15WAY
М	22 and	Mya ai	re allowable sta	tic moi	ments	when	two bloc	ks are u	sed in cla	se conta	ct 1kN	=102kof	1N • m≐	102kgf • m

8.51

258

113

52.2

292

307

134

62.2

180

154

294

15WA

part n	umber								,	stand	ard ra L	il leng	gth			
standard	anti-corrosion										mm					
SEB12WA	SEBS12WA	70	110	150	190	230	270	310	350	390	430	470	510	550	590	630
SEB15WA	SEBS 15WA	70	110	150	190	230	270	310	350	390	430	470	510	550	590	630

Joint rails are used when the required length exceeds the maximum standard length listed in the dimension tables. Please contact NB for details. SEB15WAY block lengths exceed the minimum standard rail length.

						ma	ximum	length r	nm
							erbore		
						standard	anti-corrosion	standard	anti-corrosion
670	710					1 000	1 400	1 000	1.000
670	710	750	790	830	870	1,900	1,480	1,900	1,000

4.5×8×4.5 M5 15

9.5 42

23

40

6.29

A-40 A-41

SLIDE GUIDE Miniature SER Type

The NB slide guide SER type is a linear motion bearing utilizing the rolling motion of precision rollers placed in two rows. Despite its compactness, it can be used in various applications requiring high load capacity.

STRUCTURE AND ADVANTAGES

The SER type slide guide consists of a rail with two precision-machined raceway grooves and a block assembly. The block assembly consists of the main body, rollers, and bottom retainers. All of these components are made out of metallic materials.

High Load Capacity and Long Life

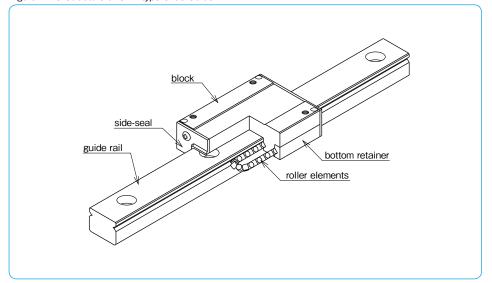
Since roller elements are used, the contact surface is large which provides a high load capacity and a long travel life.

Compactness

Since a cross roller method is utilized, only two raceway grooves are necessary and presents a very compact package.

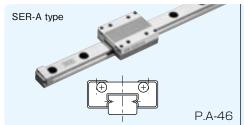
Moment Resistant Type

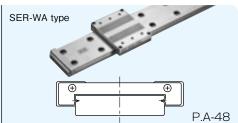
The wide block design (WA type) has an extremely high moment loading capacity. This will allow for single guide designs in the most demanding and compact applications.


Tapped Hole Rail Type

For the SER rails, counterbore (standard) and optional tapped hole (N) types are available enabling various installation methods.

All Stainless Steel Type


The SERS type slide guide is made from all stainless steel components, making it ideal for high temperature, clean room or vacuum applications.


Figure A-45 Structure of SER type Slide Guide

TYPES

The SER type slide guides are available with a standard block or a wide block (WA) configuration. Each type can be selected with standard rails of counterbore holes or the optional N-Type rails of tapped holes. For anti-corrosion, all stainless steel type is also available with all stainless steel components.

ACCURACY

The SER-type slide guides are available with high grade accuracy (blank) or precision grade accuracy (P).

Table A-16 Accuracy unit: mm

accuracy grade high precision
accuracy symbol blank P

 allowable dimensional difference in height H
 ±0.015
 ±0.008

 paired difference for height H
 0.015
 0.007

 allowable dimensional difference in width W
 ±0.020
 ±0.010


 paired difference for width W
 0.020
 0.010

 Running parallelism of surface C to surface A

Figure A-47 Motion Accuracy

Running parallelism of surface D to surface B

C reference surface NB mark

refer to Figure A-48,49

- | 4

Figure A-46 Accuracy

PRELOAD

The SER(S) type slide guides are available only with a standard (0 to minimal preload) preload.

RAIL LENGTH

Slide guides with most commonly used lengths are available as standard. For slide guides with a non-standard length, unless otherwise specified, the distance from one end of the rail to the first hole center (N) will be within the ranges listed in Tables A-17 and A-18, satisfying the following equation.

$L=M\cdot P+2N$

L: total length of rail (mm)

N: distance from the end of the rail to the first hole center (mm)

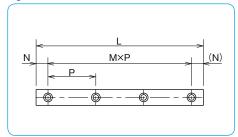

P: hole pitch (mm) M: number of pitches

Table A-17 N Dimension (standard type) unit: mm

part n	umber	1	1
standard	anti-corrosion	and over	less than
SER 9A	SERS 9A		14
SER12A	SERS12A	4	16.5
SER15A	SERS15A		24
SER20A	SERS20A	6	36

Figure A-48 Rail

SER15WA

Table A-18 IV L	imension (wide	e type)	unit - mm
part n	umber	1	١
standard	anti-corrosion	and over	less than
SER 9WA	SERS 9WA	4	19
SER12WA	SERS12WA		

SERS15WA

5

25

MOUNTING

Mounting Surface Profile

Slide guides are mounted by pushing the reference surface of the rail and the block against the shoulder provided on the mounting surface. An undercut or a radius corner should be provided at the corner of the shoulder, as shown in Figures A-49 and A-50, to prevent interference. The recommended shoulder height and corner radis are shown in Table A-19 and Table A-20 respectively.

Figure A-49 Mounting Reference Surface Profile-1

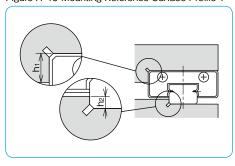
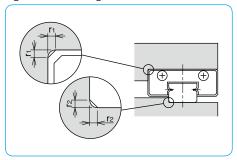



Table A-19 Shoulder Height Dimensions unit:mm

size	shoulder height on the block side	shoulder height on the rail side h2
SER 9A	3	1.5
SER12A	4	2
SER15A	5	3.5
SER20A	5	5
SER 9WA	3	
SER12WA	4	2.5
SER15WA	5	

Figure A-50 Mounting Reference Surface Profile-2

Recommended Torque Values

The screws to fasten the rail should be tightened to an equal toque using a torque wrench in order to secure the motion accuracy. The recommended torque values are given in Table A-21. Please adjust the torque depending on the operating conditions.

Table A-20 Maximum Corner Radius Values unit:mm

Table A-20 IVI	aximum comer nac	ilus values uritti illii
size	block mounting part r ₁	rail mounting part r ₂
SER 9A		0.1
SER12A		0.3
SER15A		0.3
SER20A	0.3	0.5
SER 9WA		
SER12WA		0.3
SER15WA		
	SIZE SER 9A SER12A SER15A SER20A SER 9WA SER12WA	SER 9A SER12A SER15A SER20A SER 9WA SER12WA

 Table A-21 Recommended Torque
 unit:N·m

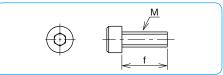
 size
 M2
 M3
 M4
 M5
 M6

 recommended torque
 0.3
 1.0
 2.3
 4.7
 8.0

(for stainless steel screw A2-70)

MOUNTING SCREW

Small screws for the SER(S) type slide guide are available from NB.


 Table A-22
 unit:mm

 size
 pitch
 length f
 application

 M2
 0.4
 4.5.6.8.10
 SER 9A

(stainless steel)

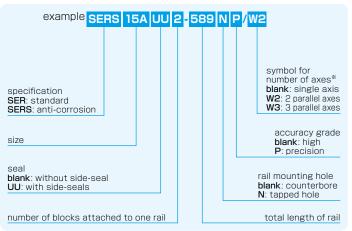
Figure A-51 Mounting Screw

LUBRICATION

A high grade lithium soap based grease is applied to the NB slide guides prior to shipment for immediate use. Please relubricate with a similar type of grease periodically depending on the operating conditions. For use in clean rooms or vacuum environments, NB slide guides without grease are available upon request. Please contact NB for customer specified grease types.

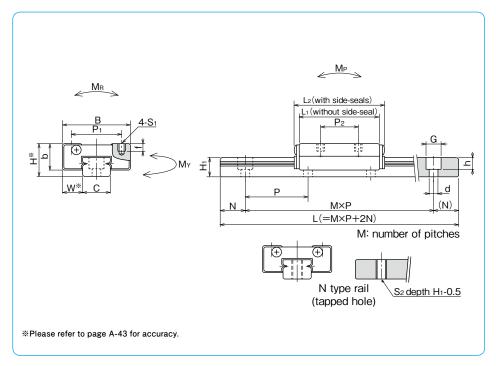
Please refer to page Eng-39 for details on the low dust generation grease.

A special syringe lubricant dispenser is available from NB as an option (refer to page Eng-42).



A-44 A-45

SER-A TYPE


part number structure

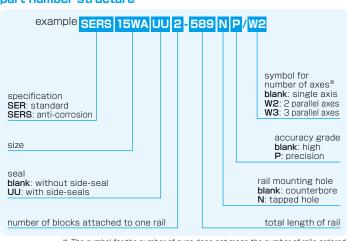
* The symbol for the number of axes does not mean the number of rails ordered.

