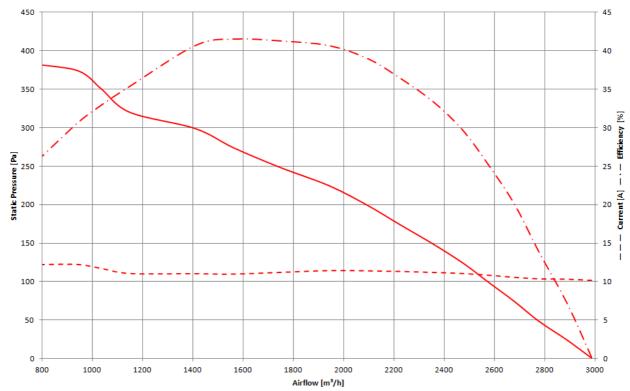


1 General

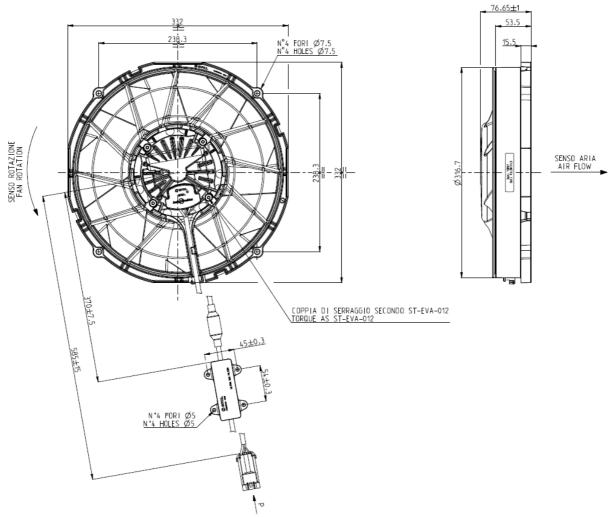
Fan diameter Ø: 305 mm
Nominal voltage: 12 V
Drive family SBL300
Part number: 30107085A


2 Features

Max fan speed	rpm	3400
Min fan speed	rpm	850
Sound pressure level at max speed	dBA	76 – at 1 m from the fan module - lateral side
Weight	kg	2.5
Operating supply voltage range	V	16.0 32.0 at the Drive connector
Supply voltage to reach max speed	V	26.0 32.0 at the Drive connector
Operating ambient temperature range	$\mathcal C$	-40 +110
Max operating ambient temperature @	C	+95 (1)
max fan speed		+93 (1)
Storage temperature range	\mathcal{C}	-40 +125
Lifetime	h	up to 40000 hours depending on mission profile
Time from 0 rpm to max speed	S	11
Load dump protection (Pulse 5b)	V	65 - Pulse peak voltage (U _S *) - ISO16750-2:2010
Reverse polarity protection		ISO 16750-1 functional status class C - device fully
		functional after correcting the polarity

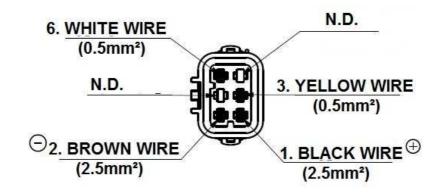
Notes: (1) Few minutes ambient temperature transients do not engage the derating owing to the thermal inertia of the system. Overloads may anticipate derating.

3 Air performance at maximum speed



Air density 1.17 kg / m3 - Test number: #11338 – Test bench compliant to ANSI AMCA 210 TAMB = 20 °C ± 5 °C - UB = 26.0 V at the Drive connector

page 2 of 19


4 Mechanical data

Fixing recommendation: use M6 bolts for fixing. Nominal tightening torque 3 +1/0 Nm Nominal torque defined for brand new, clean and lubricant-free bolts.

