

Q50AVPQ Photoelectric Sensor – Triangulation Sensor with Switching Output

Technical data

unction Pr	063887 Proximity switch
unction Pi	Proximity switch
	Proximity switch
perating mode Tr	riangulation
ght type R	Red
/avelength 68	85 nm
ange 50	0150 mm
mbient light immunity 10	0000 lux
lectrical data	
perating voltage 12	230 VDC
o-load current ≤	70 mA
utput function N	IO/NC, PNP
witching frequency ≤	7 Hz
eadiness delay ≤	2 s
eadiness delay ≤	2000 ms
esponse time typical <	48 ms
lechanical data	
esign R	Rectangular, Q50
imensions 49	9.8 x 19.7 x 60 mm
ousing material Pl	Plastic, ABS/Polycarbonate
ens pl	lastic, Acrylic
lectrical connection Co	Connector, M12 × 1, PVC
umber of cores 5	
mbient temperature -1	10+55 °C
elative humidity 90	0 %

Features

Foreground and background suppression

- Operating range 50...150 mm
- M12 × 1 connector rotatable by 90°
- Operating voltage 12...30 VDCPNP switching output
- Response time of output 64 ms

Wiring diagram

Functional principle

The function principle of the Q50 is based on optical triangulation. The emitter and the optics create a light source that is directed towards a target. The target reflects the light back to the receiver lens of the sensor, from where it then is directed to the position sensitive device (PSD) as the receiver element. The target's distance from the receiver determines the angle at which the light meets the receiver element. This angle in turn determines where the reflected light falls onto the PSD. The microprocessor analyses and compares the target position to the programmed position values and creates a corresponding output signal.

Technical data

Protection class

Switching state

IP67 LED, Yellow Tests/approvals

Q50AVPQ | 18-01-2022 23-35 | Technical modifications reserved