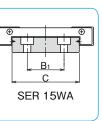
nort n	umber	assembly o	dimensions				block dir	nensions	;		
part ii	umber	Н	W	В	L ₁	L ₂	P ₁	P ₂	S ₁	f	b
standard	anti-corrosion	mm	mm	mm	mm	mm	mm	mm		mm	mm
SER 9A	SERS 9A	10	5.7	20	28	32	15	13	М2	2.5	7.8
SER12A	SERS12A	13	8	27	32	36	20	15	М3	3	10.5
SER15A	SERS15A	16	8.5	32	40	44	25	20	IVIS	4	11.5
SER20A	SERS20A	25	13	46	60	66	38	38	M4	6	17.5

•	number			stan	dard rail le L mm	ength			maximum length mm
SER 9A	SERS 9A	55	75	95	115	155	195	275	275
SER12A	SERS12A	120	170	220	270	320	370	470	470
SER15A	SERS15A	150	230	310	430	550	670		670
SER20A	SERS20A	220	280	340	460	640	880		880

		guide	rail dimensions	3		basic lo	ad rating	allo	wable st	tatic	ma	ass	blook
H ₁	C	S ₂	d×G×h	N	Р	dynamic	static		moment		block	guide	block size
						С	Co	MР	MY	MR		rail	
mm	mm		mm	mm	mm	kN	kN	N⋅m	N⋅m	N⋅m	g	g/100mm	
5.5	8.6	M4	2.6×4.5×3	7.5	20	2.65	2.94	11.8	13.7	19.6	25	35	9A
7.5	11	IVI4	3.5×6×4.5	10	25	3.43	3.92	15.7	17.6	29.4	51	55	12A
9.5	15	М5	3.5 × 6 × 4.5	15	40	4.70	5.78	29.0	32.3	54.9	82	100	15A
15	20	М6	6×9.5×8.5	20	60	8.82	9.80	59.0	66.6	151	280	230	20A

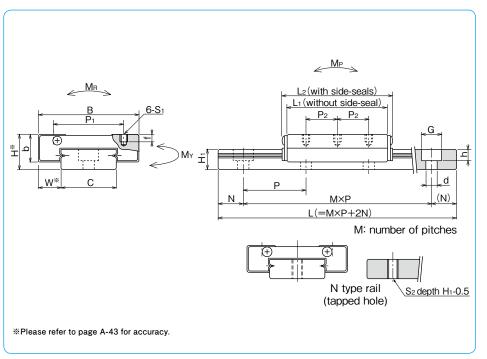
 $1kN\!\doteqdot\!102kgf\quad 1N\cdot m\!\doteqdot\!0.102kgf\cdot m$


A-46


SER-WA TYPE

Wide Type –

part number structure



* The symbol for the number of axes does not mean the number of rails ordered.

nort n	umbor	assembly o	dimensions				block dir	nensions	3		
part ii	umber	Н	W	В	L ₁	L2	P ₁	P ₂	S ₁	f	b
standard	anti-corrosion	mm	mm	mm	mm	mm	mm	mm		mm	mm
SER 9WA	SERS 9WA	12	6.5	30	35	39	21	10	M3	3	8.8
SER12WA	SERS12WA	14	9	40	40	44	28	12.5	IVIS	3	11
SER15WA	SERS15WA	16	ກ	60	50	54	45	15	M4	4.5	11.5

•	umber			stan	dard rail le L mm	ength			maximum length
standard	anti-corrosion				111111				mm
SER 9WA	SERS 9WA	80	110	140	170	200	260	290	290
SER12WA	SERS12WA	110	150	190	230	310	390	470	470
SER15WA	SERS15WA	150	230	310	430	550	670		670

		guic	de rai	dimensions			basic loa	ad rating	allo	wable st	atic	ma	ass	block
Нı	С	B ₁	S ₂	d×G×h	N	Р	dynamic	static		moment		block	guide	size
							С	Co	MР	MY	MR		rail	3126
mm	mm	mm		mm	mm	mm	kN	kN	N⋅m	N⋅m	N⋅m	g	g/100mm	
7.5	17	ı	M4	3.5×6×4.5	10	30	3.43	3.72	24.5	27.4	51.9	46	90	9WA
8	22	ı	M5	4.5×8×4.5	15	40	4.41	5.00	35.3	39.2	85.3	92	122	12WA
9.5	42	23	CIVI	4.5 × 6 × 4.5	15	40	7.35	8.92	55.9	61.7	215.0	165	280	15WA
				•							41.61	. 4001 (411	1001

 $1kN = 102kgf \quad 1N \cdot m = 0.102kgf \cdot m$

unit: mm

SLIDE GUIDE SGL TYPE

The NB slide guide SGL type is a linear motion bearing utilizing the rolling motion of ball elements along four rows of raceway grooves. It can be used in various applications due to its compactness and high load capacity.

STRUCTURE AND ADVANTAGES

The NB slide guide SGL type consists of a rail with 4 rows of precisely machined raceway grooves and a block assembly. The block assembly consists of the main body, ball elements, retainers, and return caps.

High Load Capacity and Long Life

The use of relatively large ball elements and raceway grooves machined to a radius close to that of the ball elements increases the contact area resulting in a high load capacity and a long travel life.

Low Friction

Because a 4-row/2-point contact design is used, low friction and stable motion characteristics are achieved even under a preloaded conditions.

Omni-Directional Load Capacity

The ball elements are positioned at 45° contact angle so that the load capacity is equal in four directions (above, below, right and left).

Absorption of Mounting Dimensional Error

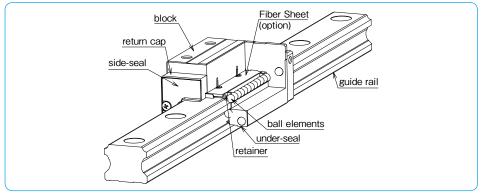
Because the ball elements are positioned to increase their self-aligning characteristics, the dimensional error caused during installation is absorbed.

Anti-corrosion Specification

The rail and block assembly can be treated with low temperature black chrome treatment to increase the corrosion resistance. This treatment is standardized with the symbol "LB". Stainless steel SGLS type is suitable for use in clean room application.

Dust Prevention

Side-seals are provided as a standard. To improve the dust prevention characteristics, under-seals, double-seals, scrapers, bellows and special rail mounting caps are also available.


Fiber Sheet Extends Lubricant Replenishment Intervals

A lubricant-containing Fiber Sheet incorporated in the block supplies appropriate amount of lubricant to the raceway grooves at appropriate intervals, which can significantly extend the lubricant replenishment interval. (refer to page A-16)

REVERSE-SEAL

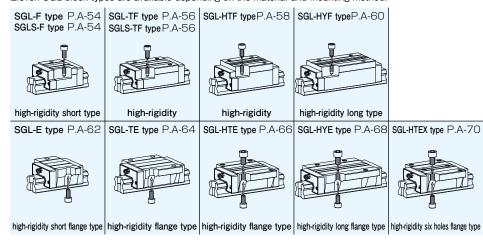

NB Reverse-seal realizes maintenance free by reducing grease leakage and loss. (refer to page A-17)

Figure A-52 Structure of SGL type Slide Guide

BLOCK TYPES

Eleven SGL block types are available depending on the material and mounting method.

ACCURACY

Three accuracy grades are available: standard grade (blank), high grade (H), and precision grade (P).

Table A-23 Accuracy

part number		SGL15,20)	SC	GL25,30,	35		SGL45	
accuracy grade	standard	high	precision	standard	high	precision	standard	high	precision
accuracy symbol	blank	Н	Р	blank	Н	Р	blank	Н	Р
allowable dimensional tolerance for height H	±0.1	±0.03	-0.03~0	±0.1	±0.04	-0.04~0	±0.1	±0.05	-0.05~0
paired difference for height H	0.02	0.01	0.006	0.02	0.015	0.007	0.03	0.015	0.007
allowable dimensional tolerance for width W	±0.1	±0.03	-0.03~0	±0.1	±0.04	-0.04~0	±0.1	±0.05	-0.05~0
paired difference for width W	0.02	0.01	0.006	0.03	0.015	0.007	0.03	0.02	0.01
Running parallelism of surface C to surface A		votor to Figure A FO FA							
Running parallelism of surface D to surface B	refer to Figure A-53, 54								

Figure A-53 Motion Accuracy

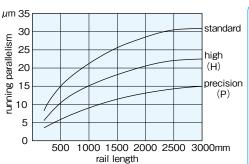
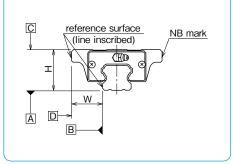



Figure A-54 Accuracy

PRELOAD

SGL type slide guides are available with a standard preload (blank), light preload (T1), and medium preload (T2).

Table A-24 Preload Symbol and Radial Clearance unit: um

Table A 24 Field	ad Cymbol and	riadiai Oicarai	icc dint pin
preload	standard	light	medium*
preload symbol	blank	T1	T2
SGL15	- 4~+2	-12~- 4	_
SGL20	- 5~+2	-14~- 5	-23~-14
SGL25	- 6~+3	-16~- 6	-26~-16
SGL30	- 7~+4	-19~- 7	-31~-19
SGL35	- 8~+4	-22~- 8	-35~-22
SGL45	-10~+5	-25~-10	-40~-25

Table A-25 Operating Conditions and Preload

preload	symbol	operating conditions
standard	blank	minute vibration is applied. accurate motion is required. moment is applied in a given direction.
light	T1	light vibration is applied. light torsional load is applied. moment is applied.
medium	T2	shock and vibration are applied. over-hang load Is applied. torsional load is applied.

and over

10

11

12

16

20

6

Ν

unit: mm

less than

36

40

41

52

56

72.5

Table A-26 N Dimension

part number

SGL15

SGL20

SGL25

SGL30 SGL35

SGL45

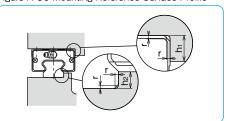
RAIL LENGTH

Slide guides with most commonly used lengths are available as standard. For slide guides with a nonstandard length, unless otherwise specified, the distance from one end of the rail to the first hole center (N) will be within the range listed in Table A-26, satisfying the following equation.

