PULS

DIMONSION C-Series

POWER SUPPLY

- 100-240V Wide-Range Input
- NEC Class 2 Compliant
- Efficiency up to 89.8%
- Width only 32mm
- Full Output Power Between -25°C and +60°C
- 3 Year Warranty

1. GENERAL DESCRIPTION


The Dimension C-Series are cost optimized power supplies without compromising quality, reliability and performance. The C-Series is part of the Dimension power supply family, existing alongside the high featured Q-series.

The C series includes all the essential basic functions. The most important features are the small size, the high efficiency and the wide temperature range.

The wide-range-input makes worldwide installation and usage very simple. Defects or system failures caused by wrongly set switches can not occur.

C-Series

Related products

2. SHORT-FORM DATA

Output voltage	DC 24V	
Adjustment range	24 - 28V	
Output current	3.3A	At 24Vdc
	2.7A	At 28Vdc
Output power	80W	
Output ripple	< 50mVpp	20Hz to 20MHz
Input voltage	AC 100-240V	Wide-range Input
Mains frequency	50-60Hz	±6%
AC Input current	typ. 1.24 / 0.68A	At 120 / 230Vac
Power factor	typ. 0.61 / 0.56	At 120 / 230Vac
AC Inrush current	typ. 23 / 45A	At 120 / 230Vac
DC Input	110-375Vdc	Full output current
	88-110Vdc	Output current
		max. 2.5A
Efficiency	typ. 88.0 / 89.8%	At 120 / 230Vac
Losses	typ. 11.1 / 9.1W	At 120 / 230Vac
Temperature range	-25°C to +70°C	Operational
Derating	1.8W/°C	+60 to +70°C
Hold-up time	typ. 29 / 120ms	At 120 / 230Vac
Dimensions	32x124x102mm	WxHxD

3. ORDER NUMBERS

Power Supply	CS3.241	Standard unit
Accessory	ZM1.WALL	Wall mount bracket
	ZM11.SIDE UF20.241 UB10.241	Side mount bracket Buffer module DC-UPS
	YRM2.DIODE	Redundancy module

4. MARKINGS

Marine

xxxxx. 200y / Rev. 1.2 DS-CS3.241-EN

24V, 3.3A, SINGLE PHASE INPUT

INDEX	PAGE	INDEX	PAGE
1. General Description	1 1 1 1 1 	21. Fulfilled Standards	
8. Hold-up Time	5	26.2. Charging of Batter	ies 17
9. Output	6	26.3. Back-feeding Load	
10. Efficiency and Power Losses	7	26.4. Output Circuit Brea	akers 18
11. Functional Diagram		26.5. Inductive and Capa	acitive Loads18
12. Reliability		26.6. Series Operation	
13. Front Side and User Elements	9	26.7. Parallel Use to Incr	ease Output Power . 19
14. Terminals and Wiring		26.8. Parallel Use for 1+	1 Redundancy 19
15. EMC		26.9. External Input Prot	
16. Environment		26.10. Operation on Two	Phases 20
17. Protection Features		26.11.Use in a Tightly Sea	aled Enclosure 20
18. Safety		26.12.Mounting Orientat	tions 21
19. Dielectric Strength			
20. Approvals	13		

INTENDED USE

The power supply shall only be installed and put into operation by qualified personnel.

This power supply is designed for installation in an enclosure and is intended for the general use, such as in industrial control, office, communication, and instrumentation equipment. Do not use this device in aircraft, trains and nuclear equipment, where malfunctioning of the power supply may cause severe personal injury or threaten human life.

TERMINOLOGY AND ABREVIATIONS

PE and symbol PE is the abbreviation for Protective Earth and has the same meaning as the symbol symbol This document uses the term "earth" which is the same as the U.S. term "ground".

To be defined, value or description will follow later.

AC 230V A figure displayed with the AC or DC before the value represents a nominal voltage with

standard tolerances (usually ±20%) included. E.g.: DC 12V describes a 12V battery disregarding whether it is charged (13.7V) or

discharged (10V). As long as not otherwise stated, AC 100V and AC 230V parameters are valid at 50Hz and AC 120V parameters are valid at 60Hz mains frequency.

valid at 30112 and AC 1207 parameters are valid at 00112 mains frequency.

230Vac A figure with the unit (Vac) at the end is a momentary figure without any additional

tolerances included.

DISCLAIMER

The information presented in this document is believed to be accurate and reliable and may change without notice. Some parts of this unit are patent by PULS (US patent No 091662,063, Des. 424,529, ...).

No part of this document may be reproduced or utilized in any form without permission in writing from PULS GmbH.

