## V®йнитімя SOLUTIONS



## Contents

## 1 Vossloh-Schwabe Projects

2 Ballasts for Discharge Lamps 6-39
Electronic ballasts, accessories 8-12
Luminaire protection device SP 230/10K 12
Control gear units for HS and HI lamps 13-15
Electromagnetic ballasts 16-39
For HS and HI lamps 16-30
For HM and HIl lamps 31-33
For power reduction 34-39
2. Ignitors and Accessories
for Discharge Lamps
40-60
Electronic superimposed ignitors 42-50
Pulse ignitors 51-52
Instant restrike ignitors 53-54
Electronic power switches
Electronic superimposed ignitors with power switch
Switch units for electronic operating devices
with 1-10 V interface
Start-up switches
58-59
Electronic discharge units

2 Lampholders for Discharge Lamps 62-79

| E27 lampholders | $64-66$ |
| :--- | :--- |
| E40 lampholders | $67-68$ |

G8.5 lampholders 69
GU6. 5 lampholders 69
GXIO lampholders 70
GY9. 5 lampholders 71
G12 lampholders 71
RX7s lampholders 72-75
Fc2 lampholders 75-76
K12×30s lampholders 77
K12s-7 support

## Technical Details

2
for Discharge Lamps

3

| For compact fluorescent lamps | $122-135$ |
| :--- | ---: |
| ELXC - Warm start - Linear casing shape | 122 |
| ELXd - Dimmable - Linear casing shape | $123-124$ |
| ELXC - Warm start - Compact casing shape | $125-130$ |
| $\quad$ ECO Effectline | 131 |
| ELXd - Dimmable - Compact casing shape | $132-135$ |
| For tubular fluorescent lamps | $136-143$ |
| ELXC - Warm start - Linear casing shape | $136-140$ |
| Effectline and Effectline II | 138 |
| New T5 Effectline | 139 |
| ECCO Effectline | 140 |
| ELXd - Dimmable - Linear casing shape | $141-143$ |
| Accessories for dimmable electronic built-in ballasts | 144 |

3 Electromagnetic ballasts
for TC and T Lamps ..... 146-155
$\begin{array}{ll}\text { For compact fluorescent lamps } & 148-151 \\ \text { Standard ballasts } & 148-151\end{array}$
For tubular fluorescent lamps ..... 152-155
Standard ballasts ..... 153-155
3 Lampholders and Accessories
for TC Lamps ..... 156-171
G24, GX24 lampholders ..... 158-162
2G7 lampholders ..... 163
G23 lampholders ..... 164-166
GR10q lampholders ..... 166-167
2G10 lampholders ..... 167
2G1 1 lampholders ..... 168
Accessories ..... 169-171
GX53-1 lampholders, accessories ..... 171
Q. Lampholders and Accessories
for T Lamps ..... 174-197
G5 lampholders ..... 174-180
G5 lampholders, accessories ..... 174-178
G5 twin lampholder ..... 178
G5 lampholders, degree of protectionIP54/IP65/IP67179-180
Lamp supports for lamps T-R5 ..... 180
G 13 lampholders ..... 181-197
G13 push-through lampholders ..... 181-185
G13 push-fit lampholders ..... 183-185
G13 push-fit twin lampholders, accessories ..... 186-187
G13 built-in lampholders ..... 187-190
G1 3 surface-mounted lampholders
192-193
192-193
G1 3 lampholders, degree of protection IP54/IP65/IP67, accessories ..... 194-197
3 Starter Holders and Terminal Blocks, Accessories ..... 198-207
Starter holders, accessories ..... 200-203
Terminal blocks, accessories ..... 204-206
Built-in rocker switches ..... 207
3 Technical Details for Fluorescent Lamps ..... 208-235
4 Parallel Capacitors ..... 236-251

| Parallel capacitors | $238-241$ |
| :--- | :--- |
| Technical details for parallel capacitors | $242-251$ |

## Contents

5 Transformers for Low-voltage
252-257
Independent electronic converters 254
Electromagnetic safety transformers 255-257
5
Lampholders for Low-voltage
Halogen Incandescent Lamps
258-267

G4, GZ4, G5.3, GX5.3, G6.35,
GY6.35 lampholders, accessories 260-261
G4 lampholders, GZ4 lamp connectors 261-263
Lampholders with separate mounting spring
for GU4 lamps
GX5.3 lamp connectors
GU5.3 lampholders
Lampholders with separate mounting spring
for GU5. 3 lamps
G6.35, GY6. 35 lampholders,
GZ6. 35 lamp connectors
267
G53 lamp connectors

## 5 Lampholders for Mains Voltage <br> Halogen Incandescent Lamps

268-277

B15d, BA15d lampholders 268
G9 lampholders, accessories 268-270
GU10, GZ10 lampholders, accessories 271-272
R7s ceramic lampholders 273-275
R7s metal lampholders 275
Connection boxes 276
Connectors 277
5 Lampholders for General-service 278-313

| E14 lampholders | $280-288$ |
| :--- | ---: |
| E14 thermoplastic lampholders, one-piece |  |
| and cover caps | $280-284$ |
| E14 thermoplastic lampholders, three-piece | $285-287$ |
| E14 metal lampholders, three-piece | $287-288$ |
| E14 thermoplastic rocker switch lampholders | 288 |
| E27 lampholders | $289-305$ |
| E27 thermoplastic lampholders, one-piece |  |
| and cover caps | $289-293$ |
| E27 renovation kit lampholders | 294 |
| E27 thermoplastic lampholders, three-piece | $295-297$ |
| E27 porcelain lampholders | $298-299$ |
| E27 metal lampholders, three-piece | 300 |
| E27 thermoplastic pull-switch lampholders | $301-302$ |
| E27 metal pull-switch lampholders | $302-303$ |
| E27 thermoplastic rocker switch lampholders | $303-304$ |
| E27 festoon lampholders | $304-305$ |
| B22d lampholders, accessories | $305-306$ |
| Accessories for E 14, E27 and B22d lampholders | $307-312$ |
| E40 porcelain lampholders | 313 |


| 5 | Technical Details for Incandescent Lamps | 314-327 |
| :---: | :---: | :---: |
| 6 | Emergency Lighting Modules for TC and T Lamps | 328-339 |
|  | Emergency lighting modules with self-diagnosis function Technical details for emergency lighting modules | $\begin{aligned} & 330-331 \\ & 332-339 \end{aligned}$ |
| 7 | Components for UL Market | 340-347 |
|  | For discharge lamps For fluorescent lamps | $\begin{aligned} & 342-343 \\ & 343-346 \end{aligned}$ |
| 8 | General Technical Details | 349-356 |
| $\bigcirc$ | Glossary | 357-359 |
| 10 | Table of Reference Numbers and Approval Marks | 360-372 |

## LIGHT TECHNOLOGY PRODUCTS



Vossloh-Schwabe is not merely a manufacturer of top-quality components for the lighting industry, but above all a competent and innovative partner when it comes to providing the growing lighting market with costeeffective all-round solutions.

Featuring a future-proof component structure that already now satisfies both the requirements of energy-efficient lighting and European standards, VS' unique product range includes magnetic and electronic ballasts, state-of-the-art control systems (LiCS), LED lighting systems and matching operating devices.

Employing in excess of 1,000 people in more than 20 countries, Vossloh-Schwabe is represented all over the world. As a subsidiary of the Japanese Panasonic Group, VS can draw on extensive resources for $R \& D$ as well as for international expansion activities. A highly motivated workforce, comprehensive market knowledge, profound industry expertise as well as eco-awareness and environmental responsibility show Vossloh-Schwabe to be a reliable partner for the provision of optimum and costeffective lighting solutions.

Vossloh-Schwabe's dedication to delivering superior quality is reflected in its ISO 9001 certification.

Vossloh-Schwabe is ready to embark on a collaborative journey into an economically illuminated future.

LED components are just as much a part of our product range as light control systems. Our extensive range of powerful LED modules, LED drivers, LiCS controllers and sensors is presented in our separate Innovative Systems catalogue.

We'll be happy to help you dimension your lighting project. Contact us.