$L=M \cdot P + 2N$

L: length (mm) M: number of pitches P: hole pitch (mm) N: distance from the end of the rail to the first hole center (mm)

Figure A-55 Rail


.ga.o / Co / lan		
	L J	
	$N \longrightarrow M \times P \longrightarrow (N)$	
	P	
	<u> </u>	

Slide guides are generally mounted by pushing the reference surface of the rail and block against the shoulder of the mounting surface. An undercut should be provided at the corner of the shoulder in order to avoid interference with the corner of the rail or block. The recommended shoulder height values are shown in Table A-28.

MOUNTING

The screws to fasten the rail should be tightened equally using a torque wrench in order to secure the motion accuracy. The recommended torque values are listed in Table A-27. Please adjust the torque depending on the operating conditions.

Figure A-56 Mounting Reference Surface Profile

Table A-27 R	lecomr	nende	d Torqu	ıe	uni	t∶N∙m
size	МЗ	M4	M5	М6	M8	M12
recommended torque	1.4	3.2	6.6	11.2	27.6	96.4

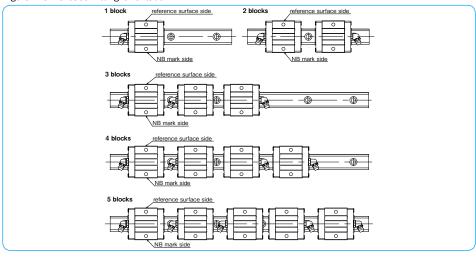
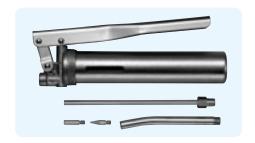

(for	steel	alloy	screws
---	-----	-------	-------	--------

Table A-28 Sho	ulder Height	unit:mm	
part number	h ₁	h ₂	rmax.
SGL15	4	3.5	0.5
SGL20	5	5	0.5
SGL25	5	5.5	1
SGL30	6	7.5	1
SGL35	6	8	1
SGL45	8	8	1

GREASE FITTING

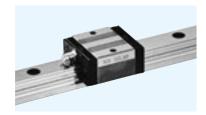
A grease fitting is attached to the return cap of SGL type guide blocks for lubrication purposes. Unless otherwise specified, the orientation of the grease fitting is as shown in Figure A-57. When more than 6 blocks are used on one rail, the orientation of the grease fitting is same as the orientation of 3 to 5 block used on one rail.

Figure A-57 Grease Fitting Orientation

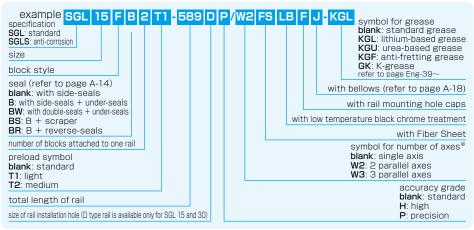


LUBRICATION

A high grade lithium soap based grease is applied to the NB slide guides prior to shipment for immediate use. Please relubricate with a similar type of grease periodically depending on the operating conditions. For use in clean rooms or vacuum environments. NB slide guides without grease are available upon request. Please contact NB for customer specified grease types.


Please refer to page Eng-39 for details on the low dust generation grease.

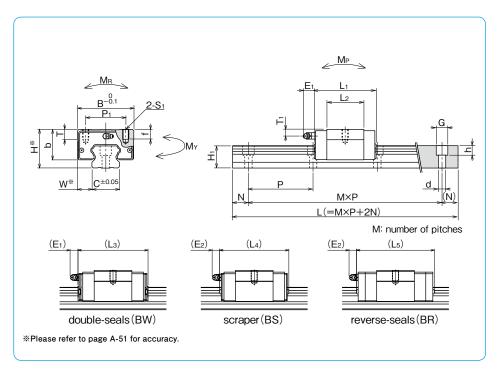
A Grease Gun Set is available as a maintenance kit (refer to page Eng-42).



^{*} Frictional resistance may be affected by preload

SGL-F TYPE

part number structure

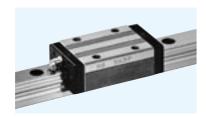


*The symbol for the number of axes does not mean the number of rails ordered.

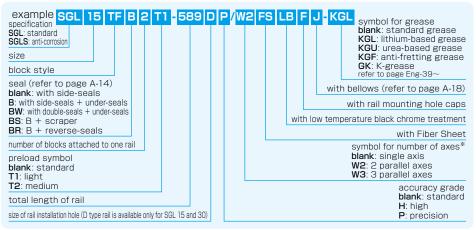
nort n	mah au	assembly	dimensions					blo	ck dir	nensi	ons				
part n	umber	Н	W	В	L ₁	L ₂	Lз	L4	L ₅	P ₁	S ₁	f	Т	b	E1
standard	anti-corrosion	mm	mm	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm
SGL15F SGL15F-D	SGLS15F SGLS15F-D	24	9.5	34	40.7	22.7	46.9	47.3	54.3	26	M4	7	6	19.5	6
SGL20F	SGLS20F	28	11	42	47.9	29.5	54.1	54.5	65.5	32	М5	8	7.5	22	
SGL25F	SGLS25F	33	12.5	48	58.7	37.7	65.1	65.9	76.9	35	М6	9	8	26	12
SGL30F SGL30F-D	_	42	16	60	68	40	76.6	75.6	ı	40	М8	12	9	32.5	12
SGL35F	_	48	18	70	77	46	85.6	84.6	-	50	IVIO	'2	13	38	

part n	umber								,	stand	ard ra	il leng	gth			
standard	anti-corrosion										mm					
SGL15	SGLS15	160	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000
SGL20	SGLS20	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120
SGL25	SGLS25	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120
SGL30	-	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400
SGL35	_	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400

Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance.



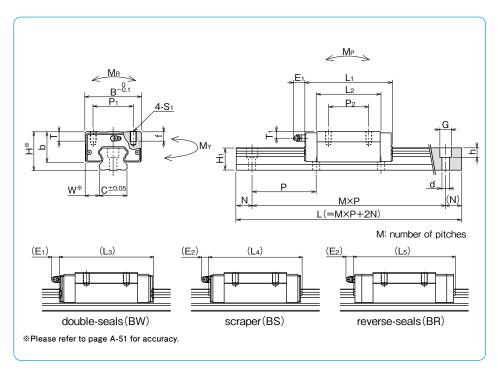
				gui	de rail dimensi	ons		basic lo	ad rating	allowab	le static	moment	ma	blook	
E ₂	T ₁	grease	H ₁	С	d×G×h	N	P	dynamic	static	MР	MΥ	MR	block	guide	block
		fitting						С	Co	M _{P2}	M _{Y2}			rail	3120
mm	mm	8	mm	mm	mm	mm	mm	kN	kN	N⋅m	N⋅m	N⋅m	kg	kg/m	
5.4	5	pressed	13.5	15	3.5×6×4.5			7.29	9.45	36.7	36.7	73.9	0.1	1.3	15
J. 4	3	fitting	10.5	'3	4.5×7.5×5.3			1.23	3.43	252	252	70.5	0.1	1.5	
	6		16	20	6×9.5×8.5		60	11.9	14.8	71.9 447	71.9 447	159	0.2	2.1	20
11	6.5		20	23	7×11×9	20		17.0	21.1	123 751	123 751	254	0.3	3.0	25
' '	9	B-M6F	24	28	7×11×9 9×14×12		80	23.0	28.7	195 1,260	195 1,260	417	0.5	4.6	30
	8.5		27.5	34	9×14×12		60	32.0	37.8	293 1,870	293 1,870	693	0.8	6.2	35


MP2 and My2 are allowable static moments when two blocks are used in close contact. 1kN≒102kgf 1N⋅m≒0.102kgf⋅m

		m length m
	standard	anti-comosion
1,120 1,240 1,360 1,480	2,000	1,480
1,240 1,360 1,480 1,600 1,660 1,720 1,840 1,960	3,000	1,480
1,240 1,360 1,480 1,600 1,660 1,720 1,840 1,960	3,000	1,480
1,480 1,640 1,720 1,800 1,880 1,960	3,000	_
1,480 1,640 1,720 1,800 1,880 1,960	3,000	_

SGL-TF TYPE

part number structure



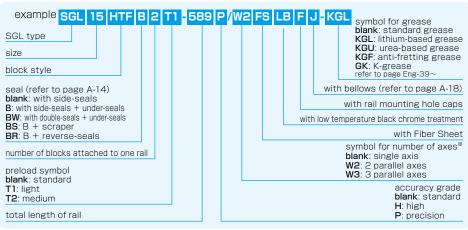
*The symbol for the number of axes does not mean the number of rails ordered.

nort n	umber	assembly (dimensions					k	olock	dime	nsion	5				
part n	umber	Н	W	В	L ₁	L2	Lз	L4	L ₅	P1	P ₂	S ₁	f	T	b	E ₁
standard	anti-corrosion	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm
SGL15TF SGL15TF-D	SGLS15TF SGLS15TF-D	24	9.5	34	56.5	38.5	62.7	63.1	70.1	26	26	M4	7	6	19.5	6
SGL20TF	SGLS20TF	28	11	42	65.8	47.4	72	72.4	83.4	32	32	М5	8	7.5	22	
SGL25TF	SGLS25TF	33	12.5	48	80	59	86.4	87.2	98.2	35	35	М6	9	8	26	12
SGL30TF SGL30TF-D	_	42	16	60	95.7	67.7	104.3	103.3	ı	40	40	M8	12	9	32.5	12
SGL35TF	_	48	18	70	109	78	117.6	116.6	_	50	50	IVIO	12	13	38	

part n	number								;	stand	ard ra L mr		gth			
standard	anti-corrosion										L !!!!!	•				
SGL15	SGLS15	160	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000
SGL20	SGLS20	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120
SGL25	SGLS25	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120
SGL30	_	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400
SGL35	_	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400

Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance.