5 Connector and wires

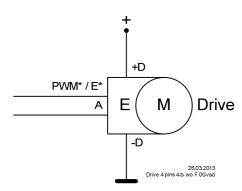
Connector part number : DELPHI 12185126								
Secondary lock part number : DELPHI 12185000								
Pin number	r 1 2 3 4 5 6							
Identification	+D	-D	А	N.D.	N.D.	PWM* / E*		
Wire Color	Black	Brown	Yellow	-	-	White		
Sealing	15324973	15324973	15324974	10730124	10730124	15324974		
Pin	12185237	12185237	12185129	-	-	12185129		
Sect. [mm ²]	2.5	2.5	0.5	-	-	0.5		

For abbreviations see chapter **8.2 Drive pin functions** NOTE: Never handle the fan module via the cable harness

6 Further Features

Compliance		72/245/EC and updates - Automotive EMC directive
		ECE Reg. 10-03 - Electromagnetic compatibility
		2002/95/EC RoHS - Hazardous Substances
		2000/53/EC and updates - End-of Life Vehicle
Ingress Protection		IP 68 and IP6K9K design
Allowed power supply max ripple	rms	1 % - contact SPAL for special needs
Fuse protection		An automotive fuse according ISO8820 must be chosen and used by the customer in the application wire harness. Each drive must be protected by the unique proper fuse (e.g. in case of double fan modules, two fuses are needed)

7 Measurement conditions


The below conditions are assumed:

- $T_{AMB} = 20 \% \pm 5 \%$ and
- Supply voltage **UB** = 26.0 V at the **Drive** connector unless otherwise specified.

8 Hardware functions

8.1 Drive diagram

The Drive diagram is shown below.

E stands for integrated electronics. M stands for motor. Drive stands for motor with axial integrated electronics.

8.2 Drive pin functions

The electrical Drive interface consists of 4 pins:

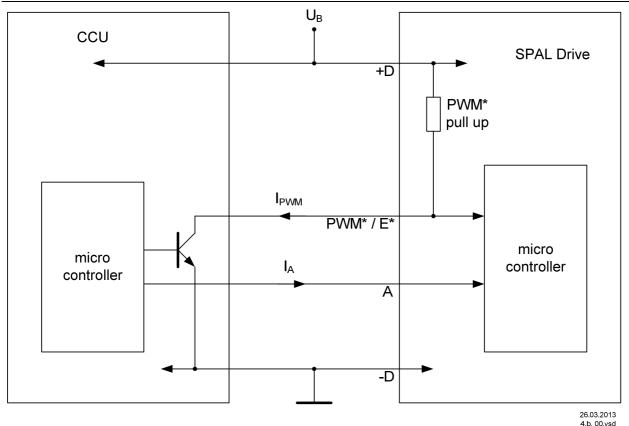
Power pins:

- supply voltage plus: +D
- supply voltage minus: -D

Signal pins:

- Input: digital PWM input / active low: PWM* / E*
- 2. Input: analog input: A

The signal pin PWM^* / E^* is used to control the Drive mode, it is the control input.


The signal pin A can be used to control the speed of the Drive.

9 Drive interface

The Drive interface, i.e. the connections between the CCU (Custom Control Unit) and the Drive, is depicted in the following picture.

Any unauthorized use and / or copy of this document is strictly forbidden

The CCU electronics and the Drive electronics are connected via two unidirectional lines.

The PWM signal for the input PWM* / E* comes from the CCU electronics and uses a pull up resistor (PWM* / E* pull up) located in the Drive electronics to determine the recessive level.

This pull up resistor is connected to the supply voltage plus: +D / U_B.

The dominant level on the input PWM* / E* is low level, provided by the switching to ground stage depicted in above figure. as a bipolar npn transistor in the CCU.

10 Interface hardware for Digital control: pin PWM* / E*

The input PWM* / E* is used to wake up the Drive from Quiescent current mode. Any PWM duty cycle that guarantees a pulse going to the dominant level for more than T_{wakeup} will wake up the Drive electronics.

Parameters	Min	Typical	Max	Unit	Denomination
PWM* / E* frequency range	50	100	500	Hz	f _{PWM} 1)
PWM* / E* duty cycle range	0		100	%	dc _{min} dc _{max}
PWM* / E* high level voltage	U _B * 0.65			V	U_{PWMH}
PWM* / E* low level voltage			U _B * 0.40	V	U_{PWML}
PWM* / E* resolution		1		%	dc _{resol}
PWM* / E* accuracy		1		%	dc _{accu}
PWM* / E* current	-10 %	5.5	+10 %	mΑ	I_{PWM^*}
PWM* / E* leakage current			200	μΑ	I_{PWM^*}
PWM* / E* wake up voltage	$U_B - 2 V$			V	U_{PWMWU}
PWM* / E* wake up pulse	150			μs	T_{wakeup}
PWM* pull up		4.7		kΩ	

^{1):} for SPAL production line internal reasons there is a test mode implemented which is activated at a PWM frequency range from 1400 Hz to 1600 Hz with dedicated duty cycles for various test modes.