5. AC-INPUT

AC input	nom.	AC 100-240V	Wide-range- input, TN-, TT-, IT-Mains, see Fig. 5-1
AC input range		90-264Vac	100-120V range, continuous operation
		85-90Vac	Short term or with output derating
		264-300Vac	< 0.5s
Input frequency	nom.	50 – 60Hz	±6%

		AC 100V	AC 120V	AC 230V	
Input current	typ.	1.5A	1.24A	0.68A	At 24V, 3.3A see Fig. 5-3
Power factor *)	typ.	0.62	0.61	0.56	At 24V, 3.3A see Fig. 5-1
Crest factor **)	typ.	3.1	3.2	4.0	At 24V, 3.3A
Start-up delay	typ.	95ms	95ms	95ms	See Fig. 5-2
Rise time	typ.	18ms	29ms	56ms	0mF, 24V, 3.3A, see Fig. 5-2
	typ.	35ms	52ms	52ms	3.3mF, 24V, 3.3A, see Fig. 5-2
Turn-on overshoot	max.	400mV	400mV	400mV	See Fig. 5-2
Turn-on voltage	typ.	75Vac	75Vac	75Vac	Steady-state value, see Fig. 5-1
Shut-down voltage	typ.	58Vac	58Vac	58Vac	Steady-state value, see Fig. 5-1

- *) The power factor is the ratio of the true (or real) power to the apparent power in an AC circuit.
- **) The crest factor is the mathematical ratio of the peak value to the RMS value of the input current waveform

Fig. 5-1 Input voltage range

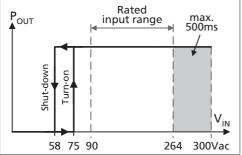


Fig. 5-3 Input current vs. output load

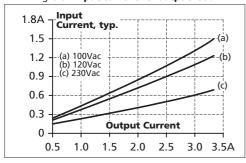


Fig. 5-2 Turn-on behavior, definitions

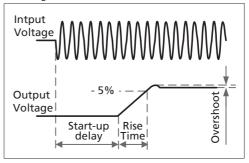
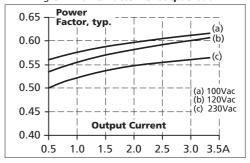



Fig. 5-4 **Power factor vs. output load**

DIMONSION C-Series

6. DC-INPUT

DC input	nom.	DC 110-300V	
DC input range	min.	88-375Vdc	Continuous operation
DC input current	typ.	0.81A / 0.29A	110Vdc / 300Vdc, 24V, 3.3A
Output current	max.	2.5A	At 24V and an input voltage between 88-110Vdc, see Fig. 6-2
	max.	3.3A	At 24V and an input voltage between 110-375Vdc
Turn-on voltage	typ.	103Vdc	Steady-state value at 2.5A output load
Shut-down voltage	typ.	50Vdc	Steady-state value at 2.5A output load

Instructions for DC use:

- a) Use a battery or similar DC source.
- b) Connect + pole to L and pole to N.
- c) Connect the PE terminal to a earth wire or to the machine ground.

In case the – pole of the battery is not connected to earth, use an appropriate fuse to protect the N terminal.

Fig. 6-1 Wiring for DC input

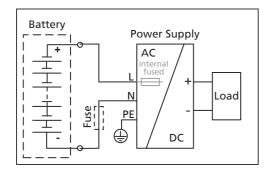
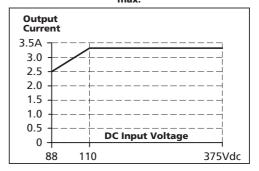
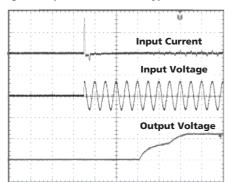



Fig. 6-2 Output current versus input voltage, max.



7. INPUT INRUSH CURRENT SURGE

A NTC limits the input inrush current after turn-on of the input voltage. The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on.

		AC 100V	AC 120V	AC 230V	
Inrush current	max.	24A _{peak}	28A _{peak}	54A _{peak}	At 40°C cold-start
	typ.	20A _{peak}	23A _{peak}	45A _{peak}	At 40°C cold-start
Inrush energy	typ.	$0.4A^2s$	$0.5A^2s$	$1.7A^2s$	At 40°C cold-start

Fig. 7-1 Input inrush current, typical behavior

A: Start-up delay = Inrush delay

Input: 230Vac Output: 24V, 3.3A Ambient: 25°C

Upper curve: Input current 20A / DIV
Medium curve: Input voltage 500V / DIV
Lower curve: Output voltage 20V / DIV

Time scale: 40ms / DIV

8. HOLD-UP TIME

		AC 100V	AC 120V	AC 230V	
Hold-up Time	typ.	38ms	60ms	244ms	1.65A, 24V, see Fig. 8-1
	typ.	19ms	29ms	120ms	3.3A, 24V, see Fig. 8-1

