# PISTON PRESSURE SWITCH <br> DS-117 / DS-112 

## INTRODUCTION

We are known throughout Europe as a leading specialist for piston pressure switches and provide our customers with a broad range of pressure switch designs.

Many years of experience with material combinations, processing techniques and production tolerances enable us to meet the most varied requirements in a targeted and flexible manner.

Our pressure switches are distinguished by their durable precision, a broad spectrum of applications and uncompromising reliability.

The DS $117 / 112$ is the "baby" among pressure switches. Precision and reliability are its most important characteristics. It takes on the simple tasks in the control and realises these loyally and conscientiously.

## CONTENTS

|  | Page |
| :--- | ---: |
| Introduction | 1 |
| Function | 1 |
| Technical Data | 2 |
| Ordering information | 3 |
| Terminal assignment | 3 |
| Reset differential pressure | 4 |
| Dimensions | $5-6$ |
|  |  |
| ADDITIONAL INFORMATION |  |

Further information on the correct handling of our pressure switch range is available under "Operating manual for piston pressure switches" BA-KDS/GB/2010-REV1 on our website www.hydropa.de.

## ADDITIONAL INFORMATION

 white.
## FUNCTION

The pressure switch functions on the basis of the piston-spring principle. The microswitch (2) is actuated if the pressure lies below the configured value. The piston (6) acts against the spring plate (5) when pressure builds up. This braces itself against the continuously-adjustable compression spring (4). The piston (6) transfers the force of onto the spring plate (5) when the configured pressure is reached on the nozzle (7), enabling the microswitch (2) and triggering an electrical signal. The pressure to be monitored is determined by the preload tension of the spring (4). Adjustment is achieved by turning the adjusting element (3). Anticlockwise rotation reduces the switching pressure, while turning in a clockwise direction increases the switching pressure. The adjusting element (3) is fixed with the securing screw. A mechanical stop prevents the compression spring (4) from seizing due to excessive turning.

## TECHNICAL DATA

| General information |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| design | piston spring-loaded, mechanical stop prevents compression spring seizing due to excessive turning |  |  |  |
| connection | internal G 1/4 thread or flange surface |  |  |  |
| adjusting | adjusting screw cover or adjusting knurl |  |  |  |
| setting protection | fixing cover |  |  |  |
| installation | arbitrary |  |  |  |
| weight | basic type 0,27 kg |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| piston diameter | $\emptyset 4 \mathrm{~mm}$ |  | ø 5 mm |  |
| switching pressure ranges | 20-350 bar | 20-240 bar | 10-150 bar | 5-70 bar |
| P max. (standard seal) | 500 bar | 500 bar | 400 bar | 200 bar |
| P max. (SS-seal') | 400 bar | 400 bar | - bar | - bar |
| repetitive accuracy | deviation less than 1\% (depending on operating range) |  |  |  |
| ambient temperature | $-40^{\circ} \mathrm{C}$ to $+90{ }^{\circ} \mathrm{C}$ |  |  |  |
| pressure fluid | oil, oil-water-emulsion |  |  |  |
| viscosity range | 10 bis $800 \mathrm{~mm}^{2} / \mathrm{s}$ |  |  |  |
| load change | $\geq 5 \times 10^{6}$ |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  | electromechanical changeover switch CEE 24; VDE 0630, T85 UL 1054/CSA C22.2 No. 556 TSD, T90 pure silver profile contact, gold on silver palladium coated profile contact on request |  |  |  |
| voltage type | alternating voltage / direct voltage |  |  |  |
| protection class DIN 60529 | IP 65 |  |  |  |
| electrical connection | cable socket conforming to EN 175301-803, model type A, Pg11 (Pg9 on request) |  |  |  |
| cable cross-section | $0,5 \mathrm{~mm}^{2}$ to $1,5 \mathrm{~mm}^{2}$ |  |  |  |
| cable diameter | 6 mm to 8 mm for Pg9 / 8 mm to 10 mm for Pg11 |  |  |  |
| seal | outer jacket seal |  |  |  |
|  |  |  |  |  |
| Switching power |  |  |  |  |
| voltage |  |  | $24 \mathrm{~V} / \mathrm{DC}$ |  |
| max. ohmic load |  |  | 5 A |  |
| max. inductive load | 1 A |  | 4 A |  |
|  |  |  |  |  |
| Other details |  |  |  |  |
| housing | unpainted aluminium |  |  |  |
| pressure connection | aluminium |  |  |  |
| switch movement | approx. 0.5 mm consequently very little wear on seal and tappet guide |  |  |  |
| connection plates | for NG 6 and NG 10 valve linking (only for pressure switches suitable for flange connection) |  |  |  |
| ${ }^{1)}$ special low-friction sealSERVICE LIFE |  |  |  |  |
|  |  |  |  |  |

The service life of a piston pressure switch depends on numerous factors. Minimum and maximum pressures, cycle rate, load change, hydraulic vibration, the load (amp.) on the electrical switch, etc. Where a pressure switch needs to meet special requirements, we are in a position to address the most varied requirements in a flexible and targeted manner, thanks to our years of experience with material pairings, machining processes and production tolerances.

The pressure switches must be installed so that the device is not exposed to damaging vibrations during operation and eventually cause a failure.
The use of suitable damping materials can significantly extend the service life.

ORDERING INFORMATION

undesign. = cable socket conforming to EN 175301-803 model type $\mathrm{A}, \mathrm{Pg} 9$ ( Pg 11 on request)
L-MP $24=4$-pole 24 V lamp socket
LED-34 $=4$-pole socket with LED function display
M12 = M12×1 (4-pole socket, axial or $90^{\circ}$-version on request)
${ }^{1)}$ Special versions not in stock!
Viton ${ }^{\circledR}$ is a registered trademark of DuPont Performance Elastomers.

TERMINAL ASSIGNMENT


Terminals 1-2: contact breaks if pressure rises Terminals 1-3: contact makes if pressure rises


Terminals 1-3: contact breaks if pressure rises Terminals 1-2: contact makes if pressure rises
! The protective earth (PE) should be connected in compliance with regulations for the electrical connection.!


## RESET DIFFERENTIAL PRESSURE

## 1. Standard seal (normal version):

The hysteresis achieved during continuous operation is approx. $7-12 \%$ of the final value at a set pressure of approx. $60-70 \%$ of the max. adjustable switching pressure.

## Example:

In the case of a DS-117-150 pressure switch with a pressure range of $10-150$ bar, a hysteresis of approx. 8-15 bar is achieved at a set pressure of 100 bar.

## 2. Special low-friction seal (SS design)

The hysteresis achieved during continuous operation is approx. $3-6 \%$ of the final value at a set pressure of approx. $60-70 \%$ of the max. adjustable switching pressure.

## Example:

DS-117/SS-240 set pressure: 200 bar --> hysteresis: approx. 12 bar
These values depend of course on the temperature and viscosity or the operating medium.
The pressure ranges with different piston diameters also influence these values.

FUNCTION DIAGRAM


## DIMENSIONS

Type DS-117-***/B or DS-112-***/B
 of the switching pressure should be realised with a pressure gauge.

Type DS $-117 / F / * * *$ or DS-112/F/***


## DIMENSIONS

Type DS-117-***/B/P90 or DS-112-***/B/P90

${ }^{1)}$ The scale is only provided for orientation. The exact configuration of the switching pressure should be realised with a pressure gauge.
The .../B/P90 version is only available up to Pmax. $\mathbf{3 5 0}$ bar erhältlich.

## Cable sockets