PUMA Headquarters


Porsche Museum

## PUMA Headquarters, Herzogenaurach

As the secret "capital of sport", the little German town of Herzogenaurach is home to the headquarters of the sport lifestyle company PUMA. Covering a total surface area of 50,000 square metres, the complex is made up of three buildings that are positioned so as to create a large central square, the PUMA Plaza.

The main aim of the lighting concept developed for the new PUMA corporate headquarters was to deliver optimum quality of light, enable maximum flexibility in using the available space and yield the greatest possible energy savings. No less than 985 electronic DALI ballasts and 4,650 standard electronic ballasts made by Vossloh-Schwabe went into implementing the lighting system.

The inner courtyard features additional red and white effect lighting in the form of ground-level linear markings created using LEDs made by Vossloh-Schwabe. These LEDs enable digital lighting sequences to flow over the square. To complement the clear-cut, rectilinear forms that characterise the entire building complex, a number of slender light columns, made of square aluminium sections, were installed to round off the courtyard's stylish appearance.

## Porsche Museum, Stuttgart

The name "Porsche" both stands for a long tradition of outstanding quality and the excitement of high-octane driving. The Porsche Museum in Stuttgart constitutes a fitting presentation venue that does the brand image every justice. The architectural flagship thus serves to make the "Porsche experience" available to everyone.

The lighting installed in the Porsche Museum forms a crucial element of the exhibition space created for around 80 vehicles. It was important to ensure every detail of these high-end cars was clearly visible. In this regard, direct and reflecting lighting had to be reduced to an absolute minimum so as to neither irritate visitors, nor detract from the brilliant gloss of the bodywork.

This forms another instance in which Vossloh-Schwabe products have helped to add to the enjoyment of each and every visitor. Built-in electronic ballasts and electronic DALI safety converters ensure flicker-free, efficient light.


## ELECTRONIC AND ELECTROMAGNETIC



## 2 Ballasts for Discharge Lamps

For high-pressure sodium lamps (HS), metal halide lamps (HI) and mercury vapour lamps (HM)
Electronic ballasts, accessories ..... 8-12
Luminaire protection device SP 230/10K ..... 12
Control gear units for HS and HI lamps ..... 13-15
Electromagnetic ballasts ..... 16-39
For HS and HI lamps ..... 16-30
For HM and HI lamps ..... 31-33
For power reduction ..... 34-39
Technical details for discharge lamps ..... 79-1 19
General technical details ..... 348-356
Glossary ..... 357-359-

## Compact

Electronic Ballasts

## for HI Lamps

35 W

## Shape: K35

Casing: heat-resistant polyamide,
encapsulated with polyurethane
For ceramic discharge tube lamps (C-HI)
Power factor: > 0.9
Operation frequency: 135 Hz
Push-in terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Constant power consumption
Protection against "no load" operation
For luminaires of protection class I and II
Degree of protection: IP20
Permissible load capacity: 120 pF RFI-suppressed
Fixing brackets for screws M4


K35

for base mounting
No flickering of defective lamps

## K35 with cord grip



| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  |  |  | System <br> Output <br> Output <br> W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output | Type | Base | Power consumption W | Type | Ref. No. | Voltage AC <br> $50,60 \mathrm{~Hz}$ <br> V-10\%+6\% | Mains current A | Energy efficiency | Ambient temperature ta $\left(^{\circ} \mathrm{C}\right)$ | Casing temperature tc ${ }^{\circ} \mathrm{C}$ ) $\qquad$ | Ignition voltage kV | Weight |  |

## K35 - Electronic built-in ballasts

| 35 | H | GU6.5, G8.5, GX8.5, GX10, G12 | $1 \times 39$ | EHXc 35G. 327 B | 188993 | 220-240 | 0.2 | A2 | -15 to 45 | max. 80 | 2-4 | 180 | 43.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## K35 - Independent electronic ballasts with cord grip

| 35 | HI | GU6.5, G8.5, <br> GX8.5, GX10, G12 | $1 \times 39$ | EHXc 35G. 327 I | 188994 | 220-240 | 0.2 | A2 | -15 to 45 | max. 80 | 2-4 | 195 | 43.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^0]
## Electronic Ballasts for HI Lamps 35 and 70 W

## Shape: M3/K34

Casing: aluminium (M3),
heat-resistant polycarbonate (K34)
For ceramic discharge tube lamps (C-HI)
Power factor: $\geq 0.95$
Ignition voltage: max. 5 kV
Operation frequency: 173 Hz
Push-in terminals with lever opener: $0.75-2.5 \mathrm{~mm}^{2}$ Total harmonic distortion: < 10\%
Temperature protection
Constant power consumption
Protection against "no load" operation
For luminaires of protection class I (metal casing)
For luminaires of protection class I and II
(plastic casing)
Degree of protection: IP20
Permissible load capacity: 20-120 pF
RFI-suppressed
Fixing brackets for screws M4
for base mounting
No flickering of defective lamps

M3 built-in PCB


K34 with cord grip

## tc point definition




M3 - Electronic built-in ballast (with cap)

| 35 | HI | GU6.5, G8.5, GU8.5, GX8.5, G12, E27 | $1 \times 39$ | EHXc 35.325 | 183033 | 220-240 | 0.20-0.18 | A2 | -20 to 65 | max. 80 | 220 | 43 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70 | HI | G8.5, GU8.5, GX8.5, G12, PG12-2, E27, RX7s | $1 \times 73$ | EHXC 70.326 | 183036 | 220-240 | 0.36-0.34 | A2 | -20 to 55 | max. 80 | 220 | 80 |

## M3 Built-in PCB - Electronic built-in ballasts (without cap)

| 35 | HI | $\begin{aligned} & \text { GU6.5, G8.5, GU8.5, } \\ & \text { GX8.5, G12, E27 } \end{aligned}$ | 1×39 | EHXc 35.325 | 183034 | 220-240 | 0.20-0.18 | A2 | -20 to 65 | max. 80 | 180 | 43 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K34 - Independent electronic ballasts with cord grip |  |  |  |  |  |  |  |  |  |  |  |  |
| 35 | HI | $\begin{aligned} & \text { GU6.5, G8.5, GU8.5, } \\ & \text { GX8.5, G12, E27 } \end{aligned}$ | 1×39 | EHXc 35.325 | 183035 | 220-240 | 0.20-0.18 | A2 | -20 to 65 | max. 75 | 260 | 43 |
| 70 | HI | G8.5, GU8.5, GX8.5, G12, PG12-2, E27, RX7s | $1 \times 73$ | EHXc 70.326 | 183038 | 220-240 | 0.36-0.34 | A2 | -20 to 55 | max. 75 | 260 | 80 |

[^1]


## Electronic Ballasts for HI Lamps 150 W

## Shape: K31

Casing: heat-resistant polycarbonate
For ceramic discharge tube lamps (C-HI)
Power factor: 0.98
Ignition voltage: max. 5 kV
Operation frequency: 170 Hz
Push-in terminals with lever opener: $0.75-2.5 \mathrm{~mm}^{2}$
Total harmonic distortion: < 10\%
Temperature protection
Constant power consumption
Protection against "no load" operation
For luminaires of protection class I and II
Degree of protection: IP20
Permissible load capacity: 20-240 pF RFI-suppressed
Fixing brackets for screws M4
for base mounting


K31


## K31 with cord grip



| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  |  |  | SystemOutputW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output | Type | Base | Power consumption W | Type | Ref. No. | Voltage AC <br> $50,60 \mathrm{~Hz}$ <br> $V \pm 10 \%$ | Mains current A | Energy efficiency | Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$ | Casing | Weight |  |

## K31 - Electronic built-in ballasts

| 150 | HI | $\begin{aligned} & \hline \text { G12, PGX12-2, } \\ & \text { E27, E40, RX7s } \\ & \hline \end{aligned}$ | $1 \times 147$ | EHXC 150G. 334 | 183046 | 220-240 | 0.73-0.67 | A2 | -20 to 45 | max. 85 | K31 | 540 | 160 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K31- Independent electronic ballasts with cord grip |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 150 | HI | G12, PGX12-2, E27, E40, RX7s | $1 \times 147$ | EHXC 150G. 334 | 183047 | 220-240 | 0.73-0.67 | A2 | -20 to 45 | max. 85 | K31 | 582 | 160 |

[^2]
## Cord Grip for Electronic Built-in

## Ballasts

## For shape K31

By using the cord grip electronic built-in ballasts
for metal halide lamps become independent
ballasts.
Material: heat-resistant polycarbonate
For use with electronic built-in ballasts
with casing K31
For mains leads:
HO3VV-F 3X0. 75 or NYM $3 X 1.5 \mathrm{~mm}^{2}$
For lamp leads: SIHY-Cu $3 X 1$ mm²
or SIHSI-Cu $3 \times 1 \mathrm{~mm}^{2}$
Weight: 50 g
Unit: 20 pcs.
By turning the cable clamp by $180^{\circ}$
the lead diameter can be reduced to 5 mm .
Ref. No.: 188080


2

## Luminaire Protection Device SP 230/10K

## For electronic devices

When electronic components form part of lighting systems, it is often necessary to protect such components against power-supply interruptions and electric overloads (power surges).