Fig. 8-1 Hold-up time vs. input voltage

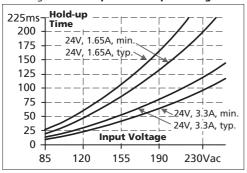
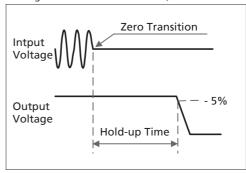
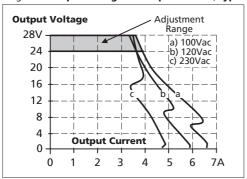



Fig. 8-2 Shut-down behavior, definitions

Note: At no load, the hold-up time can be up to several seconds. The green DC-ok lamp is on during this time.


xxxxx. 200y / Rev. 1.2 DS-CS3.241-EN

9. OUTPUT

Output voltage	nom.	24V	
Adjustment range	min.	24-28V	Guaranteed
	max.	30V	At clockwise end position of potentiometer
Factory setting		24.1V	±0.2%, at full load, cold unit
Line regulation	max.	50mV	90 to 264Vac
Load regulation	max.	100mV	Static value, $0A \rightarrow 3.3A \rightarrow 0A$
Ripple and noise voltage	max.	50mVpp	20Hz to 20MHz, 50Ohm
Output capacitance	typ.	1 450µF	
Output current	nom.	3.3A	At 24V, see Fig. 9-1
	nom.	2.7A	At 28V, see Fig. 9-1
Output power	nom.	80W	
Short-circuit current	min.	4A	Load impedance 250mOhm, see Fig. 9-1
	max.	8A	Load impedance 250mOhm, see Fig. 9-1

Fig. 9-1 Output voltage vs. output current, typ.

Peak current capability (up to several ms)

The power supply can deliver a peak current which is higher than the specified short term current. This helps to start current demanding loads or to safely operate subsequent circuit breakers.

The extra current is supplied by the output capacitors inside the power supply. During this event, the capacitors will be discharged and causes a voltage dip on the output. Detailed curves can be found in chapter 26.1.

Peak current voltage dips	typ.	from 24V to 12.5V	At 6.6A for 50ms, resistive load
	typ.	from 24V to 12.5V	At 16.5A for 2ms, resistive load
	typ.	from 24V to 7V	At 16.5A for 5ms, resistive load

10. EFFICIENCY AND POWER LOSSES

		AC 100V	AC 120V	AC 230V	
Efficiency	typ.	86.4%	88.0%	89.8%	3.3A, 24V
Power losses	typ.	1W	1.1W	1.8W	0A
	typ.	5.4W	4.9W	5.9W	1.65A, 24V
	typ.	12.5W	11.1W	9.1W	3.3A, 24V

Fig. 10-1 **Efficiency vs. output current at 24V, typ.**

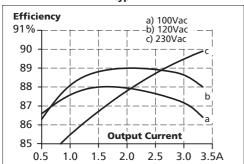


Fig. 10-3 Efficiency vs. input voltage, 24V, 3.3A, typ.

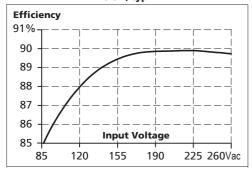
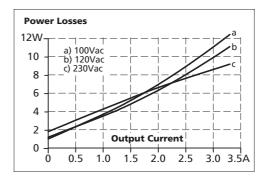
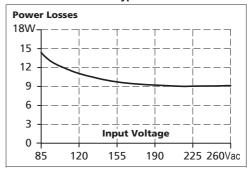
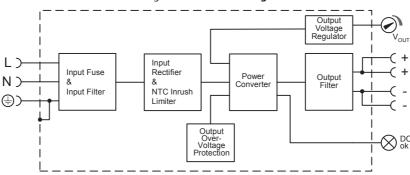


Fig. 10-2 Losses vs. output current at 24V, typ.


Fig. 10-4 Losses vs. input voltage, 24V, 3.3A, typ.

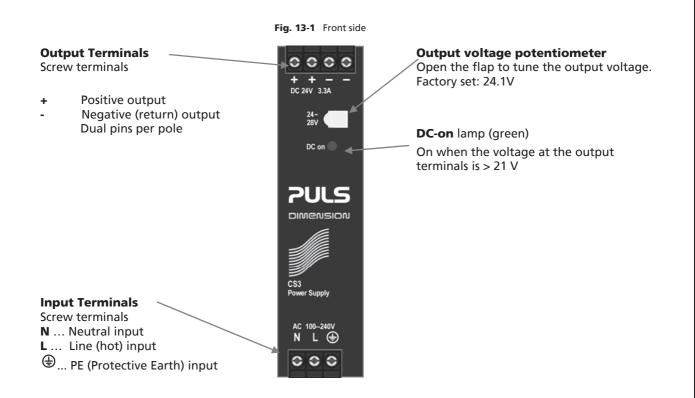
11. FUNCTIONAL DIAGRAM

Fig. 11-1 Functional diagram

12. RELIABILITY

These units are extremely reliable and use only the highest quality materials. The number of critical components such as electrolytic capacitors has been reduced.