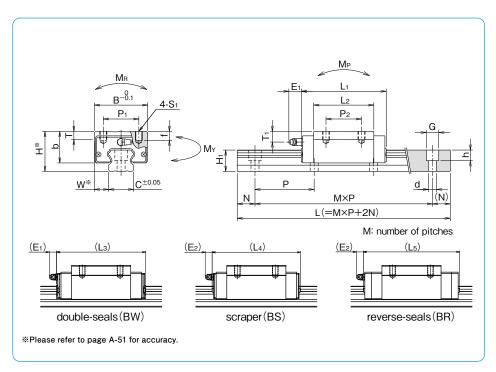
				gui	de rail dimensi	ons		basic lo	ad rating	allowab	le static	moment	ma	block	
E ₂	T1	grease	H₁	С	d×G×h	N	P	dynamic	static	MР	MY	MR	block	guide	size
		fitting						С	Co	M _{P2}	M _{Y2}			rail	3126
mm	mm		mm	mm	mm	mm	mm	kN	kN	Ν·m	Ν·m	N⋅m	kg	kg/m	
5.4	5	pressed	13.5	15	3.5×6×4.5			10.6	16.2	99.5	99.5	126	0.2	1.3	15
3.4	٦	fitting	10.5	13	$4.5 \times 7.5 \times 5.3$			10.0	10.2	565	565	120	0.2	1.5	'
	6		16	20	6×9.5×8.5		60	16.3	23.2	165	165	250	0.3	2.1	20
	0		10	20	0 ^ 9.5 ^ 6.5		00	10.3	23.2	897	897	250	0.3	2.1	20
	6.5		20	23	7×11×9	20		24.7	36.3	334	334	437	0.4	3.0	25
11	0.5	D 140E	20	23	/ ^ 11 ^ 9	20		24.7	36.3	1,740	1,740	437	0.4	3.0	25
' '	9	B-M6F	24	28	7×11×9			33.6	49.2	528	528	716	0.8	4.6	30
	9		24	20	9×14×12		80	33.6	49.2	2,880	2,880	/ 16	0.6	4.6	30
	8.5		27.5	34	9×14×12		60	46.6	64.8	796	796	1,180	1.3	6.2	35
	0.5		27.5	54	3714712			40.0	04.0	4,290	4,290	1,100	1.3	0.2	J.5


Mp₂ and My₂ are allowable static moments when two blocks are used in close contact. 1kN≒102kgf 1N·m≒0.102kgf · m

	maximu m	-
	standard	anti-comosion
1,120 1,240 1,360 1,480	2,000	1,480
1,240 1,360 1,480 1,600 1,660 1,720 1,840 1,960	3,000	1,480
1,240 1,360 1,480 1,600 1,660 1,720 1,840 1,960	3,000	1,480
1,480 1,640 1,720 1,800 1,880 1,960	3,000	_
1,480 1,640 1,720 1,800 1,880 1,960	3,000	_

SGL-HTF TYPE

part number structure



*The symbol for the number of axes does not mean the number of rails ordered.

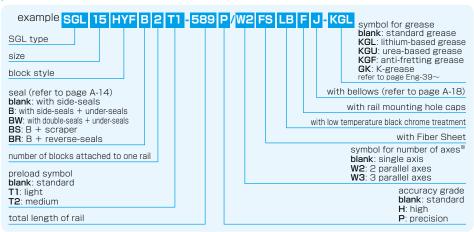
	assembly	dimensions						blo	ck dir	nensi	ons					
part number	Н	W	В	L ₁	L ₂	Lз	L4	L ₅	P ₁	P ₂	S ₁	f	Т	b	E1	E ₂
part names	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm
SGL15HTF	28	9.5	34	56.5	38.5	62.7	63.1	70.1	26	26	M4	5	6	23.7	6	5.4
SGL20HTF	30	12	44	71.6	53.2	77.8	78.2	89.2	32	36	М5	6	9.5	24		
SGL25HTF	40	12.5	48	80	59	86.4	87.2	98.2	35	35	М6	8	9	33	12	11
SGL30HTF	45	16	60	95.7	67.7	104.3	103.3	ı	40	40	M8	10	9	35.5	12	'
SGL35HTF	55	18	70	109	78	117.6	116.6	_	50	50	IVIO	12	13	45		
SGL45HTF	70	20.5	86	139	102	147.5	148	_	60	60	M10	17	15	60	15	15

part number										star	dard L r	rail ler nm	ngth			
SGL15	160	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120
SGL20	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL25	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL30	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480
SGL35	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480
SGL45	570	675	780	885	990	1,095	1,200	1,305	1,410	1,515	1,620	1,725	1,830	1,935	2,040	2,145

Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance.

			gui	de rail dimensi	ons		basic lo	ad rating	allowab	le static	moment	ma	ass	
T ₁	grease	H ₁	C	d×G×h	N	Р	dynamic		МР	MY	MR	block	guide	block size
	fitting						С	Co	M _{P2}	M _{Y2}			rail	3120
mm	8	mm	mm	mm	mm	mm	kN	kN	Ν·m	Ν·m	N⋅m	kg	kg/m	
9	pressed	13.5	15	4.5×7.5×5.3			10.6	16.2	99.5	99.5	126	0.2	1.3	15
9	fitting	13.5	15	4.5 × 7.5 × 5.3			10.6	10.2	565	565	120	0.2	1.3	15
8		16	20	6×9.5×8.5			18.3	27.5	226	226	296	0.4	2.1	20
0		10	20	0 ~ 9.5 ~ 6.5		60	10.3	27.5	1,180	1,180	290	0.4	2.1	20
10.5		20	00	7×11×9	00		047	20.0	334	334	407	0.0	2.0	25
13.5	D 140E	20	23	/	20		24.7	36.3	1,740	1,740	437	0.6	3.0	25
40	B-M6F	0.4	-00				00.0	40.0	528	528	740	0.0	4.0	-00
12		24	28	0 × 1 4 × 10			33.6	49.2	2,880	2,880	716	0.9	4.6	30
45.5		-	- 4	9×14×12		80	40.0	04.0	796	796	4 400	4 -		0-
15.5		27.5	34				46.6	64.8	4,290	4,290	1,180	1.5	6.2	35
00	D DT4 (0	00.5	45	444,004,47	00.5	405	747	404	1,550	1,550	0.040	0.4	40.5	45
20	B-PT1/8	36.5	45	14×20×17	22.5	105	74.7	101	8,250	8,250	2,310	3.1	10.5	45

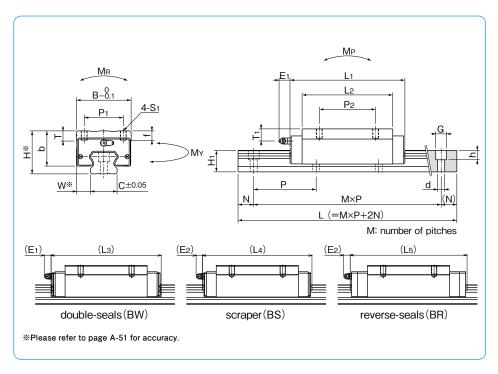
MP2 and MY2 are allowable static moments when two blocks are used in close contact. 1kN≒102kgf 1N⋅m≒0.102kgf⋅m


A-59

								maximum length mm
1,240	1,360	1,480						2,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960		3,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960		3,000
1,640	1,720	1,800	1,880	1,960				3,000
1,640	1,720	1,800	1,880	1,960				3,000
2,250	2,355	2,460	2,565	2,670	2,775	2,880	2,985	3,000

SGL-HYF TYPE

part number structure

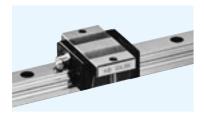


*The symbol for the number of axes does not mean the number of rails ordered.

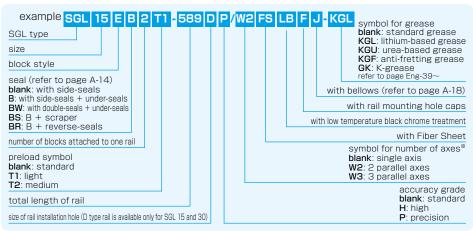
	assembly (dimensions						blo	ck dir	nensi	ons					
part number	Н	W	В	L ₁	L2	Lз	L4	L ₅	P₁	P ₂	S ₁	f	Т	b	E ₁	E ₂
part names	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm
SGL15HYF	28	9.5	34	79	61	85.2	85.6	92.6	26	26	M4	5	6	23.7	6	5.4
SGL20HYF	30	12	44	96	77.6	102.2	102.6	113.6	32		М5	6	9.5	24		
SGL25HYF	40	12.5	48	109	88	115.4	116.2	127.2	35	50	М6	8	9	33	12	11
SGL30HYF	45	16	60	129	101	137.6	136.6	-	40	60	M8	10	9	35.5	12	''
SGL35HYF	55	18	70	147	116	155.6	154.6	ı	50	72	IVIO	12	13	45		
SGL45HYF	70	20.5	86	171	134	179.5	180	_	60	80	M10	17	15	60	15	15

part number										star	dard i	rail ler nm	ngth			
SGL15	160	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120
SGL20	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL25	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL30	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480
SGL35	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480
SGL45	570	675	780	885	990	1,095	1,200	1,305	1,410	1,515	1,620	1,725	1,830	1,935	2,040	2,145

Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance.