The application must not use this frequency range!

page 6 of 19

11 Interface hardware for Analog control: pin A

Parameters	Min	Typical	Max	Unit	Denomination
A voltage range	0		10	V	U_A
absolute maximum A voltage	-32		35	V	U_{Amax}
A current range	0		0.32	mA	l _A
A maximum current	-1.8		1.8	mA	I _{Amax}

12 Software functions

12.1 Drive modes

The Drive has different working modes related mainly to the Drive current consumption:

- 1. Quiescent current mode
- 2. Electronics active mode
- 3. Run mode
- 4. Failure mode

The Drive mode changes accordingly to the control input duty cycle on pin PWM* / E* and the voltage level on analog input A.

No.	Drive mode	Current consumption	Drive speed
1	Quiescent current mode	< 100 µA	0
2	Electronics active mode	< 40 mA	0
3	Run mode	depending on the requested speed and on the load	depending on the PWM duty cycle or the analog input voltage level
4	Failure mode	< 40 mA	depending on the failure

The Quiescent current mode is entered when the pin PWM* / E* is on 100 % duty cycle (recessive level). The time to go into Quiescent current mode depends on the actual PWM base frequency and the number of samples for the plausibility check (see chapter 12.3). Additionally 2 s are waited after the detection of the absence of the PWM signal before finally going into Quiescent current mode.

The Electronics active mode is entered with any PWM duty cycle value between 0 % and < 100 % if the condition from chapter 10 is fulfilled (T_{wakeup}).

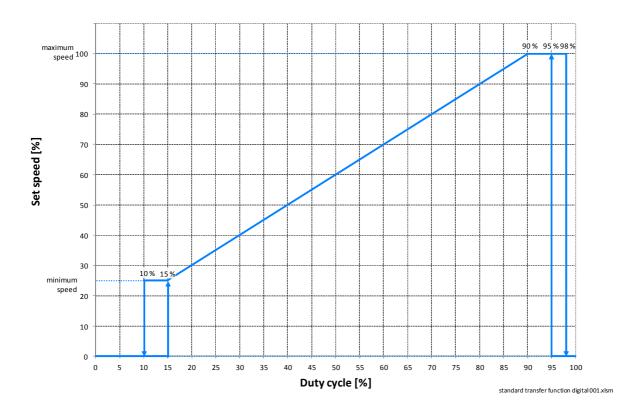
The Run mode is entered in the following cases:

- if the PWM duty cycle on pin PWM* / E* has a value where the Drive is asked to run (see chapter 12.2)
- if the analog signal on pin analog input A has a value where the Drive is asked to run (see chapter 12.4).

The Failure mode is entered in case of failures of the Drive (see chapter 12.5).

12.2 Digital control: transfer function PWM input

The transfer function PWM input is the relation between the Drive speed and the duty cycle on the pin digital PWM input / active low: PWM* / E*.



It is called "positive logic duty cycle definition".

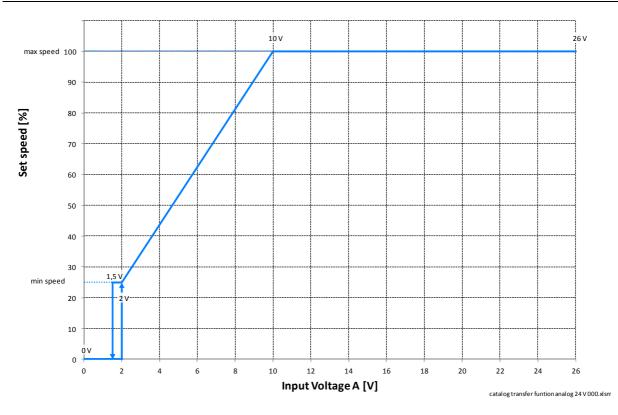
Considering this definition,

- continuous low voltage is 0 % duty cycle (dominant level)
- continuous high voltage is 100 % duty cycle (recessive level)

Based on this duty cycle definition the transfer function PWM input is shown in the following figure.