		AC 100V	AC 120V	AC 230V	
Lifetime expectancy	min.	57 000h	64 000h	77 000h	40°C, 24V, 3.3A
	min.	t.b.d.	t.b.d.	t.b.d.	40°C, 24V, 1.65A
	min.	160 000h	>15 years	>15 years	25°C, 24V, 3.3A
MTBF SN 29500, IEC 61709		t.b.d.	t.b.d.	t.b.d.	40°C, 24V, 3.3A
		t.b.d.	t.b.d.	t.b.d.	25°C, 24V, 3.3A
MTBF MIL HDBK 217F		t.b.d.	t.b.d.	t.b.d.	40°C, 24V, 3.3A, Ground Benign GB40
		t.b.d.	t.b.d.	t.b.d.	25°C, 24V, 3.3A, Ground Benign GB25


The **Lifetime expectancy** shown in the table indicates the operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors.

Lifetime expectancy is specified in operational hours. Lifetime expectancy is calculated according to the capacitor's manufacturer specification. The prediction model allows a calculation of up to 15 years from date of shipment.

MTBF stands for **M**ean **T**ime **B**etween **F**ailure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.

13. FRONT SIDE AND USER ELEMENTS

14. TERMINALS AND WIRING

All terminals are easy to access when mounted on the panel. Input and output terminals are separated from each other (input below, output above) to help in error-free wiring.

Туре	Screw terminals
Solid wire	0.5-6mm ²
Stranded wire	0.5-4mm ²
American wire gauge	20-10 AWG
Ferrules	Allowed, but not required
Wire stripping length	7mm / 0.275inch
Screwdriver	3.5mm slotted or Pozidrive No 2
Recommended tightening torque	0.8Nm, 7lb.in

Instructions:

- a) Use appropriate copper cables that are designed for an operating temperature of: 60°C for ambient up to 45°C and 75°C for ambient up to 60°C minimum.
- b) Follow national installation codes and installation regulations!
- c) Ensure that all strands of a stranded wire enter the terminal connection!
- d) Up to two stranded wires with the same cross section are permitted in one connection point (except PE wire).
- e) Do not use the unit without PE connection.
- f) In order to fulfill GL requirements, unused terminal spaces must be closed.

xxxxx. 200y / Rev. 1.2 DS-CS3.241-EN

DIMONSION C-Series

15. EMC

The CE mark is in conformance with EMC directive 89/336/EC, 93/68/EC and 2004/108/EC and the low-voltage directive (LVD) 73/23/EWG. A detailed EMC Report is available on request.

EMC Immunity	EN 61000-6-2, EN 61000-6-1		Generic standards	;
Electrostatic discharge	EN 61000-4-2	Contact discharge	8kV	Criterion A
		Air discharge	15kV	Criterion A
Electromagnetic RF field	EN 61000-4-3	80MHz-2.7GHz	10V/m	Criterion A
Fast transients (Burst)	EN 61000-4-4	Input lines	4kV	Criterion A
		Output lines	2kV	Criterion A
Surge voltage on input	EN 61000-4-5	$L \rightarrow N$	2kV	Criterion A
		$N/L \rightarrow PE$	4kV	Criterion A
Surge voltage on output	EN 61000-4-5	+ → -	500V	Criterion A
		+ / - → PE	500V	Criterion A
Conducted disturbance	EN 61000-4-6	0,15-80MHz	10V	Criterion A
Mains voltage dips	EN 61000-4-11	0% of 100Vac	0Vac, 20ms	Criterion B *)
		40% of 100Vac	40Vac, 200ms	Criterion C
		70% of 100Vac	70Vac, 500ms	Criterion A
		0% of 200Vac	0Vac, 20ms	Criterion A
		40% of 200Vac	80Vac, 200ms	Criterion A
		70% of 200Vac	140Vac, 500ms	Criterion A
Voltage interruptions	EN 61000-4-11		0Vac, 5000ms	Criterion C
Input voltage swells	PULS internal standard		300Vac, 500ms	Criterion A
Powerful transients	VDE 0160	Over entire load range	750V, 1.3ms	Criterion A

Criterions:

- A: Power supply shows normal operation behavior within the defined limits.
- B: The power supply continuous to operate as intended after the test. No degradation of performance or loss of function occur, when the power supply is used as intended. During the test, degradation of performance is however possible.
- C: Temporary loss of function is possible. Power supply might shut-down and restarts by itself. No damages or hazards for the power supply will occur.
- *) Below 2.8A criterion A is fulfilled

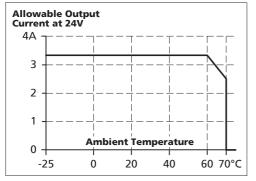
EMC Emission	EN 61000-6-3, EN 61000-6-4	Generic standards
Conducted emission	EN 55011, EN 55022, FCC Part 15, CISPR 11, CISPR 22	Class B, input lines
	EN 55022	Class A, output lines
Radiated emission	EN 55011, EN 55022	Class B
Harmonic input current	EN 61000-3-2	Fulfilled (Class A)
Voltage fluctuations, flicker	EN 61000-3-3	Fulfilled

This device complies with FCC Part 15 rules.

Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Switching frequency

_	 •			
		50kHz to 450kHz	Input voltage and load dependent	


xxxxx. 200y / Rev. 1.2 DS-CS3.241-EN

16. ENVIRONMENT

Operational temperature	-25°C to +70°C (-13°F to 158°F)	Resistive load,
operational temperature	23 € 10 170 € (13 1 10 130 17	Reduce output power according Fig. 16-1
Output de-rating	1.8W/°C	60-70°C (140°F to 158°F)
Storage temperature	-40 to +85°C (-40°F to 185°F)	Storage and transportation
Humidity	5 to 95% r.H.	IEC 60068-2-30 Do not energize while condensation is present
Vibration sinusoidal	2-17.8Hz: ±1.6mm; 17.8-500Hz: 2g 2 hours / axis	IEC 60068-2-6
Shock	30g 6ms, 20g 11ms 3 bumps / direction, 18 bumps in total	IEC 60068-2-27
Altitude	0 to 6000m (0 to 20 000ft)	Reduce output power or ambient temperature above 2000m sea level.
Output de-rating (for altitude)	5W/1000m or 5°C/1000m	above 2000m (6500ft), see Fig. 16-2
Over-voltage category	III	EN 50178, IEC 62103 altitudes < 2000m
	II	Altitudes from 2000m to 6000m
Degree of pollution	2	EN 50178, IEC 62103 not conductive

Fig. 16-1 Output current vs. ambient temp.,

The ambient temperature is defined 2cm below the unit.

Allowable Output Current at 24V 4A 2 A... Tamb < 60°C B... Tamb < 50°C C... Tamb < 40°C

4000

2000

Altitude

6000m

Fig. 16-2 Output current vs. altitude, 24V

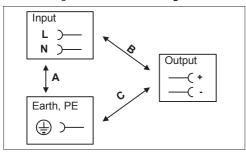
17. PROTECTION FEATURES

Output protection	Electronically protected	Electronically protected against overload, no-load and short-circuits			
Output over-voltage protection	typ. 34Vdc max. 39Vdc	In case of an internal power supply defect, a redundant circuitry limits the maximum output voltage. The output shuts down and automatically attempts to restart.			
Output over-current protection	electronically limited	See Fig. 9-1			
Degree of protection	IP 20	EN/IEC 60529			
Penetration protection	> 3.5mm	E.g. screws, small parts			
Over-temperature protection	no				
Input transient protection	MOV	Metal Oxide Varistor			
Internal input fuse	T6.3A H.B.C.	Not user replaceable			

0

Note: In case of a over-voltage, overload, no-load or short-circuit event, an audible noise may be heard.

xxxxx. 200y / Rev. 1.2 DS-CS3.241-EN


DIMONSION C-Series

18. SAFETY

Input / output separation	SELV	IEC/EN 60950-1
	PELV	EN 60204-1, EN 50178, IEC 62103, IEC 60364-4-41
	double or reinforce	ed insulation
Class of protection	I	PE (Protective Earth) connection required
Isolation resistance	> 5MOhm	input to output, 500Vdc
PE resistance	< 0.10hm	between housing and PE terminal
Touch current (leakage current)	typ. 0.16mA	100Vac, 50Hz, TN mains
	typ. 0.24mA	120Vac, 60Hz, TN mains
	typ. 0.41mA	230Vac, 50Hz, TN mains
	< 0.22mA	110Vac, 50Hz, TN mains
	< 0.32mA	132Vac, 60Hz, TN mains
	< 0.57mA	264Vac, 50Hz, TN mains

19. DIELECTRIC STRENGTH

Fig. 19-1 Dielectric strength

		Α	В	C
Type test	60s	2500Vac	3000Vac	500Vac
Factory test	5s	2500Vac	2500Vac	500Vac
Field test	5s	2000Vac	2000Vac	500Vac

Type tests and factory tests:

Conducted by the manufacturer. Do not repeat test in field! **Rules for field test:**

Use appropriate test equipment which applies the voltage with a slow ramp! Connect L and N together as well as all output poles.

The output voltage is floating and has no ohmic connection to ground.

To fulfill the PELV requirements according to EN60204-1 § 6.4.1, we recommend that either the + pole, the - pole or any other part of the output circuit shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or can not be switched off when unnoticed earth faults occur.