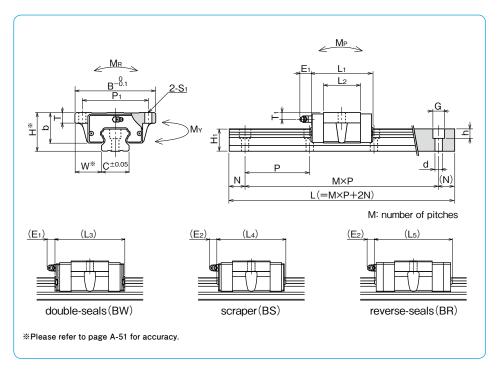
		guid	de rail dimensi	ons		basic loa	ad rating	allowab	le static	moment	ma	iss	blook
grease	Hı	С	d×G×h	N	P	dynamic	static	MР	MY	MR	block	guide	block size
_						С	Co	M _{P2}	M _{Y2}			rail	3120
	mm	mm	mm	mm	mm	kN	kN	Ν·m	N·m	N⋅m	kg	kg/m	
pressed	13.5	15	4.5×7.5×5.3			14.6	25.6	238	238	200	0.3	1.3	15
titting								1,200	1,200				
	16	20	6295285		60	23.0	40.2	467	467	132	0.5	21	20
	10	20	0 × 3.5 × 0.5		00	20.5	40.2	2,250	2,250	732	0.5	2.1	
	20	22	7 1 1 1 0	20		22.0	EAE	723	723	CEE	0.0	2.0	25
D 140E	20	23	/ ^ 11 ^ 9	20		32.0	54.5	3,480	3,480	000	0.9	3.0	25
B-M6F	0.4	00				44.0	70.0	1,140	1,140	1 070	10	4.0	30
	24	28	0 × 1 4 × 10		90	44.6	73.8	5,680	5,680	1,070	1.3	4.6	30
	٠,	0.4	9 × 14 × 12		80	04.0	07.0	1,720	1,720	4 700			05
	27.5	34				61.9	97.2	8,480	8,480	1,780	2.2	6.2	35
	٥٥ ـ	45	444400447	00 [405	04.4	101	2,680	2,680	0.000	4.0	40.5	45
B-PT1/8	36.5	45	14×20×17	22.5	105	91.4	134	13,300	13,300	3,080	4.0	10.5	45
E	B-M6F	grease fitting mm pressed fitting 13.5 16 20 B-M6F 24 27.5 3-PT1/8 36.5	### B-M6F mm mm mm mm mm mm mm	grease fitting mm mm mm oressed fitting 13.5 15 4.5×7.5×5.3 16 20 6×9.5×8.5 20 23 7×11×9 B-M6F 24 28 27.5 34 3-PT1/8 36.5 45 14×20×17	grease fitting mm mm	grease fitting mm mm	mm mm mm mm mm mm mm m	grease fitting mm mm	grease fitting mm mm	grease fitting mm mm	Preside Fitting Fitt	grease fitting mm	grease fitting mm


MP2 and MY2 are allowable static moments when two blocks are used in close contact. 1kN≒102kgf 1N⋅m≒0.102kgf⋅m

								maximum length mm
1,240	1,360	1,480						2,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960		3,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960		3,000
1,640	1,720	1,800	1,880	1,960				3,000
1,640	1,720	1,800	1,880	1,960				3,000
2,250	2,355	2,460	2,565	2,670	2,775	2,880	2,985	3,000

SGL-E TYPE

part number structure

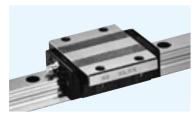


*The symbol for the number of axes does not mean the number of rails ordered.

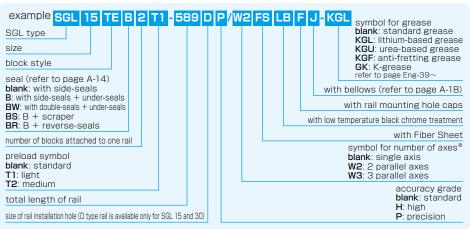
	assembly	dimensions					bl	ock dir	nensio	ns				
part number	Н	W	В	L ₁	L2	L ₃	L4	L ₅	P ₁	S ₁	Т	b	E ₁	E ₂
part namber	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
SGL15E SGL15E-D	24	18.5	52	40.7	22.7	46.9	47.3	54.3	41	4.5	7	19.5	6	5.4
SGL20E	28	19.5	59	47.9	29.5	54.1	54.5	65.5	49	5.5	9	22		
SGL25E	33	25	73	58.7	37.7	65.1	65.9	76.9	60	7	10	26	12	11
SGL30E SGL30E-D	42	31	90	68	40	76.6	75.6	_	72	9	10	32.5	12	'
SGL35E	48	33	100	77	46	85.6	84.6	_	82	9	13	38		

part number										stan	dard i	rail ler nm	ngth			
SGL15	160	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120
SGL20	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL25	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL30	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480
SGL35	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480

Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance.



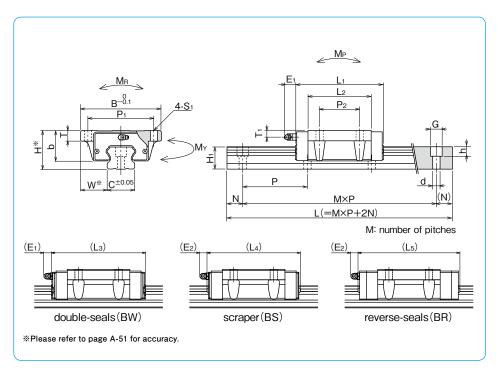
			gui	de rail dimensi	ons		basic lo	ad rating	allowab	le static	moment	ma	ass	block
T ₁	grease	H ₁	С	d×G×h	N	Р	dynamic	static	MР	MY	MR	block	guide	size
	fitting						C	Co	M _{P2}	M _{Y2}			rail	3126
mm	iittiiig	mm	mm	mm	mm	mm	kN	kN	N⋅m	N⋅m	Ν·m	kg	kg/m	
5	pressed	13.5	15	3.5×6×4.5			7.29	9.45	36.7	36.7	73.9	0.1	1.3	15
"	fitting	13.3	13	4.5×7.5×5.3			1.23	3.43	252	252	73.3	0.1	1.5	13
6		16	20	6×9.5×8.5			11.9	14.8	71.9	71.9	159	0.2	2.1	20
О		10	20	6 × 9.5 × 8.5		60	11.9	14.8	447	447	159	0.2	2.1	20
C.F.		00	00	774170			17.0	01.1	123	123	054	0.4	20	OF
6.5		20	23	7×11×9	20		17.0	21.1	751	751	254	0.4	3.0	25
	B-M6F		-00	7×11×9			00.0	00.7	195	195	447	0.0	4.0	-00
9		24	28	9×14×12			23.0	28.7	1,260	1,260	417	0.6	4.6	30
0.5		07.5		0.444440		80	20.0	07.0	293	293	000	0.0		0.5
8.5		27.5	34	9×14×12			32.0	37.8	1,870	1,870	693	0.9	6.2	35


Mp₂ and My₂ are allowable static moments when two blocks are used in close contact. 1kN≒102kgf 1N·m≒0.102kgf·m

							maximum length mm
1,240	1,360	1,480					2,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960	3,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960	3,000
1,640	1,720	1,800	1,880	1,960			3,000
1,640	1,720	1,800	1,880	1,960			3,000

SGL-TE TYPE

part number structure

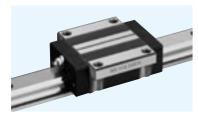


*The symbol for the number of axes does not mean the number of rails ordered.

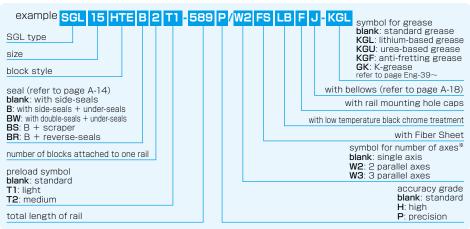
	assembly	dimensions						block	dimer	sions					
part number	Н	W	В	L ₁	L2	Lз	L4	L ₅	P ₁	P ₂	S ₁	Т	b	E1	E ₂
P	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
SGL15TE SGL15TE-D	24	18.5	52	56.5	38.5	62.7	63.1	70.1	41	26	4.5	7	19.5	6	5.4
SGL20TE	28	19.5	59	65.8	47.4	72	72.4	83.4	49	32	5.5	9	22		
SGL25TE	33	25	73	80	59	86.4	87.2	98.2	60	35	7	10	26	12	11
SGL30TE SGL30TE-D	42	31	90	95.7	67.7	104.3	103.3	ı	72	40	9	10	32.5	12	'
SGL35TE	48	33	100	109	78	117.6	116.6	_	82	50	ז	13	38		

part number										stan		rail ler nm	ngth			
SGL15	160	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120
SGL20	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL25	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL30	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480
SGL35	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480

Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance.