These can be caused by switching inductive loads or by atmospheric discharges such as lightning striking the mains or the ground. A further cause can be induced voltages from neighbouring cables when working with leading-edge phase-cutting controls.

Suitable for luminaires of protection class I and II
Solid connecting wire: $0.75 \mathrm{~mm}^{2}$
Lead length: 50 mm
The SP230/10K protection unit reduces overvoltages at the connection terminals of electronic components. The remaining residual voltage is then reduced to a respective protective level, based on the discharge current (see diagram below).


In our Innovative Systems catalogue you will
find further products of this series.

## Wiring diagram



| Type | Best.-Nr. | $\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \\ & \hline \end{aligned}$ | Impulse voltage Uoc (V) | Impulse discharge current In (8/20 $\mu \mathrm{s})(\mathrm{A})$ | Protection level at discharge current of $1,000 \mathrm{~A}(\mathrm{~V})$ | Min. ambient temperature $\text { ta }\left({ }^{\circ} \mathrm{C}\right)$ | Casing temperature $\mathrm{tc}\left({ }^{\circ} \mathrm{C}\right)$ | Weight <br> 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SP 230/10 K | 147230 | 220-240 | max. 10,000 | max. 10,000 | $\leq 850$ | -30 | max. 80 | 20 |

Bandwidth of the standard impulse: $t r=20 \mu s$
The protection unit can withstand at least 10 spikes
of 5 kA .

Residual voltage, based on the discharge current $(B)$
$A=$ Leak current $\mid B=$ Protection levels


[^3]
## Control Gear Units for HS and HI Lamps 35 to 150 W

## Compact plastic casing Shape: 64×72 mm

For high pressure sodium lamps (HS),
metal halide lamps (HI)
and ceramic discharge lamps (C-HI)
Compact control gear unit with ballast with patented, intelligent thermal cut-out with automatic reset (which evaluates the temperature and current of the ballast), digital timer ignitor with IPP++ technology and compensation capacitor with thermal fuse
As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

## Protection class II

Degree of protection: IP40
Permissible load capacity: 20-1000 pF Lead length to the lamp: max. 10 m
tw 130



| Lamp |  |  | Control gear unit |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Current <br> A | Type | Ref. No. | Voltage AC V, Hz | Mains current A | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | Weight kg | $\begin{array}{\|l\|} \hline{ }^{\circ} \mathrm{Ca} \\ \hline \end{array}$ | Power factor $\lambda$ | Energy efficiency |
| 230 V, 50 Hz |  |  |  |  |  |  |  |  |  |  |  |  |
| 35 | HS, HI | 0.53 | VNaHJ 35PZTG.568* | 536199 | 230,50 | 0.210 | 175 | 166 | 1.32 | 55 | 0.92 | EEI=A3 |
| 70 | HS, HI | 0.98 | VNaHJ 70PZTG. 203 | 563416 | 230,50 | 0.380 | 214 | 205 | 2.25 | 45 | 0.91 | A2 |
|  |  |  | VNaHJ 7OPZTG.566* | 535657 | 230,50 | 0.380 | 175 | 166 | 1.32 | 45 | 0.91 | EEI=A3 |
| 100 | HS, HI | 1.20 | VNaHJ 100PZTG. 202 | 563417 | 230,50 | 0.560 | 214 | 205 | 2.25 | 45 | 0.85 | A2 |
|  |  |  | VNaHJ 100PZTG.571* | 536200 | 230,50 | 0.560 | 214 | 205 | 1.85 | 45 | 0.85 | EEI=A3 |
| 150 | HS, HI | 1.80 | VNaHJ 150PZTG.567* | 535695 | 230,50 | 0.720 | 214 | 205 | 2.25 | 45 | 0.91 | EEI=A3 |
| $240 \mathrm{~V}, 50 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| 35 | HS, HI | 0.53 | VNaHJ 35PZTG. 568 | 536201 | 240,50 | 0.210 | 175 | 166 | 1.32 | 55 | 0.94 | EEI=A3 |
| 70 | HS, HI | 0.98 | VNaHJ 70PZTG. 566 | 536202 | 240,50 | 0.370 | 175 | 166 | 1.32 | 40 | 0.94 | EEI=A3 |
| 100 | HS, HI | 1.20 | VNaHJ 100PZTG. 571 | 536203 | 240,50 | 0.560 | 214 | 205 | 1.85 | 40 | 0.86 | EEI=A3 |
| 150 | HS, HI | 1.80 | VNaHJ 150PZTG. 567 | 536204 | 240,50 | 0.730 | 214 | 205 | 2.25 | 40 | 0.91 | EEI=A3 |
| $220 \mathrm{~V}, 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| 35 | HS, HI | 0.53 | VNaHJ 35PZTG. 574 | 536205 | 220,60 | 0.220 | 175 | 166 | 1.32 | 60 | 0.98 | EEI=A3 |
| 70 | HS, HI | 0.98 | VNaHJ 70PZTG. 575 | 536207 | 220,60 | 0.370 | 175 | 166 | 1.32 | 50 | 0.97 | EEI=A3 |
| 150 | HS, HI | 1.80 | VNaHJ 150PZTG. 576 | 536209 | 220,60 | 0.800 | 214 | 205 | 2.25 | 45 | 0.98 | EEI=A3 |

[^4]
## Control Gear Units IP65 for HS and HI Lamps 35 to 150 W

## Encapsulated unit in compact plastic casing Shape: $61 \times 72 \mathrm{~mm}$

For high pressure sodium lamps (HS), metal halide lamps (HI)
and ceramic discharge lamps (C-HI)
Compact control gear unit with ballast with patented, intelligent thermal cut-out with automatic reset (which evaluates the temperature and current of the ballast), digital timer ignitor with IPP++ technology and compensation capacitor with thermal fuse
As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

## Protection class II

Degree of protection: IP65
Permissible load capacity: 20-1000 pF Lead length to the lamp: max. 10 m tw 130



## $230 \mathrm{~V}, 50 \mathrm{~Hz}$

| 35 | HS, HI | 0.53 | VNaHJ 35PZTG.050* | 533391 | 230, 50 | 0.240 | 222 | 214 | 1.95 | 60 | 0.96 | EEI=A3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | HS, HI | 0.76 | VNaH 50PZTG.058* | 543733 | 230,50 | 0.290 | 222 | 214 | 1.95 | 60 | 0.94 | EEI=A3 |
| 70 | HS, HI | 0.98 | VNaHJ 70PZTG.051* | 533392 | 230, 50 | 0.370 | 222 | 214 | 1.95 | 50 | 0.97 | EEI=A3 |
| 100 | HS, HI | 1.20 | VNaHJ 100PZTG.078* | 533393 | 230,50 | 0.560 | 249 | 240 | 2.25 | 55 | 0.90 | EEI=A3 |
| 150 | HS, HI | 1.80 | VNaHJ 150PZTG.052* | 533394 | 230,50 | 0.740 | 249 | 240 | 2.75 | 50 | 0.94 | EEI=A3 |

