

Features

- LO/RF . 01 to 12.0 GHz
- IF DC to 2.0 GHz
- 7.5 dB Typical Conversion Loss
- Ultra-Broadband RF, LO, and IF

Electrical Specifications - Specifications guaranteed from -55 to $+100^{\circ} \mathrm{C}$, measured in a $50-\mathrm{Ohm}$ system.

Parameter	$\underset{(\mathrm{GHz})}{\mathrm{LO}}$	$\underset{(\mathrm{GHz})}{\mathrm{RF}}$	$\underset{(\mathrm{GHz})}{\mathrm{IF}}$	Min	Typ	Max	Diode Option LO drive level (dBm)
Conversion Loss (dB)	.01-12.0	.01-12.0	DC-2.0		7.5	11.5	
$\begin{aligned} & \text { Isolation (dB) } \\ & \text { LO-RF } \\ & \text { LO-IF } \\ & \text { RF-IF } \end{aligned}$	$\begin{aligned} & .01-12.0 \\ & .01-12.0 \\ & .01-12.0 \end{aligned}$	$\begin{aligned} & .01-12.0 \\ & .01-12.0 \\ & .01-12.0 \end{aligned}$			See Plots		
Input 1 dB Compression (dBm)	.01-12.0	.01-12.0			+4		$\mathrm{L}(+10$ to +13$)$
Input Two-Tone Third Order Intercept Point (dBm)	.01-12.0	.01-12.0			See Plot		$\mathrm{L}(+10$ to +13$)$

Part Number Options

Please specity diode level and package style by adding to model number.					
Package Styles		Examples M1-0012LQP, M1-0012LCQG-2			
Connectorized	QP				
Microstrip ${ }^{1,2,3}$	$\underline{\text { Q }}$	M1-0012	L	CQG	-2
Surface Mount 1,2,4	CQG (RoHS)		(Diode Option)	(Package)	(I-Port Configuration)

[^0]Marki Microwave reserves the right to make changes to the product(s) or information contained herein without notice. Marki Microwave makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Marki Microwave assume any liability whatsoever arising out of the use of or application of any product.

215 Vineyard Court, Morgan Hill, CA 95037 | Ph: 408.778 .4200 | Fax 408.778 .4300 | info@markimicrowave.com

DOUBLE-BALANCED MIXERS
M1-0012
Page 2

LO/RF . 01 to 12.0 GHz IF DC to 2.0 GHz

Typical Performance

Page 3

LO/RF . 01 to 12.0 GHz

IF DC to 2.0 GHz
Typical Performance

DOUBLE-BALANCED MIXERS

Page 4

M1-0012

LO/RF . 01 to 12.0 GHz
IF DC to 2.0 GHz

Downconversion Spurious Suppression

Spurious data is taken by selecting RF and LO frequencies ($\pm \mathrm{mLO} \pm n \mathrm{RF}$) within the 10 MHz to 12 GHz RF/LO bands, which create a 100 MHz IF spurious output. The mixer is swept across the full spurious band and the mean is calculated. The numbers shown in the table below are for a - 10 dBm RF input. Spurious suppression is scaled for different RF power levels by ($n-1$), where " n " is the RF spur order. For example, the 2RFx2LO spur is 57 dBc for a - 10 dBm input, so a -20 dBm RF input creates a spur that is $(2-1) \times(-10 \mathrm{~dB}) \mathrm{dB}$ lower, or 67 dBc .

Typical Downconversion Spurious Suppression (dBc): +10 dBm LO

| -10 dBm RF Input | $0 \times L O$ | $1 \times L O$ | $2 \times L O$ | $3 \times L O$ | $4 \times L O$ | $5 \times L O$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 \times R F$ | ---------- | See LO to IF Isolation and LO Harmonic to IF Isolation Plots (Page 3) | | | | |
| $1 \times R F$ | 22 | Reference | 27 | 12 | 35 | 22 |
| $2 \times R F$ | 63 | 49 | 57 | 51 | 62 | 52 |
| $3 \times R F$ | 71 | 53 | 69 | 58 | 70 | 59 |
| $4 \times R F$ | 105 | 87 | 87 | 87 | 91 | 87 |
| $5 \times R F$ | 115 | 96 | 103 | 93 | 105 | 97 |

A sample downconversion spurious sweep is shown below. An LO which is 100 MHz higher than the RF is used to create a 100 MHz reference IF. A second LO is used to create a $2 x 2$ spurious IF, also at 100 MHz (50 MHz fundamental IF). The difference between these two output levels is the spurious suppression in dBc. The mean value across the full 10 MHz to 12 GHz RF input band is the number shown in the table above.