DIMENSION C-Series

20. APPROVALS

IEC 60950-1	IECEE CB SCHEME	CB Scheme, Information Technology Equipment
UL 508	18WM LISTED IND. CONT. EQ.	LISTED E198865 Industrial Control Equipment
NEC Class 2		According to NEC (National Electrical Code) Article 725-41 (4). Listed as Limited Power Source (LPS) in the UL 60950-1 UL report.
UL 60950-1	c Fl us	RECOGNIZED E137006 recognized for the use in U.S.A. (UL 60950-1) and Canada (C22.2 No. 60950) Information Technology Equipment, Level 3
CSA pending	C US	CSA approval for Canada CAN/CSA C22.2 No 107-1; CAN/ CSA 60950-1-03; UL60950-1
Marine pending	GL ABS	GL (Germanischer Lloyd) classified and ABS (American Bureau for Shipping) PDA for marine and offshore applications. Environmental category: C, EMC2

21. FULFILLED STANDARDS

EN 61558-2-17	Safety of Power Transformers
EN/IEC 60204-1	Safety of Electrical Equipment of Machines
EN/IEC 61131-2	Programmable Controllers
EN 50178, IEC 62103	Electronic Equipment in Power Installations

DIMONSION C-Series

22. USED SUBSTANCES

The unit does not release any silicone and is suitable for the use in paint shops.

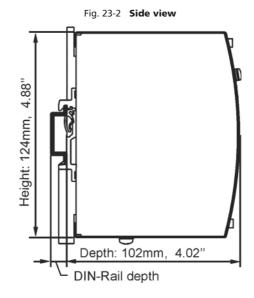
The unit conforms to the RoHS directive 2002/96/EC

Electrolytic capacitors included in this unit do not use electrolytes such as Quaternary Ammonium Salt Systems.

Plastic housings and other molded plastic materials are free of halogens, wires and cables are not PVC insulated.

The production material within our production does not include following toxic chemicals:

Polychlorized Biphenyl (PCB), Polychlorized Terphenyl (PCB), Pentachlorophenol (PCP), Polychlorinated naphthalene (PCN), Polybrom Biphenyl (PBB), Polybrom Biphenyl-oxyd (PBO), Polybrominated Diphenylether (PBDE), Polychlorinated Diphenylether (PCDE), Polydibromphenyl Oxyd (PBDO), Cadmium, Asbest, Mercury, Silicia


23. PHYSICAL DIMENSIONS AND WEIGHT

Weight	430g / 0.95lb
DIN-Rail	Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm. The DIN-rail height must be added to the depth (102mm) to calculate the total required installation depth.

Electronic files with mechanical data can be downloaded at www.pulspower.com

Fig. 23-1 Front view

24V, 3.3A, SINGLE PHASE INPUT

24. Installation and Operation Instructions

Mounting:

Output terminal must be located on top and input terminal on the bottom. For other orientations see chapter 26.12. An appropriate electrical and fire end-product enclosure needs to be considered in the end use application.

Cooling

Convection cooled, no forced cooling required. Do not cover ventilation grid (e.g. cable conduits) by more than 30%!

Installation clearances:

40mm on top, 20mm on the bottom, 5mm on the left and right sides are recommended when loaded permanently with full power. In case the adjacent device is a heat source, 15mm clearance are recommended.

Risk of electrical shock, fire, personal injury or death!

Do not use the unit without proper earth connection (Protective Earth). Use the pin on the terminal block for earth connection and not one of the screws on the housing.

Turn power off before working on the power supply. Protect against inadvertent re-powering.

Make sure the wiring is correct by following all local and national codes.

Do not open, modify or repair the unit.

Use caution to prevent any foreign objects from entering into the housing.

Do not use in wet locations or in areas where moisture or condensation can be expected.

Service parts:

The unit does not contain any service parts. The tripping of an internal fuse is caused by an internal defect. If damage or malfunctioning should occur during operation, immediately turn power off and send unit to factory for inspection!

25. ACCESSORY

ZM1.WALL Wall mounting bracket

This bracket is used to mount Dimension units onto a flat surface without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the two steel brackets can be mounted. (Picture shows a different power supply)

Fig. 25-1 ZM1.WALL Wall Mounting Bracket

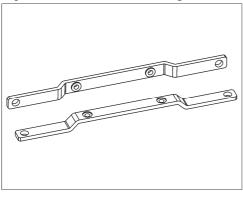


Fig. 25-2 Assembled Wall Mounting Bracket

ZM11.SIDE Side mounting bracket

This bracket is used to mount Dimension units sideways with or without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the steel brackets can be mounted.

For sideway DIN-rail mounting, the removed aluminum brackets and the black plastic slider need to be mounted on the steel bracket.

(Pictures show a different power supply)

Fig. 25-3 ZM11.SIDE Side Mounting Bracket

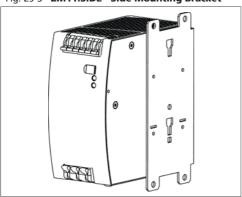
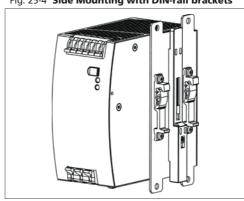
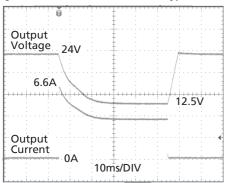
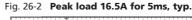



Fig. 25-4 **Side Mounting with DIN-rail brackets**

26. APPLICATION NOTES


26.1. PEAK CURRENT CAPABILITY

Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady state current and usually exceeds the nominal output current (including the PowerBoost) The same situation applies, when starting a capacitive load.