240 V, 50 Hz

| 35 | HS, HI | 0.53 | VNaHJ 35PZTG. 053 | 534107 | 240,50 | 0.240 | 222 | 214 | 1.95 | 60 | 0.96 | EEI=A3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70 | HS, HI | 0.98 | VNaHJ 70PZTG. 054 | 534109 | 240,50 | 0.370 | 222 | 214 | 1.95 | 50 | 0.97 | EEI=A3 |
| 150 | HS, HI | 1.80 | VNaHJ 150PZTG. 055 | 534115 | 240, 50 | 0.730 | 249 | 240 | 2.75 | 50 | 0.95 | EEI=A3 |

## 220 V, 60 Hz

| 35 | $\mathrm{HS}, \mathrm{HI}$ | 0.53 | VNaHJ 35PZTG.041 | $\mathbf{5 3 4 1 2 2}$ | 220,60 | 0.220 | 222 | 214 | 1.95 | 70 | 0.98 | EEI=A3 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 70 | $\mathrm{HS}, \mathrm{HI}$ | 0.98 | VNaHJ 7OPZTG.067 | $\mathbf{5 3 4 1 1 1}$ | 220,60 | 0.370 | 222 | 214 | 1.95 | 50 | 0.97 | EEI =A3 |
| 150 | $\mathrm{HS}, \mathrm{HI}$ | 1.80 | VNaHJ 150PZTG.068 | $\mathbf{5 3 4 1 1 7}$ | 220,60 | 0.800 | 249 | 240 | 2.25 | 45 | 0.98 | EEI $=A 3$ |

[^5]
## Control Gear Units for HS and <br> HI Lamps 250 and 400 W

## Shape: 76x91 mm

For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Fully wired slim, weather-proof control gear unit
with ballast with thermal cut-out with automatic reset,
capacitor, timer ignitor and connection terminal
Suitable for installation in or on pylons
Frontal cable feed using a PG thread fitting
Front access to terminals
Screw-fixed end cap


Screw terminals: 0.75-2.5 mm²
For luminaires of protection class 1
Degree of protection: IP54
Permissible load capacity: 20-1000 pF
Distance to the lamp: max. 10 m
tw 130
With connection for protective earth conductor


| Lamp |  |  |  | Control gear unit |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current A | Mains current <br> A | Type | Ref. No. | Voltage AC <br> V. Hz | $\mathrm{L}$ | $\mathrm{Ll}$ | Weight <br> kg | Power factor <br> $\lambda$ | Energy efficiency |
| 250 | HS, HI | 3.0 | 1.3 | VNaHJ 250PZT.745* | 531476 | 230,50 | 322 | 302 | 4.30 | > 0.94 | EEI=A3 |
| 400 | HS, HI | 4.45 | 2.0 | VNaHJ 400PZT. 743 | 531475 | 230,50 | 357 | 337 | 5.62 | > 0.91 | A2 |

[^6]
## Ballast Units for HS and HI Lamps 1000 and 2000 W

Shape: $114 \times 116 \mathrm{~mm}$

For high-pressure sodium vapour lamps (HS) and metal halide lamps (HI)
Slim, weather-proof ballast unit fully wired with ballast, capacitor and connection terminal Suitable for installation in or on pylons With connection for protective earth conductor Frontal cable feed using a PG thread fitting Front access to terminals or fuses
Optional additional third PG connection for mains feed-through wiring
Screw-fixed end cap
Diverse mounting options using an assembly plate or rail
Screw terminals: $0.75-10 \mathrm{~mm}^{2}$
For luminaires of protection class I
tw 130


## Degree of protection: IP54

| Lamp |  |  |  | Ballast unit |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Current A | Mains current A | Type | Ref. No. | Voltage AC <br> V, Hz | $\mathrm{L}$ | $\mathrm{Ll}$ | $\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{~mm} \end{aligned}$ | Weight <br> kg | Power factor $\lambda$ | Energy efficiency |
| 1000 | HS | 10.3 | 5.0 | VNaHJ 1000.61 | 531472 | 230-240,50 | 487 | 410 | 370 | 11.6 | > 0.90 | A2 |
|  | HI | 9.5 | 4.9 |  |  |  |  |  |  |  |  | A2 |
| 2000 | HI | 10.3 | 6.0 | VJD 2000.63 | 531474 | 380-400, 50 | 627 | 550 | 510 | 20.2 | > 0.90 | A2 |

## Degree of protection: IP65

Fully encapsulated ballast unit with leads

| Lamp |  |  |  | Ballast unit |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Mains current A | Type | Ref. No. | Voltage AC <br> V, Hz | $\mathrm{L}$ | $\begin{array}{\|l\|} \hline \mathrm{LI} \\ \mathrm{~mm} \end{array}$ | $\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{~mm} \end{aligned}$ | Weight kg | Power factor <br> $\lambda$ | Energy efficiency |
| 1000 | HS | 10.3 | 5.0 | VNaHJ 1000.61 | 531480 | 220,50 | 487 | 410 | 370 | 11.6 | > 0.90 | A2 |
|  | HI | 9.5 | 4.9 |  |  |  |  |  |  |  |  | A2 |
| 2000 | HI | 10.3 | 6.0 | VJD 2000.63 | 531481 | 380,50 | 627 | 550 | 510 | 20.2 | > 0.90 | A2 |

## Ballast Units for HS and HI Lamps 1000 to 2000 W

## Encapsulated in a plastic casing

For high-pressure sodium vapour lamps (HS) and metal halide lamps (HI)
Fully encapsulated ballast unit in a self-extinguishing, fibre-glass-reinforced polyamide casing consisting of a ballast, capacitor, fuse and a ready-to-use, pre-wired connection terminal.
Cable feed using a PG thread fitting
Screw terminals: $0.75-10 \mathrm{~mm}^{2}$

## Protection class II

tw 130

Degree of protection: IP65



With double insulation

| Lamp |  |  |  | Ballast unit |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Current A | Mains current (A) | Type | Ref. No. | Voltage AC <br> V, Hz | $\mathrm{mm}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{d} \\ & \mathrm{~mm} \end{aligned}$ | Weight $\mathrm{kg}$ | Power factor $\lambda$ | Energy efficiency |
| 230/240 V, 50 Hz and 380/400/415 V, 50 Hz |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1000 | HS | 10.3/11.3 | 5.75 | VNaHJ 1000.75 | 554313 | 230/240,50 | 288 | 217 | - | 220 | 15 | > 0.90 | A2 |
|  | H | 9.5 | 4.9 |  |  |  |  |  |  |  |  |  | A2 |
| 2000 | HI | 8.8/9.2 | 5.7 | VJ 2000.76 | 554314 | 380/400/415,50 | 320 | 217 | 225 | 225 | 21 | > 0.90 | A2 |
|  |  | 10.3/11.3 | 6.0 | VJD 2000.77 | 554315 | 380/400/415,50 | 320 | 220 | 225 | 225 | 23 | > 0.90 | A2 |
|  |  | 12.2 | 6.0 | VJD 20001.78 | 554316 | 380/400/415,50 | 320 | 220 | 225 | 225 | 25 | > 0.90 | A2 |
| $\mathbf{2 2 0 ~ V , ~} 60$ Hz and $380 \mathrm{~V}, \mathbf{6 0 ~ H z}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1000 | HS | 10.3/11.3 | 5.75 | VNaHJ 1000.75 | 554904 | 220,60 | 288 | 217 | - | 220 | 15 | > 0.90 | A2 |
|  | H | 9.5 | 4.9 |  |  |  |  |  |  |  |  |  | A2 |
| 2000 | HI | 8.8/9.2 | 5.7 | VJ 2000.76 | 554905 | 380, 60 | 320 | 220 | 225 | 225 | 21 | > 0.90 | A2 |
|  |  | 10.3/11.3 | 6.0 | VJD 2000.77 | 554906 | 380,60 | 320 | 220 | 225 | 225 | 23 | > 0.90 | A2 |
|  |  | 12.2 | 6.0 | VJD 20001. 78 | 554909 | 380, 60 | 320 | 220 | 225 | 225 | 25 | > 0.90 | A2 |



## Compact

Assembly Kits for HS and HI Lamps 35 to 150 W

## Ballast shape: 53x66 mm

For high pressure sodium lamps (HS), metal halide lamps (HI)
and ceramic discharge lamps (C-HI)
Compact assembly kit with ballast with or without patented, intelligent thermal cut-out with automatic reset (which evaluates the temperature and current of the ballast), superimposed ignitor and compensation capacitor With luminaire terminal block:
screw terminal $0.75-2.5 \mathrm{~mm}^{2}$
With earth terminal
Permissible load capacity: 20-100 pF Lead length to the lamp: max. 1.5 m tw 130
On request:
Further outputs and voltages
With digital timer ignitor
For pulse ignition system


As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

Especially suitable for change of lamp technology from HM to HS.