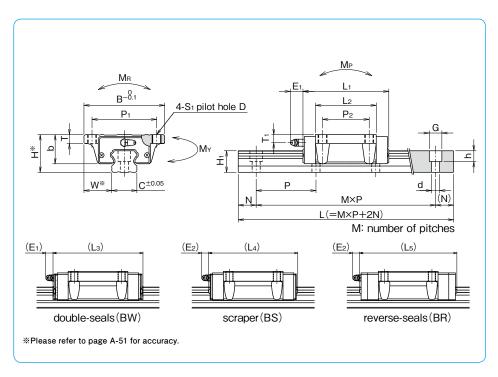
			gui	de rail dimensi	ons		basic lo	ad rating	allowab	le static	moment	ma	ass	block
T ₁	grease	H ₁	С	d×G×h	N	P	dynamic	static	МР	MY	MR	block	guide	size
	fitting						С	Co	M _{P2}	M _{Y2}			rail	3120
mm	8	mm	mm	mm	mm	mm	kN	kN	N·m	Ν·m	Ν·m	kg	kg/m	
5	pressed	13.5	15	3.5×6×4.5			10.6	16.2	99.5	99.5	126	0.2	1.3	15
	fitting	13.3	2	4.5×7.5×5.3			10.0	10.2	565	565	120	0.2	1.5	
6		16	20	6×9.5×8.5		60	16.3	23.2	165	165	250	0.3	2.1	20
U		10	20	0 ~ 9.5 ~ 0.5		00	10.5	25.2	897	897	230	0.5	2.1	
6.5		20	23	7×11×9	20		24.7	36.3	334	334	437	0.6	3.0	25
0.5	D 140E	20	23	/ ^ 11 ^ 9	20		24.7	36.3	1,740	1,740	437	0.6	3.0	25
9	B-M6F	24	28	7×11×9			33.6	49.2	528	528	716	10	4.6	30
9		24	20	9×14×12		90	33.0	49.2	2,880	2,880	/16	1.0	4.0	30
0.5		27 E	24	0 × 1 4 × 10		80	46.6	64.0	796	796	1 100	1 5	6.0	35
8.5		27.5	34	9×14×12			46.6	64.8	4,290	4,290	1,180	1.5	6.2	35
	I M	11-								4 41:1	1 1001	d A N I		101.04.00


MP2 and My2 are allowable static moments when two blocks are used in close contact. 1kN=102kgf 1N⋅m=0.102kgf⋅m

							maximum length mm
1,240	1,360	1,480					2,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960	3,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960	3,000
1,640	1,720	1,800	1,880	1,960			3,000
1,640	1,720	1,800	1,880	1,960			3,000

SGL-HTE TYPE

part number structure



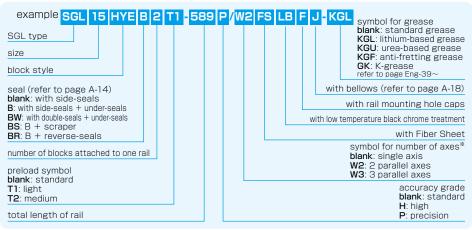
*The symbol for the number of axes does not mean the number of rails ordered.

	assembly	dimensions						blo	ck dir	nensi	ons					
part number	Н	W	В	L ₁	L2	Lз	L4	L ₅	P₁	P ₂	S ₁	D	Т	b	E ₁	E ₂
partitation	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm
SGL15HTE	24	16	47	56.5	38.5	62.7	63.1	70.1	38	30	M5	4.4	7.5	19.7	6	5.4
SGL20HTE	30	21.5	63	71.6	53.2	77.8	78.2	89.2	53	40	М6	5.4	10.5	24		
SGL25HTE	36	23.5	70	80	59	86.4	87.2	98.2	57	45	М8	6.8	12.5	29	12	11
SGL30HTE	42	31	90	95.7	67.7	104.3	103.3	ı	72	52	M10	8.5	10	32.5	12	' '
SGL35HTE	48	33	100	109	78	117.6	116.6		82	62	IVITO	0.5	13	38		
SGL45HTE	60	37.5	120	139	102	147.5	148	_	100	80	M12	10.5	15	50	15	15

part number										star	dard L r	rail ler nm	ngth			
SGL15	160	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120
SGL20	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL25	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL30	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480
SGL35	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480
SGL45	570	675	780	885	990	1,095	1,200	1,305	1,410	1,515	1,620	1,725	1,830	1,935	2,040	2,145

Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance.

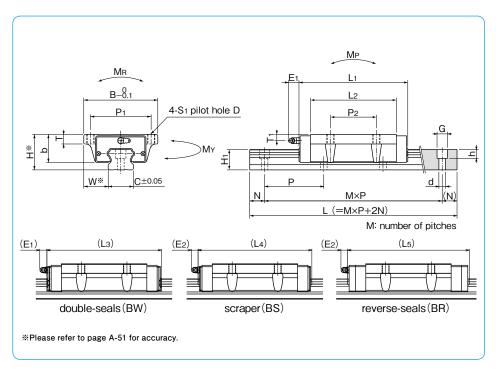
			gui	de rail dimensi	ons		basic lo	ad rating	allowab	le static	moment	ma	ass	
T ₁	grease	H ₁	C	d×G×h	N	Р	dynamic		МР	MY	MR	block	guide	block size
	fitting						С	Co	M _{P2}	M _{Y2}			rail	3120
mm	8	mm	mm	mm	mm	mm	kN	kN	Ν·m	Ν·m	N⋅m	kg	kg/m	
5	pressed	13.5	15	4.5×7.5×5.3			10.6	16.2	99.5	99.5	126	0.2	1.3	15
3	fitting	13.5	15	4.5 ^ 7.5 ^ 5.5			10.6	10.2	565	565	120	0.2	1.3	13
8		16	20	6×9.5×8.5			18.3	27.5	226	226	296	0.4	2.1	20
°		10	20	0 ~ 9.5 ~ 6.5		60	10.3	27.5	1,180	1,180	290	0.4	2.1	20
0.5		00	00	774170	00		047	20.0	334	334	407	0.0	2.0	25
9.5	D 140E	20	23	7×11×9	20		24.7	36.3	1,740	1,740	437	0.6	3.0	25
	B-M6F		-00				00.0	40.0	528	528	740	4.0	4.0	-00
9		24	28	0 × 1 4 × 10			33.6	49.2	2,880	2,880	716	1.0	4.6	30
0.5		07.5		9×14×12		80	40.0	04.0	796	796	4 400	4.5		
8.5		27.5	34				46.6	64.8	4,290	4,290	1,180	1.5	6.2	35
40	D DT4 (0	00.5	45	444,004,47	00.5	405	747	404	1,550	1,550	0.040	0.4	40.5	45
10	B-PT1/8	36.5	45	14×20×17	22.5	105	74.7	101	8,250	8,250	2,310	3.1	10.5	45


 $M_{P2} \ and \ M_{Y2} \ are \ allowable \ static \ moments \ when \ two \ blocks \ are \ used \ in \ close \ contact. \ 1kN \\ \stackrel{.}{=} 102kgf \quad 1N \cdot m \\ \stackrel{.}{=} 0.102kgf \cdot m$

								maximum length mm
1,240	1,360	1,480						2,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960		3,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960		3,000
1,640	1,720	1,800	1,880	1,960				3,000
1,640	1,720	1,800	1,880	1,960				3,000
2,250	2,355	2,460	2,565	2,670	2,775	2,880	2,985	3,000

SGL-HYE TYPE

part number structure



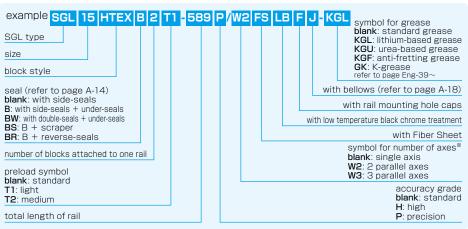
*The symbol for the number of axes does not mean the number of rails ordered.

	assembly	dimensions						blo	ck dir	nensi	ons					
part number	Н	W	В	L ₁	L2	Lз	L4	L ₅	P ₁	P ₂	S ₁	D	Т	b	E1	E ₂
part named	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm
SGL15HYE	24	16	47	79	61	85.2	85.6	92.6	38	30	М5	4.4	7.5	19.7	6	5.4
SGL20HYE	30	21.5	63	96	77.6	102.2	102.6	113.6	53	40	М6	5.4	10.5	24		
SGL25HYE	36	23.5	70	109	88	115.4	116.2	127.2	57	45	М8	6.8	12.5	29	12	11
SGL30HYE	42	31	90	129	101	137.6	136.6	_	72	52	M10	8.5	10	32.5	12	'
SGL35HYE	48	33	100	147	116	155.6	154.6	_	82	62	IVITU	0.5	13	38		
SGL45HYE	60	37.5	120	171	134	179.5	180	_	100	80	M12	10.5	15	50	15	15

part number										star	ıdard ı L n	rail ler nm	ngth			
SGL15	160	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120
SGL20	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL25	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL30	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480
SGL35	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480
SGL45	570	675	780	885	990	1,095	1,200	1,305	1,410	1,515	1,620	1,725	1,830	1,935	2,040	2,145

Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance.