12.3 Drive speed set point with Digital control

The PWM signal on the control input PWM* / E* is measured by the Drive electronics. For improving noise to signal ratio the PWM signal becomes only valid and is only used to set the speed of the Drive when a sufficient number of consecutive duty cycle measurements are equal.


This plausibility test slightly delays the response to the change of the duty cycle PWM value. This delay is in the range of 0.2 s or less.

12.4 Analog control: transfer function analog input

The transfer function analog input is the relation between the Drive speed and the duty cycle on the pin analog input A (see following figure).

Any unauthorized use and / or copy of this document is strictly forbidden

12.5 Drive mode Failure modes

There are the following cases where the Drive will go into Failure mode and stop the Drive:

Failure modes	Handling of the failure	Notification (*)
Drive blocked	In case of detection of a rotor locked the following strategy is used: a delay of 5 s till the next start attempt is introduced. If this start attempt fails again a delay increased by further 5 s till the next start attempt is introduced. This delay increase is repeated till the delay between the attempts is 25 s. Then this delay is kept for ever as long a valid PWM duty cycle is detected which asks the Drive to run	n/a
Drive overloaded	Fan speed is reduced in case of overload detection by means of current draw measurement.	n/a
Over current	The Drive will stop if the over current safety threshold is reached.	
Drive overheated	Fan speed is reduced in case of overheating detection (derating). Over the max operating temperature, the Drive will stop.	n/a
Under and Over voltage	If the supply voltage is outside the specified range the Drive will stop.	n/a
Internal Drive failure	The Drive will stop if a failure is detected during the startup self check procedure.	n/a

In all cases the Drive tries to recover from failures when a valid PWM signal is detected which asks the Drive to run.

(*) Notification is not available as no feedback is provided to the CCU.

13 Operating modes

The Drive interface (the connection between the Drive and the user system) can be done in 8 ways depending if and how the two signal inputs PWM* / E* and A are used. See the following table:

Mode description	Mode	+D	-D	PWM* / E*	А	Pins to connect
On / off to minus	1	+		-	+	4
On / off to plus	2	+••• +D	-	-	+	4
On / off with enable low	3	+	-	E*	+	4
Analog control 1	4	+	D	-	analog	4
Analog control 2	5	+••• +D	-	-	analog	4
Analog control with enable low	6	+	-	E*	analog	4
Digital control	7	+	-	PWM	n. c.	3
Mixed analog / digital control	8	+	-	PWM	analog	4

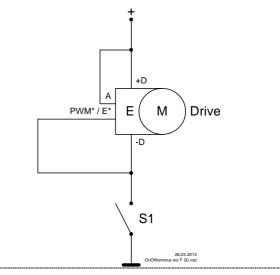
analog : analog voltage signal (input)

PWM : PWM signal (input) n. c. : not connected

: switch of the Drive positive supply to plus

: switch of the Drive negative supply to minus / GND
: switch active low enable input to minus / GND

page 10 of 19

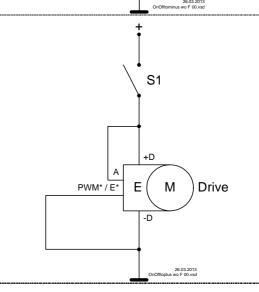


Interface mode 1: On / off to minus

When the switch S1 is switched on the Drive goes after the initialization of the electronics to full speed.

This mode can be used if the CCU which controls the Drive has limited capabilities or does not even exist. The Drive is just switched on and off via any power switch like a relay, MOS FET, or even just a switch.

The appropriate current rating for this "switch" has to be dimensioned according to the current consumption of the Drive.



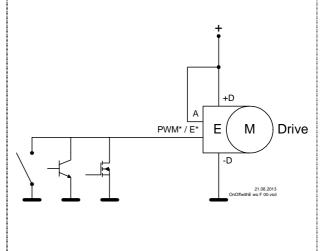
Interface mode 2: On / off to plus

When the switch S1 is switched on the Drive goes after the initialization of the electronics to full speed.

This mode can be used if the CCU which controls the Drive has limited capabilities or does not even exist. The Drive is just switched on and off via any power switch like a relay, MOS FET, or even just a switch.