Page 5

LO/RF . 01 to 12.0 GHz
 IF DC to 2.0 GHz

Upconversion Spurious Suppression

Spurious data is taken by mixing a 100 MHz IF with LO frequencies ($\pm \mathrm{mLO} \pm \mathrm{nIF}$) which create an RF within the 10 MHz to 12 GHz RF band. The mixer is swept across the full spurious output band and the mean is calculated. The numbers shown in the table below are for a - 10 dBm IF input. Spurious suppression is scaled for different IF input power levels by $(n-1)$, where " n " is the IF spur order. For example, the 2IFx1LO spur is typically 54 dBc for a -10 dBm input, so a -20 dBm IF input creates a spur that is $(2-1) \times(-10 \mathrm{~dB}) \mathrm{dB}$ lower, or 64 dBc .

Typical Upconversion Spurious Suppression (dBc): +10 dBm LO

-10 dBm IF Input	0xLO	1xLO	$2 \times L O$	3xLO	4xLO	5xLO
0xIF	----------	See LO to RF Isolation and LO Harmonic to RF Isolation Plots (Page 3)				
1xIF	21	Reference	27	12	33	27
2 xIF	61	54	47	56	48	62
3xIF	97	58	63	52	64	53
4xIF	110	88	84	92	82	88
5xIF	120	89	102	87	98	87

A sample upconversion spurious sweep is shown below. A 100 MHz reference IF input is used to create an RF output that is 100 MHz below the LO input (LO-IF=RF). A second LO (100 MHz higher) is combined with the same 100 MHz IF input (LO-2xIF=RF) to create the same 10 MHz to 12 GHz RF output band. The difference between these two output levels is the spurious suppression in dBc . The mean value across the full RF output band is the number shown in the table above.

Page 6

LO/RF . 01 to 12.0 GHz

 IF DC to 2.0 GHz| Port | Description | DC Interface Schematic |
| :---: | :--- | :--- |
| LO | The LO port is DC coupled to ground and AC matched to 50 Ohms from
 10 MHz to 12 GHz . Blocking capacitor is optional. | The RF port is DC coupled to ground and AC matched to 50 Onms from
 10 MHz to 12 GHz . Blocking capacitor is optional. |
| RF | The IF port is DC coupled to the diodes. Blocking capacitor is optional. | |
| IF | | |

Absolute Maximum Ratings	
Parameter	Maximum Rating
RF DC Current	1 Amp
LO DC Current	1 Amp
IF DC Current	50 mA
RF Power Handling (RF+LO)	+23 dBm at $+25^{\circ} \mathrm{C}$, derated linearly to +20 dBm at $+100^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)	Class 0

DATA SHEET NOTES:

1. Mixer Conversion Loss Plot IF frequency is 100 MHz .
2. Mixer Noise Figure typically measures within 0.5 dB of conversion loss for IF frequencies greater than 5 MHz .
3. Conversion Loss typically degrades less than 0.5 dB for LO drives 2 dB below the lowest and 3 dB above highest nominal LO drive levels.
4. Conversion Loss typically degrades less than 0.5 dB at $+100^{\circ} \mathrm{C}$ and improves less than 0.5 dB at $-55^{\circ} \mathrm{C}$.
5. Specifications are subject to change without notice. Contact Marki Microwave for the most recent specifications and data sheets.
6. Catalog mixer circuits are continually improved. Configuration control requires custom mixer model numbers and specifications.

Marki Microwave reserves the right to make changes to the product(s) or information contained herein without notice. Marki Microwave makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Marki Microwave assume any liability whatsoever arising out of the use or application of any product.

Marki Microwave, Inc.

215 Vineyard Court, Morgan Hill, CA 95037 | Ph: 408.778 .4200 | Fax $408.778 .4300 \mid$ info@markimicrowave.com www.markimicrowave.com

[^0]: ${ }^{1}$ Connectorized test fixtures available for most carrier and surface mount packages. Consult factory.
 ${ }^{2}$ For non-connectorized packages, specify I-port configuration by adding -1 or -2 suffix to model number. Default is -2 configuration when not specified.