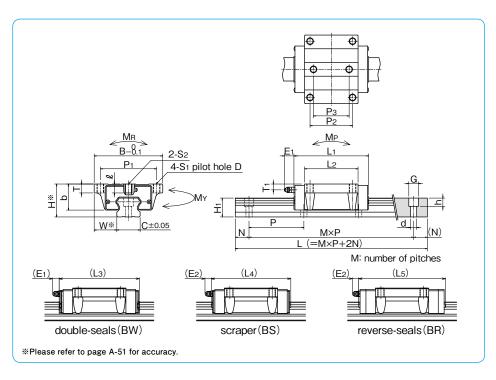
			gui	de rail dimensi	ons		basic lo	ad rating	allowab	le static	moment	ma	ass	block
T ₁	grease	Hı	С	d×G×h	N	P	dynamic	static	МР	MY	MR	block	guide	size
	fitting						С	Co	M _{P2}	M _{Y2}			rail	3120
mm		mm	mm	mm	mm	mm	kN	kN	Ν·m	Ν·m	N⋅m	kg	kg/m	
5	pressed	13.5	15	4.5×7.5×5.3			14.6	25.6	238	238	200	0.3	1.3	15
	fitting		_						1,200	1,200				
8		16	20	6×9.5×8.5		60	23.9	40.2	467	467	432	0.7	2.1	20
"		10	20	07.5.57.6.5		00	20.5	40.2	2,250	2,250	402	0.7	,	
9.5		20	23	7×11×9	20		32.8	54.5	723	723	655	1.0	3.0	25
9.5	D 140E	20	23	/ ^ 11 ^ 9	20		32.0	54.5	3,480	3,480	055	1.0	3.0	25
9	B-M6F	24	28				44.6	73.8	1,140	1,140	1,070	1.5	4.6	30
9		24	20	9×14×12		80	44.0	73.0	5,680	5,680	1,070	1.5	4.0	30
8.5		27.5	34	9 14 12		00	61.9	97.2	1,720	1,720	1,780	2.2	6.2	35
0.5		27.5	34				61.9	97.2	8,480	8,480	1,760	2.2	0.2	35
10	D DT4 (0	36.5	45	14×20×17	22.5	105	91.4	134	2,680	2,680	3,080	4.0	10.5	45
10	B-PT1/8	30.5	45	14 ^ 20 × 17	22.5	105	91.4	134	13,300	13,300	3,080	4.0	10.5	45


MP2 and MY2 are allowable static moments when two blocks are used in close contact. 1kN≒102kgf 1N⋅m≒0.102kgf⋅m

								maximum length mm
1,240	1,360	1,480						2,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960		3,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960		3,000
1,640	1,720	1,800	1,880	1,960				3,000
1,640	1,720	1,800	1,880	1,960				3,000
2,250	2,355	2,460	2,565	2,670	2,775	2,880	2,985	3,000

SGL-HTEX TYPE

part number structure



*The symbol for the number of axes does not mean the number of rails ordered.

	assembly (dimensions		block dimensions													
part number	Н	W	В	L ₁	L2	Lз	L4	L ₅	P₁	P ₂	S ₁	D	Т	Рз	S ₂	f	b
pa.(mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm		mm	mm
SGL15HTEX	24	16	47	56.5	38.5	62.7	63.1	70.1	38	30	М5	4.4	7.5	26	М5	6	19.7
SGL20HTEX	30	21.5	63	71.6	53.2	77.8	78.2	89.2	53	40	М6	5.4	10.5	35	М6	8	24
SGL25HTEX	36	23.5	70	80	59	86.4	87.2	98.2	57	45	М8	6.8	12.5	40	М8	10	29
SGL30HTEX	42	31	90	95.7	67.7	104.3	103.3	_	72	52	M10	8.5	10	44	M10	10	32.5
SGL35HTEX	48	33	100	109	78	117.6	116.6	_	82	62	IVITO	6.5	13	52	IVITO	13	38
SGL45HTEX	60	37.5	120	139	102	147.5	148	_	100	80	M12	10.5	15	60	M12	14	50

part number		standard rail length L mm														
SGL15	160	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120
SGL20	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL25	220	280	340	400	460	520	580	640	700	760	820	880	940	1,000	1,120	1,240
SGL30	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480
SGL35	280	360	440	520	600	680	760	840	920	1,000	1,080	1,160	1,240	1,320	1,400	1,480
SGL45	570	675	780	885	990	1,095	1,200	1,305	1,410	1,515	1,620	1,725	1,830	1,935	2,040	2,145

Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance.

					σιιί	de rail dimensi	one		hasic lo	ad rating	allowah	la static	moment	ma		
E ₁	E ₂	T ₁	grease	H ₁	C	d×G×h	N	Р	dynamic C			MY MY2	MR	block		block size
mm	mm	mm	fitting	mm	mm	mm	mm	mm	kN				N⋅m	kg	kg/m	
6	5.4	5	pressed fitting	13.5	15	4.5×7.5×5.3			10.6	16.2	99.5 565	99.5 565	126	0.2	1.3	15
		8		16	20	6×9.5×8.5		60	18.3	27.5	226 1,180	226 1,180	296	0.4	2.1	20
12	11	9.5	20 B-M6F	23	7×11×9	20		24.7	36.3	334 1,740	334 1,740	437	0.6	3.0	25	
12	''	9	B-M6F	24	28	9×14×12		80	33.6	49.2	528 2,880	528 2,880	716	1.0	4.6	30
		8.5		27.5	34	9 14 12		80	46.6	64.8	796 4,290	796 4,290	1,180	1.5	6.2	35
15	15	10	B-PT1/8	36.5	45	14×20×17	22.5	105	74.7	101	1,550 8,250	1,550 8,250	2,310	3.1	10.5	45

MP2 and My2 are allowable static moments when two blocks are used in close contact. 1kN≒102kgf 1N⋅m≒0.102kgf⋅m

A-71

								maximum length mm
1,240	1,360	1,480						2,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960		3,000
1,360	1,480	1,600	1,660	1,720	1,840	1,960		3,000
1,640	1,720	1,800	1,880	1,960				3,000
1,640	1,720	1,800	1,880	1,960				3,000
2,250	2,355	2,460	2,565	2,670	2,775	2,880	2,985	3,000

SLIDE GUIDE SGW Type

The NB slide guide SGW type is a linear motion bearing utilizing the rolling motion of ball elements along four rows of raceway grooves. Its low height and wide profile makes it suitable for single-rail applications.

STRUCTURE AND ADVANTAGES

The NB slide guide SGW type consists of a rail with four precisely machined raceway grooves and a block assembly. The block assembly consists of the main body, ball elements, retainers, and return caps. High Load Capacity and Long Life

The raceway grooves are machined to a radius close to that of the ball elements. The larger contact area resulting in a high load capacity and a long travel life. **High Allowable Moment**

Its wide profile enables it to sustain high moment loads, making it suitable for single-rail applications.

Omni-Directional Load Capacity

The ball elements are positioned at 45° contact angle so that the load capacity is equal in four directions (above, below, right and left).

Smooth Motion

The large number of effective ball elements produce a smooth rolling motion.

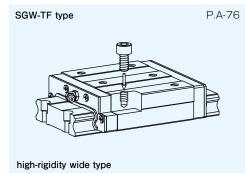
Anti-Corrosion Specification

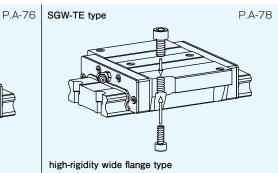
The rail and block assembly can be treated with low temperature black chrome treatment to increase the corrosion resistance. This treatment is standardized with the symbol "LB", and suitable for use in clean room applications.

Dust Prevention

Side-seals are provided as standard. To improve the dust prevention characteristics, under-seals and rail mounting caps are also available.

Extension of Relubrication Period by Fiber Sheet


A lubricant-containing Fiber Sheet incorporated in the block supplies appropriate amount of lubricant to the raceway grooves, which significantly extends the lubricant replenishment interval. (refer to page A-16)


Figure A-58 Structure of SGW type Slide Guide

BLOCK TYPES

Two SGW block types are available depending on the mounting space and desired mounting method.

ACCURACY

Three accuracy grades are available: standard grade (blank), high grade (H), and precision grade (P).

Table A-29 Accuracy unit:mm

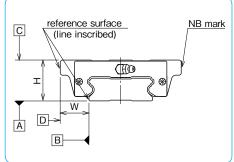

-									
part number		SGW17,21		SGW27,35					
accuracy grade	standard	high	precision	standard	high	precision			
accuracy symbol	blank	Н	Р	blank	Н	Р			
allowable dimensional tolerance for height H	±0.1	±0.03	-0.03~0	±0.1	±0.04	-0.04~0			
paired difference for height H	0.02	0.01	0.006	0.02	0.015	0.007			
allowable dimensional tolerance for width W	±0.1	±0.03	-0.03~0	±0.1	±0.04	-0.04~0			
paired difference for width W	0.02	0.01	0.006	0.03	0.015	0.007			
Running parallelism of surface C to surface A									
Diversion annullation of surface D to surface D	refer to Figure A-61,62								

Figure A-59 Motion Accuracy

Running parallelism of surface D to surface B

standard high (H) precision (P) 500 1000 1500 2000 2500 3000mm rail length

Figure A-60 Accuracy

PRELOAD

Three levels of preload are available for SGW slide guides: standard (blank), light (T1), and medium (T2).

Table A-30 Preload Call Out and Radial Clearance unit: μm

			•
preload	standard	light	medium*
symbol	blank	T1	T2
SGW17	-3~+2	_ 7~-3	_
SGW21	-4~+2	- 8~-4	_
SGW27	-5~+2	-11~-5	_
SGW35	-8~+4	-18~-8	-28~-18

Table A-31 Operating Conditions and Preload

preload	symbol	operating conditions
standard	blank	minute vibration is applied. accurate motion is required. moment is applied in a given direction.
light	T1	light vibration is applied. light torsional load is applied. moment is applied.
medium	T2	shock and vibration are applied. over-hang load is applied. torsional load is applied.

Frictional resistance may be affected by preload

RAIL LENGTH

Slide guides with most commonly used lengths are available as standard. For slide guides with a non-standard length, unless otherwise specified, the distance from one end of the rail to the first hole center (N) will be within the range listed in Table A-32, satisfying the following equation.