$\mathbf{2 3 0} \mathrm{V}, \mathbf{5 0 ~ H z}$

| 35 | HS, HI | 0.53 | PKNaHJ 35.008* | 546797 | 230,50 | 0.22 | yes | 117 | 86 | 108 | 54 | 1.2 | > 0.90 | EEI=A3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | HS, HI | 0.76 | PKNaH 50PZT.992* | 543378 | 230,50 | 0.30 | yes | 117 | 86 | 111 | 59 | 1.4 | > 0.90 | EEI=A3 |
| 70 | HS, HI | 0.98 | PKNaHJ 70.128* | 538675 | 230,50 | 0.37 | yes | 117 | 86 | 111 | 59 | 1.4 | > 0.90 | EEI=A3 |
|  |  |  |  | 538685 |  |  | no |  |  |  |  |  |  | EEI=A3 |
| 100 | HS, HI | 1.20 | PKNaHJ 100.941* | 538676 | 230,50 | 0.56 | yes | 117 | 86 | 111 | 59 | 1.6 | > 0.90 | EEI=A3 |
|  |  |  |  | 538686 |  |  | no |  |  |  |  |  |  | EEI=A3 |
| 150 | HS, HI | 1.80 | PKNaHJ 150.620* | 538677 | 230,50 | 0.74 | yes | 151 | 120 | 115 | 63 | 2.2 | > 0.90 | EEI=A3 |
|  |  |  |  | 538687 |  |  | no |  |  |  |  |  |  | EEI=A3 |

220 V, 60 Hz

| 35 | HS, HI | 0.53 | PKNaHJ 35.008 | 547285 | 220,60 | 0.23 | yes | 117 | 86 | 108 | 54 | 1.2 | > 0.90 | $\begin{aligned} & \hline \mathrm{EEI}=\mathrm{A} 3 \\ & \hline \mathrm{EEI}=\mathrm{A} 3 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 543401 |  |  | no |  |  |  |  |  |  |  |
| 70 | HS, HI | 0.98 | PKNaHJ 70.653 | 547287 | 220,60 | 0.37 | yes | 117 | 86 | 111 | 59 | 1.4 | > 0.90 | EEI=A3 |
|  |  |  |  | 538680 |  |  | no |  |  |  |  |  |  | EEI=A3 |
| 100 | HS, HI | 1.20 | PKNaHJ 100.271 | 538681 | 220,60 | 0.56 | no | 117 | 86 | 111 | 59 | 1.6 | > 0.90 | EEI=A3 |
| 150 | HS, HI | 1.80 | PKNaHJ 150.679 | 538682 | 220, 60 | 0.74 | no | 151 | 120 | 115 | 63 | 2.2 | > 0.90 | EEI=A3 |
| 220/240 V, 60 Hz |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 100 | HS, HI | 1.20 | PKNaHJ 100.345 | 543295 | 220/240, 60 | 0.60 | no | 117 | 86 | 111 | 60 | 1.6 | > 0.90 | EEI=A3 |
| 150 | HS, HI | 1.80 | PKNaHJ 150.301 | 543299 | 220/240, 60 | 0.80 | no | 151 | 120 | 115 | 63 | 2.2 | > 0.90 | EEI=A3 |

[^7]
## Compact

Assembly Kits for HS and HI Lamps 250 and 400 W

## Ballast shape: 71×75 mm



For high pressure sodium lamps (HS), metal halide lamps (HI)
and ceramic discharge lamps (C-HI)
Compact assembly kit with ballast with or
without thermal cut-out with automatic reset,
superimposed ignitor and compensation
capacitor
With luminaire terminal block:
screw terminal $0.75-2.5 \mathrm{~mm}^{2}$
With earth terminal
Permissible load capacity: 20-100 pF
Lead length to the lamp: max. 1.5 m
tw 130
On request:
Further outputs and voltages
With digital timer ignitor
For pulse ignition system


As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

Especially suitable for change of lamp technology from HM to HS.


| Lamp |  |  | Assembly kit |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Type | Ref. No. | Voltage AC $\mathrm{V}, \mathrm{~Hz}$ | Mains current A | Temperature protection | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | b mm | c <br> mm | d mm | Weight <br> kg | Power <br> factor <br> $\lambda$ | Energy efficiency |
| 230 V, 50 Hz |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 250 | HS, HI | 3.00 | PKNaHJ 250.741 | 538678 | 230, 50 | 1.20 | yes | 141 | 110 | 128 | 73 | 3.2 | > 0.90 | A2 |
|  |  |  |  | 538688 |  |  | no |  |  |  |  |  |  | A2 |
| 400 | HS, HI | 4.45 | PKNaHJ 400.743 | 538679 | 230,50 | 1.80 | yes | 171 | 140 | 129 | 73 | 5.2 | > 0.90 | A2 |
|  |  |  |  | 538689 |  |  | no |  |  |  |  |  |  | A2 |
| $220 \mathrm{~V}, 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 250 | HS, HI | 3.00 | PKNaHJ 250.742 | 538683 | 220,60 | 1.20 | no | 141 | 110 | 126 | 71 | 3.2 | > 0.90 | A2 |
| 400 | HS, HI | 4.45 | PKNaHJ 400.744 | 538684 | 220,60 | 1.80 | no | 171 | 140 | 129 | 71 | 5.2 | > 0.90 | A2 |

## Standard Ballasts for HS and HI <br> Lamps 35 to 70 W

## Shape: $53 \times 66 \mathrm{~mm}$

For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Vacuum-impregnated with polyester resin
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Protection class I
tw 130
Ballasts for pulse ignition system on request



| Lamp |  |  |  |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Type | Ref. No. | Voltage AC <br> V, Hz | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\mathrm{b}$ | c mm | Weight kg | $\begin{aligned} & \Delta t \\ & K \end{aligned}$ | Power factor $\lambda$ | Energy efficiency | $\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \end{aligned}$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$ |
| 35 | HS, HI | 0.53 | NaHJ 35.485* | 526517 | 220/230,50 | 108 | 86 | 36 | 1.07 | 60 | 0.40 | EEI=A3 | 6 | 0.22/0.21 |
|  |  |  | NaHJ 35.485* | 161367 | 230/240,50 | 108 | 86 | 36 | 1.07 | 60 | 0.40 | EEI=A3 | 6 | 0.22/0.21 |
|  |  |  | NaHJ 35.638 | 161371 | 220,60 | 108 | 86 | 36 | 1.07 | 50 | 0.41 | EEI=A3 | 5 | 0.23 |
| 50 | HS, HI | 0.76 | NaH 50.486* | 161379 | 230/240, 50 | 108 | 86 | 36 | 1.07 | 65 | 0.37 | EEI=A3 | 8 | 0.30/0.29 |
|  |  |  | NaH 50.654 | 161399 | 220,60 | 108 | 86 | 36 | 1.07 | 60 | 0.36 | EEI=A3 | 8 | 0.31 |
| 50 | HS, HI | 0.76 | NaHJ 70/50.157* | 160613 | 230,50 | 108 | 86 | 42 | 1.23 | 55 | 0.37 | EEI=A3 | 8 | 0.30 |
| 70 | HS, HI | 0.98 |  |  |  |  |  |  |  | 70 | 0.37 | EEI=A3 | 12 | 0.38 |
| 70 | HS, HI | 0.98 | NaHJ 70.300 | 174961 | 220,50 | 108 | 86 | 36 | 1.07 | 75 | 0.40 | EEI=A3 | 12 | 0.40 |
|  |  |  | NaHJ 70.128* | 533568 | 230,50 | 108 | 86 | 36 | 1.07 | 70 | 0.36 | EEI=A3 | 12 | 0.38 |
|  |  |  | NaHJ 70.128* | 539434 | 230/240,50 | 108 | 86 | 36 | 1.07 | 70/75 | 0.36 | EEI=A3 | 12 | 0.38/0.37 |
|  |  |  | NaHJ 70.158 | 161662 | 240,50 | 108 | 86 | 42 | 1.23 | 70 | 0.36 | EEI=A3 | 12 | 0.37 |
|  |  |  | NaHJ 70.128 | 538407 | 240,50 | 108 | 86 | 36 | 1.07 | 75 | 0.37 | EEI=A3 | 12 | 0.37 |
|  |  |  | NaHJ 70.653 | 161392 | 220,60 | 108 | 86 | 36 | 1.07 | 60 | 0.42 | EEI=A3 | 10 | 0.40 |