The appropriate current rating for this "switch" has to be dimensioned according to the current consumption of the Drive.

Interface mode 3: On / off with enable low

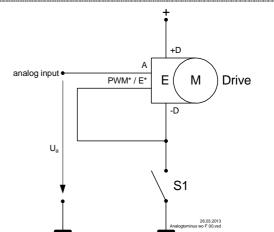

The Drive can stay always on supply voltage and is controlled by a low current enable input which can be driven by simple low cost low side signal driver in the CCU.

When the enable input PWM* / E* goes to high, the Drive goes after a short time into the quiescent current mode

When the enable pin PWM* / E* is driven low, the Drive goes to full speed after the initialization of the electronics.

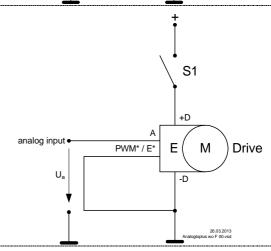
This mode can be used if the CCU which controls the Drive has limited capabilities or does not even exist. The appropriate sink current rating of the driver for the enable pin PWM^*/E^* has to be dimensioned according to the current consumption of the pin PWM^*/E^* .

The circuit structure to drive the pin PWM* / E* can be any active low "open collector".



Interface mode 4: Analog control 1

When the switch S1 is switched on the Drive goes after the initialization of the electronics to the speed requested by the analog input A.


The appropriate current rating for this "switch" has to be dimensioned according to the current consumption of the Drive.

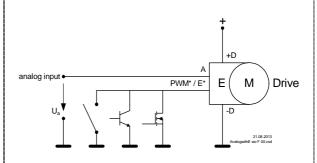
Interface mode 5: Analog control 2

When the switch S1 is switched on the Drive goes after the initialization of the electronics to the speed requested by the analog input A.

The appropriate current rating for this "switch" has to be dimensioned according to the current consumption of the Drive.

Interface mode 6: Analog control with enable low

In mode 6 the Drive can stay always on supply voltage and is controlled by a low current enable input which can be driven by simple low cost low side signal driver in the CCU.


When the enable input PWM* / E* goes to high, the Drive goes after a short time into the quiescent current mode

When the enable pin PWM*/E* is driven low, the Drive goes to the speed requested by the analog input A after the initialization of the electronics.

The appropriate sink current rating of the driver for the enable pin PWM^*/E^* has to be dimensioned according to the current consumption of the pin PWM^*/E^* .

The circuit structure to drive the pin PWM* / E* can be any active low "open collector".

In this operating mode the supply voltage plus is usually connected permanently. To run the Drive first the pin PWM*/E* has to be connected to supply voltage minus and afterwards the Drive speed can be then controlled with an analog voltage on the pin A.

Interface mode 7: Digital control

In mode 7 the Drive can stay always on supply voltage and is controlled by a low current PWM and enable PWM* / E* input which can be driven by simple low cost low side signal driver in the CCU.

When the enable input PWM* / E* goes to high, the Drive goes after a short time into the quiescent current mode.

When the enable pin PWM* / E* is driven with PWM, the Drive goes to the speed requested by the duty cycle after the initialization of the electronics.

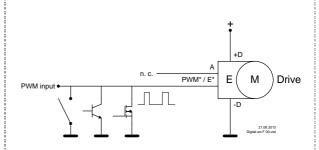
The appropriate sink current rating of the driver for the enable pin PWM* / E* has to be dimensioned according to the current consumption of the pin PWM* / E*.

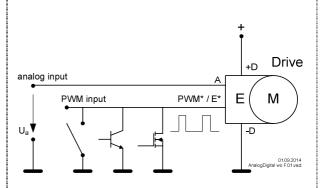
The circuit structure to drive the pin PWM* / E* can be any active low "open collector".

In this operating mode the supply voltage plus is usually connected permanently. To run the Drive on the pin PWM* / E* a PWM signal has to be applied and with the duty cycle of the PWM signal the Drive speed can be then controlled.

Interface mode 8: Mixed analog / digital control In mode 8 the Drive can stay always on supply voltage and is controlled by a low current PWM and enable PWM* / E* input which can be driven by simple low cost low side signal driver in the CCU.