Branch circuits are often protected with circuit breakers or fuses. In case of a short or an overload in the branch circuit, the protective device needs a certain amount of over-current to trip or to blow. The peak current capability ensures the safe operation of subsequent circuit breakers.

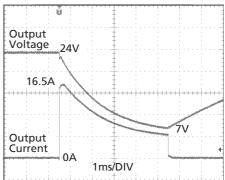

Assuming the input voltage is turned on before such an event, the built-in large sized output capacitors inside the power supply can deliver extra current. Discharging this capacitor causes a voltage dip on the output. The following two examples show typical voltage dips:

Fig. 26-1 Peak load 6.6A for 50ms, typ.

Peak load 6.6A (resistive) for 50ms Output voltage dips from 24V to 12.5V.

Peak load 16.5A (resistive) for 5ms Output voltage dips from 24V to <u>7V.</u>

26.2. CHARGING OF BATTERIES

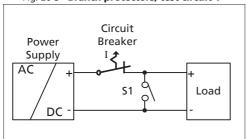
The power supply shall not be used to charge batteries.

26.3. BACK-FEEDING LOADS

Loads such as decelerating motors and inductors can feed voltage back to the power supply. This feature is also called return voltage immunity or resistance against Back- E.M.F. (Electro Magnetic Force).

This power supply is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter, whether the power supply is on or off.

The maximum allowed feed back voltage is 35Vdc. The absorbing energy can be calculated according to the built-in large sized output capacitor which is specified in chapter 9.


26.4. OUTPUT CIRCUIT BREAKERS

Standard miniature circuit breakers (MCBs) can be used for branch protection. Ensure that the MCB is rated for DC voltage, too. The following tests show which circuit breakers the power supply typically trips.

Circuit breakers have large tolerances in their tripping behavior. Therefore, these typical tests can only be used as a recommendation or for comparing two different power supplies. Furthermore, the loop impedance has a major influence on whether a breaker trips or not. Two tests were performed, representing typical situations:

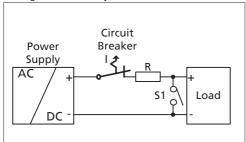
Test 1: Short circuit with S1 on the power supply end of the cable (loop impedance approx. 20mOhm)

Fig. 26-3 Branch protectors, test circuit 1

Parameters:

Input voltage: 230Vac, load current: 0A

The following circuit breaker tripped during the test:


A- or Z- Characteristic:: equal or smaller 6A
B- Characteristic: no tripping ≥ 6A

no breaker available < 6A

C- Characteristic: equal or smaller 1A

Test 2: Short circuit with S1 on the load end (additional impedance included; represents longer load wire length).

Fig. 26-4 Branch protectors, test circuit 2

Parameters:

Input voltage: 230Vac, load current: 0A

The following circuit breaker tripped during the test:

A- or **Z-** Characteristic:: ≤ 4A and R= 220mOhm **B-** Characteristic: no tripping ≥ 6A

no breaker available < 6A

C- Characteristic: ≤ 1A and R= 390mOhm

What does this resistance mean in wire length?

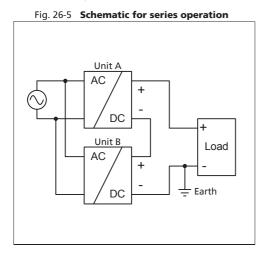
	0.5mm ²	0.7mm ²	1.0mm ²	1.5mm ²	2.5mm ²	4.0mm ²
220mOhm	6.1m	8.6m	12.3m	18.4m	30.6m	49m
390mOhm	10.9m	15.2m	21.7m	32.6m	54.3m	86.9m

Example:

Which wire gauge must be used to trip a C-Characteristic circuit breaker with a rating of 1A? The load wire length is 25m.

Answer: A 1A C-Characteristic circuit breaker requires a loop impedance of less than 390mOhm (test results). The wire length table shows that up to 32.6m wire with a cross section of 1.5mm² are below 390mOhm. A wire not smaller than 1.5mm² shall be used.

26.5. Inductive and Capacitive Loads


The unit is designed to supply any type of load, including unlimited capacitive and inductive loads.

DIM©NSION C-Series

26.6. SERIES OPERATION

The power supply can be put in series to increase the output voltage.

Instructions for use in series:

- It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150Vdc.
- Voltages with a potential above 60Vdc are not SELV any more and can be dangerous. Such voltages must be installed with a protection against touching.
- For serial operation use power supplies of the same type.
- Earthing of the output is required when the sum of the output voltage is above 60Vdc.
- Keep an installation clearance of 15mm (left/right) between two power supplies and avoid installing the power supplies on top of each other.