[^8]
## Standard Ballasts for HS and HI Lamps 70 to 250 W

## Shape: 53x66 mm

| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & \text { V, Hz } \end{aligned}$ | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$ | Weight kg | $\begin{array}{\|l\|} \Delta t \\ K \end{array}$ | Power factor <br> $\lambda$ | Energy efficiency | $\begin{aligned} & \mathrm{Cp}_{\mathrm{p}} \\ & \mu \mathrm{~F} \end{aligned}$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \\ & \hline \end{aligned}$ |
| 70 | HS, HI | 0.98 | NaHJ 100/70.703* | 161469 | 230,50 | 145 | 120 | 48 | 1.39 | 60 | 0.37 | EEI=A3 | 12 | 0.38 |
| 100 | HS, HI | 1.20 |  |  |  |  |  |  |  | 70 | 0.43 | EEI=A3 | 12 | 0.55 |
| 70 | HS, HI | 0.98 | NaHJ 100/70.519 | 161158 | 230/240,50 | 145 | 120 | 75 | 2.03 | 50 | 0.36 | A2 | 12 | 0.38/0.37 |
| 100 | HS, HI | 1.20 |  |  |  |  |  |  |  | 60 | 0.42 | EEI=A3 | 12 | 0.55/0.53 |
| 70 | HS, HI | 0.98 | NaHJ 100/70.709 | 161471 | 220,60 | 145 | 120 | 48 | 1.39 | 50 | 0.39 | EEI=A3 | 10 | 0.40 |
| 100 | HS, HI | 1.20 |  |  |  |  |  |  |  | 60 | 0.44 | EEI=A3 | 10 | 0.57 |
| 100 | $\mathrm{HS}, \mathrm{HI}$ | 1.20 | NaHJ 100.126 | 507671 | 220, 50 | 108 | 86 | 42 | 1.24 | 75 | 0.44 | EEI=A3 | 12 | 0.55 |
|  |  |  | NaHJ 100.941* | 161707 | 230/240, 50 | 108 | 86 | 42 | 1.24 | 75/80 | 0.42 | EEI=A3 | 12 | 0.55/0.53 |
|  |  |  | NaHJ 100.271 | 530195 | 220,60 | 108 | 86 | 42 | 1.24 | 75 | 0.45 | EEI=A3 | 10 | 0.57 |
| 150 | HS, HI | 1.80 | NaHJ 150.159 | 533602 | 220,50 | 145 | 120 | 64 | 1.80 | 75 | 0.41 | EEI=A3 | 20 | 0.80 |
|  |  |  | NaHJ 150.620* | 533565 | 230, 50 | 145 | 120 | 64 | 1.80 | 70 | 0.40 | EEI=A3 | 20 | 0.77 |
|  |  |  | NaHJ 150.620 | 534540 | 240,50 | 145 | 120 | 64 | 1.80 | 75 | 0.40 | EEI=A3 | 20 | 0.74 |
|  |  |  | NaHJ 150.679 | 526196 | 220,60 | 145 | 120 | 55 | 1.55 | 75 | 0.44 | EEI=A3 | 16 | 0.80 |
|  |  |  | NaHJ 150.679 | 537793 | 220,60 | 117 | 92 | 55 | 1.55 | 75 | 0.44 | EEI=A3 | 16 | 0.80 |
| 250 | HS, HI | 3.00 | NaHJ 250.204 | 529087 | 220, 50 | 160 | 135 | 95 | 2.50 | 80 | 0.42 | EEI=A3 | 32 | 1.32 |
|  |  |  | NaHJ 250.160 | 160597 | 220, 50 | 180 | 155 | 110 | 2.84 | 75 | 0.41 | EEI=A3 | 32 | 1.32 |
|  |  |  | NaHJ 250.915* | 161686 | 230,50 | 180 | 155 | 110 | 2.84 | 80 | 0.40 | EEI=A3 | 32 | 1.26 |
|  |  |  | NaHJ 250.340* | 504109 | 230/240, 50 | 180 | 155 | 110 | 2.84 | 80 | 0.39 | EEI=A3 | 32 | 1.26/1.21 |
|  |  |  | NaHJ 250.340 | 178177 | 240,50 | 180 | 155 | 110 | 2.84 | 80 | 0.39 | EEI=A3 | 32 | 1.21 |
|  |  |  | NaHJ 250.163 | 529072 | 220,60 | 160 | 135 | 95 | 2.50 | 70 | 0.42 | A2 | 25 | 1.35 |
|  |  |  | NaHJ 250.163 | 160604 | 220,60 | 180 | 155 | 95 | 2.50 | 70 | 0.42 | A2 | 25 | 1.35 |

[^9]
## Ballasts with Thermal Cut-out for HS and HI Lamps 35 to 150 W

## Shape: $53 \times 66 \mathrm{~mm}$

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI)
Vacuum-impregnated with polyester resin
With VS-patented, intelligent temperature switch with automatic reset levaluates the temperature and current of the ballast) Protection class |
tw 130
Ballasts for pulse ignition system on request


C Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$

A Push-in terminals: $0.5-1.5 \mathrm{~mm}^{2}$


B Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$



| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current A | Type | Ref. No. | Voltage AC <br> V, Hz | Drawing |  | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | mm | Weight kg | $\begin{aligned} & \Delta t \\ & K \end{aligned}$ | Power <br> factor ( $\lambda$ ) | Energy efficiency | $\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \end{aligned}$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$ |