$L=M\cdot P+2N$

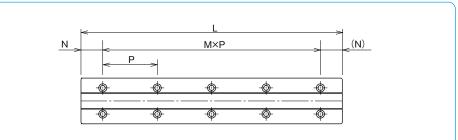

L: length (mm) M: number of pitches P: hole pitch (mm) N: distance from the end of the rail to the first hole center (mm)

Table A-32 N Dimension

	1	Ŋ
part number	and over	less than
SGW17		28
SGW21	8	33
SGW27		38
SGW35	12	52

unit: mm

Figure A-61 Rail

MOUNTING

Slide guides are generally mounted by pushing the reference surface of the rail and block against the shoulder of the mounting surface. To avoid interference between the shoulder and the corner of the rail or block, the recommended dimensions are listed in Table A-34.

The screws to fasten the rail should be tightened to an equal torque using a torque wrench in order to secure the motion accuracy. The recommended torque values are given in Table A-33. Please adjust the torque depending on the operating conditions.

Table A-33 Recommended Torque

size	M4	M6
recommended torque	3.2	11.2

(for alloy steel screw)

Figure A-62 Mounting Reference Surface Profile

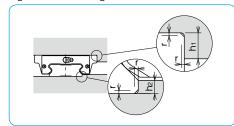
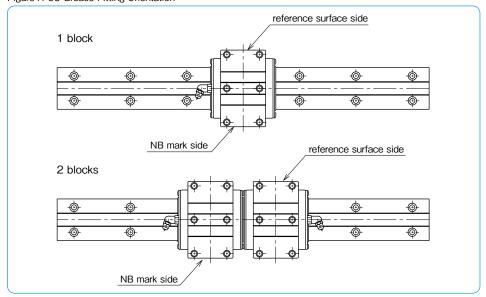


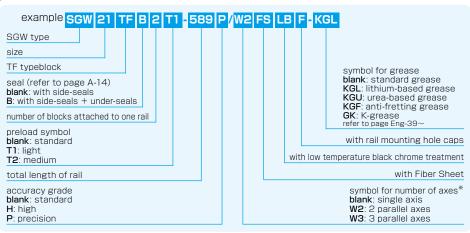
Table A-34 Shoulder Height and Radius Dimensions unit: mm


part number	h ₁	h ₂	rmax.
SGW17	4	2	
SGW21		2.5	0.4
SGW27	5	2.0	
SGW35		3.5	0.8

GREASE FITTING

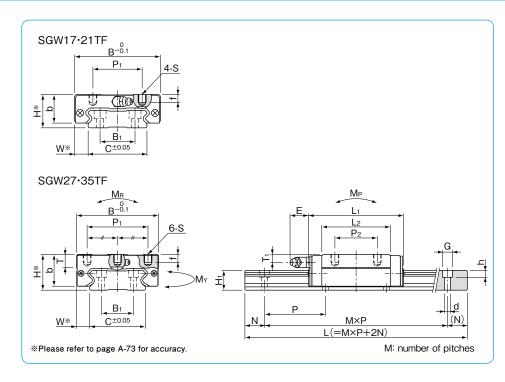
A grease fitting is attached to the return cap of SGW type guide block for lubrication purposes. Unless otherwise specified, the orientation of the grease fitting is as shown in Figure A-63. When more than 2 blocks are used on one rail, please specify the grease fitting orientation.

unit: N·m


Figure A-63 Grease Fitting Orientation

SGW-TF TYPE

part number structure

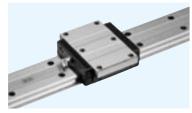


*The symbol for the number of axes does not mean the number of rails ordered.

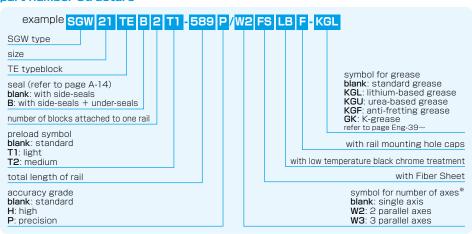
	assembly	dimensions		_				block	dimens	sions				
part number	Н	W	В	L ₁	L ₂	P ₁	P ₂	S	f	Т	b	E	T ₁	grease
	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	fitting
SGW17TF	17	8.5	50	51	33.6	29	15	M4	4	1	14.5	2.5	4	pressed fitting
SGW21TF	21	8.5	54	58	40	31	19	М5	5	_	18		4.5	
SGW27TF	27	10	62	71.8	51.8	46	32	М6	6	10	24	12	6	B-M6F
SGW35TF	35	15.5	100	106.6	77.6	76	50	М8	8	14	31		8	

part number		standard rail length L mm												
SGW17	110	150	190	230	270	310	350	390	430	510	590			
SGW21	130	180	230	280	330	380	430	480	530	630	730			
SGW27	160	220	280	340	400	460	520	640	760	880	1,000			
SGW35	280	360	440	520	600	680	760	920	1,080	1,240	1,400			

Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance.


		guide	e rail dimensions	basic lo	ad rating	allowab	le static	moment	ma	block			
H ₁	С	B ₁	d×G×h	N	Р	dynamic	static	MР	MY	MR	block	guide	size
						C	Co	M _{P2}	M _{Y2}			rail	3126
mm	mm	mm	mm	mm	mm	kN	kN	Ν·m	Ν·m	N⋅m	kg	kg/m	
9	33	18			40	4.82	8.56	42.8	42.8	160	0.13	2.05	17
9	33	10		4.5		4.02	0.50	261	261	100	0.13	2.05	' /
44	07	-00	45775750	15		7.01	10.1	72.3	72.3	0.50	0.00	0.04	- 1
11	37	22	4.5×7.5×5.3		50	7.01	12.1	418	418	253	0.20	2.84	21
4-	40					400	04.5	171	171	400	0.00	4 40	
15	42	24			60	12.9	21.5	931	931	496	0.38	4.43	27
40		40	7440	20		20.0	40.5	578	578	4.050	4.40	0.00	
19 69	69	40	7×11×9		80	30.6	48.5	3,100	3,100	1,850	1.16	9.32	35
				•	·								

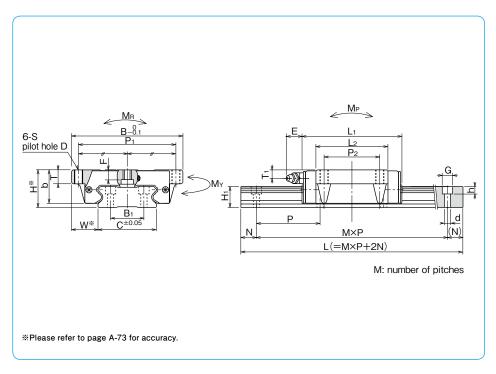
Mp2 and My2 are allowable static moments when two blocks are used in close contact. 1kN=102kgf 1N⋅m=0.102kgf⋅m


							maximum length mm
670	750	830	950	1,070	1,190	1,310	2,000
830	930	1,030	1,180	1,330	1,480		2,000
1,180	1,360	1,540	1,720	1,900			3,000
1,640	1,880	2,120					3,000

A-76 A-77

SGW-TE TYPE

part number structure



*The symbol for the number of axes does not mean the number of rails ordered.

	assembly	dimensions						bloc	k dim	ensio	ns				
part number	Н	W	В	L ₁	L2	P ₁	P ₂	s	D	F	Т	b	E	T ₁	grease
	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	fitting
SGW17TE	17	13.5	60	51	33.6	53	26	M4	3.3	3.2	6	14.5	2.5	4	pressed fitting
SGW21TE	21	15.5	68	58	40	60	29	М5	4.4	3.7	8	18		4.5	
SGW27TE	27	19	80	71.8	51.8	70	40	М6	5.3	6	10	24	12	6	B-M6F
SGW35TE	35	25.5	120	106.6	77.6	107	60	М8	6.8	8	14	31		8	

part number		standard rail length L mm													
SGW17	110	150	190	230	270	310	350	390	430	510	590				
SGW21	130	180	230	280	330	380	430	480	530	630	730				
SGW27	160	220	280	340	400	460	520	640	760	880	1,000				
SGW35	280	360	440	520	600	680	760	920	1,080	1,240	1,400				

Rails exceeding the maximum specified length may be fabricated if joints are used. Please contact NB for assistance.

		guide	e rail dimensions	basic lo	ad rating	allowab	le static	moment	ma	block									
H ₁	С	B ₁	d×G×h	N	Р	dynamic	static	MР	MY	MR	block	guide	size						
						C	Co	M _{P2}	M _{Y2}			rail	3126						
mm	mm	mm	mm	mm	mm	kN	kN	Ν·m	Ν·m	N⋅m	kg	kg/m							
9	33	18			40	4.82	8.56	42.8	42.8	160	0.14	2.05	17						
9	33	10		4.5	1 - 1	4.02	0.50	261	261	100	0.14	2.03	' /						
44	07	-00	45775750	15		7.01	10.1	72.3	72.3	050	0.00	0.04	0.1						
11	37	22	4.5×7.5×5.3		50	7.01	12.1	418	418	253	0.23	2.84	21						
4-	40					400	04.5	171	171	400	0.46	4.43							
15	42	24			60	12.9	21.5	931	931	496			27						
40		40	7440	20		20.0	40.5	578	578	4.050	4.05	0.00							
19	69	40	40	40	40	40	40	40	7×11×9		80	30.6	48.5	3,100	3,100	1,850	1.35	9.32	35
				•	·														

Mp2 and My2 are allowable static moments when two blocks are used in close contact. 1kN≒102kgf 1N⋅m≒0.102kgf⋅m

							maximum length mm
670	750	830	950	1,070	1,190	1,310	2,000
830	930	1,030	1,180	1,330	1,480		2,000
1,180	1,360	1,540	1,720	1,900			3,000
1,640	1,880	2,120					3,000

A-78 A-79