When the enable input PWM* / E* goes to high, the Drive goes after a short time into the quiescent current mode.

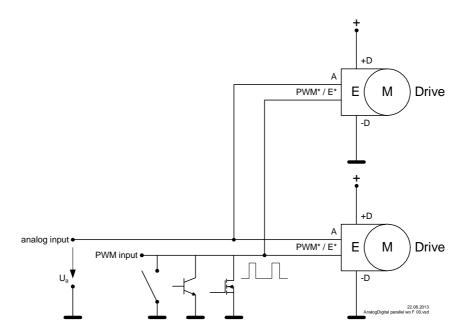

When the enable pin PWM* / E* is driven low (switched to supply voltage minus), the Drive goes to the speed requested by the analog input A after the initialization of the electronics (if the electronics is not already activated).


When the enable pin PWM* / E* is driven with PWM, the Drive goes to the speed requested by the duty cycle after the initialization of the electronics (if the electronics is not already activated).

The appropriate sink current rating of the driver for the enable pin PWM* / E* has to be dimensioned according to the current consumption of the pin PWM* / E*.

The circuit structure to drive the pin PWM* / E* can be any active low "open collector".

In this operating mode the supply voltage plus is usually connected permanently. To run the Drive on the pin PWM* / E* a PWM signal has to be applied and with the duty cycle of the PWM signal the Drive speed can be then controlled. If the pin PWM* / E* is switched to supply voltage minus the Drive speed can be then controlled with an analog voltage on the pin A. So a mixed control with either digital or analog input is possible. The priority has the digital PWM signal.



14 Interface parallel configuration

The Drives can be used in a parallel configuration in the PWM driven modes as well as in analog driven modes and also in the combines analog / PWM mode in such a way that the control lines are connected in parallel as shown in below for the example of two Drives.

There is no limitation from the Drive's point of view in paralleling them. Nevertheless from the CCU's point of view it has to be considered that all of the Drives needs a certain current each on the signal lines PWM* / E* and A. This has to be taken into account for dimensioning the driver stage which controls digitally via the PWM* / E* inputs of the Drives or which controls analog via the A inputs of the Drives. The output driver stage of the CCU needs to be capable of driving minimum the input currents of PWM* / E* and / or A times the number of the Drives.

15 Standards and Directives

The product complies with the following standard / directives

Standard Code	Description
72/245/EC and updates	Automotive EMC directive
ECE Reg. 10-03 and updates	Uniform provisions concerning the approval of vehicles with regard to electromagnetic compatibility
2002/95/EC RoHS	Restriction of Hazardous Substances Directive
2000/53/EC and updates	End-of Life Vehicle 2000/53/EC

15.1 Military EMC standard

The product complies to MIL-STD 461F(2007) for ground application (Navy mobile and army) (see chapter 14).

 $TABLE\ IV.\ Emission\ and\ susceptibility\ requirements.$

Requirement	Description
CE101	Conducted Emissions, Power Leads, 30 Hz to 10 kHz
CE102	Conducted Emissions, Power Leads, 10 kHz to 10 MHz
CE106	Conducted Emissions, Antenna Terminal, 10 kHz to 40 GHz
CS101	Conducted Susceptibility, Power Leads, 30 Hz to 150 kHz
CS103	Conducted Susceptibility, Antenna Port, Intermodulation, 15 kHz to 10 GHz
CS104	Conducted Susceptibility, Antenna Port, Rejection of Undesired Signals, 30 Hz to 20 GHz
CS105	Conducted Susceptibility, Antenna Port, Cross-Modulation, 30 Hz to 20 GHz
CS106	Conducted Susceptibility, Transients, Power Leads
CS109	Conducted Susceptibility, Structure Current, 60 Hz to 100 kHz
CS114	Conducted Susceptibility, Bulk Cable Injection, 10 kHz to 200 MHz
CS115	Conducted Susceptibility, Bulk Cable Injection, Impulse Excitation
CS116	Conducted Susceptibility, Damped Sinusoidal Transients, Cables and Power Leads, 10 kHz to 100 MHz
RE101	Radiated Emissions, Magnetic Field, 30 Hz to 100 kHz
RE102	Radiated Emissions, Electric Field, 10 kHz to 18 GHz
RE103	Radiated Emissions, Antenna Spurious and Harmonic Outputs, $10~\mathrm{kHz}$ to $40~\mathrm{GHz}$
RS101	Radiated Susceptibility, Magnetic Field, 30 Hz to 100 kHz
RS103	Radiated Susceptibility, Electric Field, 2 MHz to 40 GHz
RS105	Radiated Susceptibility, Transient Electromagnetic Field

MIL-STD 461F(2007) emission and susceptibility requirements

TABLE V. Requirement matrix.