| Push-in terminals: 0.5-1.5 mm ${ }^{\mathbf{2}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35 | HS, HI | 0.53 | NaHJ 35.209 | 543737 | 230/240,50 | A | 108 | 86 | 36 | 1.07 | 35 | 0.36 | A2 | 6 | 0.22 |
|  |  |  | NaHJ 35.485* | 506122 | 230/240,50 | A | 108 | 86 | 36 | 1.07 | 60 | 0.40 | EEI=A3 | 6 | 0.22/0.21 |
|  |  |  | NaHJ 35.638 | 509170 | 220,60 | A | 108 | 86 | 36 | 1.07 | 50 | 0.41 | EEI=A3 | 5 | 0.23 |
| 50 | HS, HI | 0.76 | NaH 50.206 | 543738 | 230,50 | A | 108 | 86 | 48 | 1.39 | 45 | 0.35 | A2 | 8 | 0.30 |
| 50 | HS, HI | 0.76 | NaHJ 70/50.157* | 507341 | 230,50 | A | 108 | 86 | 42 | 1.23 | 55 | 0.37 | EEI=A3 | 8 | 0.30 |
| 70 | HS, HI | 0.98 |  |  |  |  |  |  |  |  | 70 | 0.37 | EEI=A3 | 12 | 0.38 |
| 50 | HS, HI | 0.76 | NaHJ 70/50.520* | 538361 | 230,50 | A | 117 | 92 | 48 | 1.39 | 45 | 0.36 | EEI=A3 | 8 | 0.30 |
| 70 | HS, HI | 0.98 |  |  |  |  |  |  |  |  | 55 | 0.36 | EEI=A3 | 12 | 0.38 |
| 70 | HS, HI | 0.98 | NaHJ 70.128* | 535191 | 230,50 | A | 108 | 86 | 36 | 1.07 | 70 | 0.36 | EEI=A3 | 12 | 0.38 |
|  |  |  | NaHJ 70.226 | 543741 | 230,50 | A | 108 | 86 | 48 | 1.39 | 50 | 0.37 | A2 | 12 | 0.38 |
|  |  |  | NaHJ 70.128* | 533572 | 230/240,50 | A | 108 | 86 | 36 | 1.07 | 70/75 | 0.36 | EEI=A3 | 12 | 0.38/0.37 |
|  |  |  | NaHJ 70.653 | 509169 | 220,60 | A | 108 | 86 | 36 | 1.07 | 60 | 0.42 | EEI=A3 | 10 | 0.40 |
| 70 | HS, HI | 0.98 | NaHJ 100/70.703* | 507342 | 230, 50 | A | 145 | 120 | 48 | 1.39 | 60 | 0.37 | EEI=A3 | 12 | 0.38 |
| 100 | HS, HI | 1.20 |  |  |  |  |  |  |  |  | 70 | 0.43 | EEI=A3 | 12 | 0.55 |
| 100 | $\mathrm{HS}, \mathrm{HI}$ | 1.20 | NaHJ 100.670* | 506120 | 230/240,50 | A | 117 | 92 | 48 | 1.39 | 70 | 0.42 | EEI=A3 | 12 | 0.55/0.53 |
|  |  |  | NaHJ 100.941* | 539492 | 230/240,50 | A | 108 | 86 | 42 | 1.23 | 75/80 | 0.42 | EEI=A3 | 12 | 0.55/0.53 |
| 100 | HS, HI | 1.20 | NaHJ 150/100.973* | 507343 | 230,50 | A | 145 | 120 | 75 | 2.02 | 55 | 0.41 | A2 | 12 | 0.55 |
| 150 | HS, HI | 1.80 |  |  |  |  |  |  |  |  | 75 | 0.41 | EEI=A3 | 20 | 0.57 |
| 150 | HS, HI | 1.80 | NaHJ 150.620* | 535216 | 230,50 | A | 145 | 120 | 64 | 1.80 | 70 | 0.40 | EEI=A3 | 20 | 0.77 |
|  |  |  | NaHJ 150.620* | 538543 | 230/240,50 | A | 145 | 120 | 64 | 1.80 | 70/75 | 0.40 | EEI=A3 | 20 | 0.77/0.74 |
|  |  |  | NaHJ 150.355* | 509100 | 230/240,50 | A | 145 | 120 | 75 | 2.02 | 65 | 0.39 | EEI=A3 | 20 | 0.77/0.74 |
|  |  |  | NaHJ 150.679 | 509171 | 220,60 | A | 145 | 120 | 75 | 2.02 | 65 | 0.42 | EEI=A3 | 16 | 0.80 |

[^10]
## Ballasts with Thermal Cut-out for HS and HI Lamps 35 to 250 W

## Shape: $53 \times 66 \mathrm{~mm}$



Screw terminals: 0.5-2.5 mm ${ }^{\mathbf{2}}$ (Drawing B) or 0.75-2.5 mm ${ }^{\mathbf{2}}$ (Drawing C)

| 35 | HS, HI | 0.53 | NaHJ 35.485* | 503010 | 230/240,50 | B | 108 | 86 | 36 | 1.07 | 60 | 0.40 | EEI=A3 | 6 | 0.22/0.21 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35 | HS, HI | 0.53 | $\mathrm{NaH} 50 / 35.412$ | 563871 | 230,50 | B | 117 | 92 | 55 | 1.52 | 25 | 0.36 | A2 | 6 | 0.22 |
| 50 | HS, HI | 0.76 |  |  |  |  |  |  |  |  | 40 | 0.34 | A2 | 8 | 0.30 |
| 35 | HS, HI | 0.53 | NaH 50/35.797* | 539515 | 230,50 | B | 108 | 86 | 36 | 1.07 | 45 | 0.40 | EEI=A3 | 6 | 0.22 |
| 50 | $\mathrm{HS}, \mathrm{HI}$ | 0.76 |  |  |  |  |  |  |  |  | 70 | 0.37 | EEI=A3 | 8 | 0.30 |
| 50 | HS, HI | 0.76 | NaH 50.486* | 507498 | 230/240,50 | B | 108 | 86 | 36 | 1.07 | 65 | 0.37 | EEI=A3 | 8 | 0.30 |
| 50 | HS, HI | 0.76 | NaHJ 70/50.695* | 507697 | 230/240,50 | B | 108 | 86 | 48 | 1.39 | 50 | 0.37 | EEI=A3 | 8 | 0.30/0.29 |
| 70 | HS, HI | 0.98 |  |  |  |  |  |  |  |  | 70 | 0.37 | EEI=A3 | 12 | 0.38/0.37 |
| 70 | HS , HI | 0.98 | NaHJ 70.226 | 563039 | 230,50 | B | 108 | 86 | 48 | 1.39 | 50 | 0.37 | A2 | 12 | 0.38 |
|  |  |  | NaHJ 70.128* | 536582 | 230,50 | B | 108 | 86 | 36 | 1.07 | 70 | 0.36 | EEI=A3 | 12 | 0.38 |
|  |  |  | NaHJ 70.158* | 169722 | 230/240,50 | B | 108 | 86 | 42 | 1.23 | 70 | 0.36 | EEI=A3 | 12 | 0.38/0.37 |
|  |  |  | NaHJ 70.128* | 538830 | 230/240,50 | B | 108 | 86 | 36 | 1.07 | 70/75 | 0.36 | EEI=A3 | 12 | 0.38/0.37 |
|  |  |  | NaHJ 70.158 | 546817 | 240,50 | B | 108 | 86 | 42 | 1.23 | 70 | 0.36 | EEI=A3 | 12 | 0.37 |
| 70 | HS, HI | 0.98 | $\mathrm{NaHJ} 100 / 70.519$ | 507628 | 230,50 | B | 145 | 120 | 75 | 2.03 | 60 | 0.36 | A2 | 12 | 0.38 |
| 100 | HS, HI | 1.20 |  |  |  |  |  |  |  |  | 70 | 0.41 | A2 | 12 | 0.55 |
| 70 | HS, HI | 0.98 | NaHJ 100/70.703* | 504131 | 230,50 | B | 117 | 92 | 48 | 1.39 | 60 | 0.37 | EEI=A3 | 12 | 0.38 |
| 100 | HS, HI | 1.20 |  |  |  |  |  |  |  |  | 70 | 0.43 | EEI=A3 | 12 | 0.55 |
| 100 | HS , HI | 1.20 | NaHJ 100.213 | 554005 | 230/240,50 | B | 117 | 92 | 55 | 1.55 | 60 | 0.41 | A2 | 12 | 0.55/0.53 |
|  |  |  | NaHJ 100.941* | 543349 | 230,50 | B | 108 | 86 | 42 | 1.23 | 75 | 0.42 | EEI=A3 | 12 | 0.55 |
|  |  |  | NaHJ 100.941* | 502799 | 230/240,50 | B | 108 | 86 | 42 | 1.23 | 75/80 | 0.42 | EEI=A3 | 12 | 0.55/0.53 |
| 100 | HS, HI | 1.20 | NaHJ 150/100.923 | 563876 | 230,50 | C | 135 | 115 | 68 | 2.87 | 30 | 0.40 | A2 | 12 | 0.55 |
| 150 | HS, HI | 1.80 |  |  |  |  |  |  |  |  | 45 | 0.40 | A2 | 20 | 0.77 |
| 100 | HS, HI | 1.20 | NaHJ 150/100.973* | 504135 | 230,50 | B | 145 | 120 | 75 | 2.02 | 55 | 0.41 | A2 | 12 | 0.55 |
| 150 | HS, HI | 1.80 |  |  |  |  |  |  |  |  | 75 | 0.41 | EEI=A3 | 20 | 0.77 |
| 150 | HS, HI | 1.80 | NaHJ 150.166 | 562450 | 230/240,50 | B | 160 | 135 | 95 | 2.5 | 50 | 0.40 | A2 | 20 | 0.77/0.74 |
|  |  |  | NaHJ 150.355 | 539270 | 220,50 | B | 145 | 120 | 75 | 2.02 | 65 | 0.39 | EEI=A3 | 20 | 0.80 |
|  |  |  | NaHJ 150.620* | 536593 | 230,50 | B | 145 | 120 | 64 | 1.80 | 70 | 0.40 | EEI=A3 | 20 | 0.77 |
|  |  |  | NaHJ 150.995* | 169721 | 230/240,50 | B | 145 | 120 | 75 | 2.02 | 70 | 0.40 | EEI=A3 | 20 | 0.77/0.74 |
|  |  |  | NaHJ 150.620* | 538831 | 230/240,50 | B | 145 | 120 | 64 | 1.80 | 70/75 | 0.40 | EEI=A3 | 20 | 0.77/0.74 |
|  |  |  | NaHJ 150.620 | 537763 | 240,50 | B | 130 | 105 | 64 | 1.80 | 75 | 0.40 | EEI=A3 | 20 | 0.74 |
|  |  |  | NaHJ 150.679 | 526616 | 220,60 | B | 145 | 120 | 75 | 2.02 | 65 | 0.42 | EEI=A3 | 16 | 0.80 |
| 250 | HS, HI | 3.00 | NaHJ 250.915* | 505054 | 230,50 | B | 180 | 155 | 110 | 2.84 | 80 | 0.40 | EEI=A3 | 32 | 1.26 |
|  |  |  | NaHJ 250.340* | 542349 | 230/240,50 | B | 180 | 155 | 110 | 2.84 | 80 | 0.39 | EEI=A3 | 32 | 1.26 |
|  |  |  | NaHJ 250.340 | 508723 | 240,50 | B | 180 | 155 | 110 | 2.84 | 80 | 0.39 | EEI=A3 | 32 | 1.26 |