Note: Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals.

26.7. Parallel Use to Increase Output Power

The power supply shall not be used in parallel to increase the output power.

26.8. PARALLEL USE FOR 1+1 REDUNDANCY

Power supplies can be paralleled for 1+1 redundancy to gain a higher system reliability. Redundant systems require a certain amount of extra power to support the load in case one power supply unit fails. The simplest way is to put two C-Series power supplies in parallel. In case one power supply unit fails, the other one is automatically able to support the load current without any interruption. This simple way to build a redundant system has two major disadvantages:

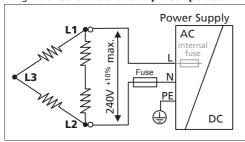
- The faulty power supply can not be recognized. The green LED will still be on since it is reverse-powered from the other power supply.
- It does not cover failures such as an internal short circuit in the secondary side of the power supply. In such a situation the defective unit becomes a load for the other power supplies and the output voltage can not be maintained any more.

This above conditions can be avoided by utilizing decoupling diodes which are included in the decoupling module YR2.DIODE or redundancy module YRM2.DIODE.

Other recommendations for building redundant power systems:

- a) Use separate input fuses for each power supply.
- Monitor the individual power supply units. A DC-ok lamp and a DC-ok contact is included in the redundancy b) module YRM2.DIODE. This feature reports a faulty unit.
- When possible, connect each power supply to different phases or circuits.

26.9. EXTERNAL INPUT PROTECTION


The unit is tested and approved for branch circuits up to 20A. External protection is only required if the supplying branch has an ampacity greater than this. In some countries local regulations might apply. Check also local codes and requirements.

If an external protective device is utilized, a minimum value is required to avoid undesired tripping of the fuse.

		B-Characteristic	C-Characteristic
Ampacity	max.	20A	20A
	min.	10A	6A

26.10. OPERATION ON TWO PHASES

Fig. 26-6 Schematic for two phase operation

Instructions for two phase operation:

- A phase to phase connection is allowed as long as the supplying voltage is below 240V^{+10%}.
- b) Use a fuse or a circuit breaker to protect the N input. The N input is internally not protected and is in this case connected to a hot wire.

Appropriate fuses or circuit breakers are specified in section 26.9 "External Input Protection".

26.11. Use in a Tightly Sealed Enclosure

When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. The inside temperature defines the ambient temperature for the power supply.

Results from such an installation:

Power supply is placed in the middle of the box, no other heat producer inside the box Enclosure: Rittal Type IP66 Box PK 9516 100, plastic, 110x180x165mm

Input: 230Vac

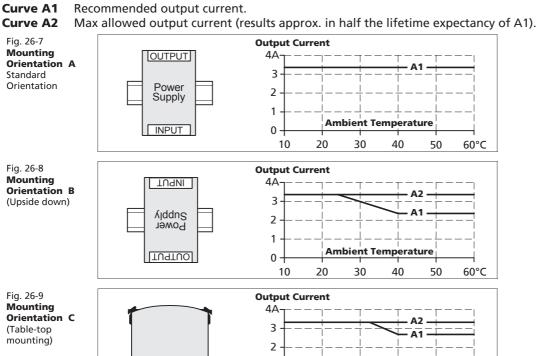
Load: 24V, 3.3A; load is placed outside the box

Temperature inside the box: 45.7°C (in the middle of the right side of the power supply with a distance of 1cm)

Temperature outside the box: 27.3°C Temperature rise: 27.3°C

Load: 24V, <u>2.64A</u>; (=80%) load is placed outside the box

Temperature inside the box: 41.8°C (in the middle of the right side of the power supply with a distance of 1cm)


Temperature outside the box: 26.5°C Temperature rise: 26.5°C

26.12. MOUNTING ORIENTATIONS

Mounting orientations other than input terminals on the bottom and output on the top require a reduction in continuous output power or a limitation in the max. allowed ambient temperature. The amount of reduction influences the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below:

Curve A1

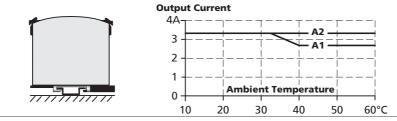


Fig. 26-10 Mounting Orientation D (Horizontal cw)

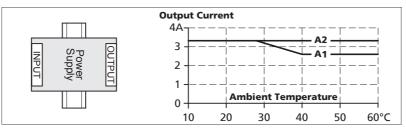
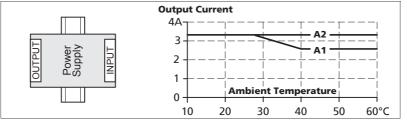



Fig. 26-11 Mounting Orientation E (Horizontal ccw)

xxxxx. 200y / Rev. 1.2 DS-CS3.241-EN