Equipment and Subsystems Installed In, On, or Launched From the Following Platforms or Installations	Requirement Applicability																	
	CE101	CE102	CE106	CS101	CS103	CS104	CS105	CS106	CS109	CS114	CS115	CS116	RE101	RE102	RE103	RS101	RS103	RS105
Surface Ships	Α	Α	L	Α	S	S	S	Α	L	Α	S	Α	Α	Α	L	Α	Α	L
Submarines	Α	Α	L	Α	S	S	S	Α	L	Α	S	L	Α	Α	L	L	Α	L
Aircraft, Army, Including Flight Line	A	A	L	A	S	S	S			A	Α	A	A	A	L	A	A	L
Aircraft, Navy	L	A	L	A	S	S	S			A	A	A	L	A	L	L	A	L
Aircraft, Air Force		A	L	A	S	S	S			A	A	A		A	L		A	
Space Systems, Including Launch Vehicles		A	L	A	S	S	S			A	A	A		Α	L		A	
Ground, Army		A	L	A	S	S	S			A	A	A		A	L	L	A	
Ground, Navy		A	L	4	S	S	S			A	A	ď		A	L	A	Ą	L
Ground, Air Force		A	L	A	S	S	S			A	A	A		A	Ĺ		A	

Legend:

- A: Applicable
- L: Limited as specified in the individual sections of this standard
 Procuring activity must specify in procurement documentation

MIL-STD 461F(2007) requirement matrix

Test passed
Not tested

16 Sealing

Motor designed for IP6K9K and IP68 protection.

Units and acronyms

Unit		Physical Quantity	Prefix	Dimension	
%	percent	Proportionality	М	10 ⁶	mega
Ω	Ohm	Electrical Resistance	k	10 ³	kilo
${\mathcal C}$	degree Celsius	Temperature	m	10 ⁻³	milli
Α	Ampere	Current	μ	10 ⁻⁶	micro
h	hours	Time	n	10 ⁻⁹	nano
dBA	deciBel (A-weighting)	Sound pressure level	р	10 ⁻¹²	pico
Hz	Hertz	Frequency			
min	minute	Time			
Pa	Pascal	Pressure			
rpm	Revolutions per minute	Rotation frequency			
S	second	Time			
V	Volt	Voltage			
W	Watt	Power			

Table 1: Units of measurements

Key Word	Description
AMPL_IN	Amplitude PWM input signal
CCU	Custom Control Unit
Drive	Motor with axially integrated electronics
IGN	Ignition (KL15)
PWM	Pulse Width Modulation
R _i	Input Resistance
SBL	Sealed brushless
Т	Temperature
T _{AMB}	Ambient Temperature
U _B	Supply voltage
Un	Nominal supply Voltage
rms	root mean square

17 Document change history

Initial document author: SPAL TEAM

Latest revision: 000

Document author	Date	Revision	Comment
SPAL TEAM	09.05.2016	000	Initial Version.

Table 2: Document change history

Document status: released

18	Sommario					
1	General	1				
2	Features	1				
3	Air performance at maximum speed	2				
4	Mechanical data	3				
5	Connector and wires (C. Ferrarini)					
6	Further Features5					
7	Measurement conditions	5				
8	Hardware functions	5				
_	1.1 Drive diagram					
。 9	Drive interface					
ง 10						
10 11	Interface hardware for Analog control: pin A					
12						
-	2.1 Drive modes2.2 Digital control: transfer function PWM input					
	2.3 Drive speed set point with Digital control					
	2.4 Analog control: transfer function analog input2.5 Drive mode Failure modes	8 o				
13						
14	. •					
15						
_	5.1 Military EMC standard					
16	Sealing					
	nits and acronyms					
17						
18	Sommario					

page 19 of 19