[^11]
## Compact Ballasts for HS and HI Lamps 35 to 150 W

## Shape: $53 \times 66 \mathrm{~mm}$

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Vacuum-impregnated with polyester resin Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ IDC terminals for leads HO5V-U 0.5 Protection class I
Ballasts with screw terminals on request



| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Type | Ref. No. | Voltage AC <br> V, Hz | mm | b mm | c <br> mm | Weight <br> kg | $\Delta t$ <br> K | ${ }^{\circ} \mathrm{Cw}$ | Power factor $\lambda$ | Energy efficiency | Cp <br> $\mu F$ | IN <br> A |
| 35 | HS, HI | 0.53 | NaHJ 35.485* | 538807 | 230/240, 50 | 80 | 67 | 36 | 1.07 | 60 | 130 | 0.40 | EEI=A3 | 6 | 0.22/0.21 |
| 70 | HS, HI | 0.98 | NaHJ 70.128* | 538810 | 230, 50 | 80 | 67 | 36 | 1.07 | 70 | 130 | 0.36 | EEI=A3 | 12 | 0.38 |
|  |  |  | NaHJ 70.128* | 538823 | 230/240,50 | 80 | 67 | 36 | 1.07 | 70/75 | 130 | 0.36 | EEI=A3 | 12 | 0.38/0.37 |
|  |  |  | NaHJ 70.653 | 538828 | 220,60 | 80 | 67 | 36 | 1.07 | 60 | 130 | 0.42 | EEI=A3 | 10 | 0.40 |
| 150 | HS, HI | 1.80 | NaHJ 150.620* | 538834 | 230,50 | 107 | 94 | 64 | 1.80 | 70 | 130 | 0.40 | EEI=A3 | 20 | 0.77 |
|  |  |  | NaHJ 150.625 | 538843 | 240,50 | 107 | 94 | 64 | 1.80 | 75 | 130 | 0.40 | EEI=A3 | 20 | 0.74 |
|  |  |  | NaHJ 150.679 | 542557 | 220,60 | 107 | 94 | 64 | 1.80 | 75 | 130 | 0.44 | EEI=A3 | 16 | 0.80 |

* Ballasts without CE marking for replacements or markets outside of the EU


## With Thermal Cut-out

Thermal cut-out with automatic reset

| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Type | Ref. No. | Voltage AC <br> V, Hz | a <br> mm | b <br> mm | c <br> mm | Weight <br> kg | $\Delta t$ $K$ | tw <br> ${ }^{\circ} \mathrm{C}$ | Power factor $\lambda$ | Energy efficiency | Cp <br> $\mu F$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$ |
| 35 | HS, HI | 0.53 | NaHJ 35.485* | 538258 | 230/240,50 | 80 | 67 | 36 | 1.07 | 60 | 130 | 0.40 | EEI=A3 | 6 | 0.22/0.21 |
| 70 | HS, HI | 0.98 | NaHJ 70.128* | 539223 | 230/240,50 | 80 | 67 | 36 | 1.07 | 70/75 | 140 | 0.36 | EEI=A3 | 12 | 0.38/0.37 |
|  |  |  | NaHJ 70.653 | 538537 | 220,60 | 80 | 67 | 36 | 1.07 | 60 | 130 | 0.42 | EEI=A3 | 10 | 0.40 |
| 100 | HS, HI | 1.20 | NaHJ 100.581* | 539081 | 230/240,50 | 107 | 94 | 64 | 1.80 | 60 | 130 | 0.42 | EEI=A3 | 12 | 0.55/0.53 |
| 150 | HS, HI | 1.80 | NaHJ 150.159 | 548260 | 220,50 | 107 | 94 | 64 | 1.80 | 75 | 130 | 0.41 | EEI=A3 | 20 | 0.77 |
|  |  |  | NaHJ 150.620* | 538262 | 230,50 | 107 | 94 | 64 | 1.80 | 70 | 130 | 0.40 | EEI=A3 | 20 | 0.77 |
|  |  |  | NaHJ 150.620* | 539306 | 230,50 | 107 | 94 | 64 | 1.80 | 70 | 140 | 0.40 | EEI=A3 | 20 | 0.77 |
|  |  |  | NaHJ 150.620 | 538264 | 240,50 | 107 | 94 | 64 | 1.80 | 75 | 130 | 0.40 | EEI=A3 | 20 | 0.74 |
|  |  |  | NaHJ 150.620 | 539286 | 240,50 | 107 | 94 | 64 | 1.80 | 75 | 140 | 0.40 | EEI=A3 | 20 | 0.74 |
|  |  |  | NaHJ 150.679 | 539311 | 220,60 | 107 | 94 | 64 | 1.80 | 75 | 130 | 0.44 | EEI=A3 | 16 | 0.80 |

[^12]
## Ballasts with Thermal Cut-out for HS and HI Lamps 35 to 150 W, Protection Class II



## Encapsulated ballast in compact plastic casing Shape: $\mathbf{6 1 \times 7 2 m m}$

For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)


With cable holder
Thermal cut-out with automatic reset
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$

## Protection class II

tw 130



| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current A | Type | Ref. No. | Voltage AC <br> V, Hz | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | Weight kg | $\begin{aligned} & \Delta t \\ & \Delta t \\ & \hline \end{aligned}$ | Power factor $\lambda$ | Energy efficiency | $\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$ | $\mathrm{IN}$ |
| 35 | HS, HI | 0.53 | NaHZ 50/35.797* | 539609 | 230,50 | 134 | 125 | 1.60 | 45 | 0.40 | EEI=A3 | 6 | 0.22 |
| 50 | HS, HI | 0.76 |  |  |  |  |  |  | 70 | 0.37 | EEI=A3 | 8 | 0.30 |
| 50 | HS, HI | 0.76 | NaHJZ 70/50.520* | 533395 | 230,50 | 134 | 125 | 1.60 | 45 | 0.36 | EEI=A3 | 8 | 0.30 |
| 70 | HS, HI | 0.98 |  |  |  |  |  |  | 65 | 0.36 | EEI=A3 | 12 | 0.38 |
| 70 | HS, HI | 0.98 | NaHJZ 100/70.519* | 533396 | 230,50 | 161 | 152 | 2.10 | 45 | 0.36 | EEI=A3 | 12 | 0.38 |
| 100 | HS, HI | 1.20 |  |  |  |  |  |  | 60 | 0.42 | EEI=A3 | 12 | 0.55 |
| 100 | HS, HI | 1.20 | NaHJZ 150/100.466* | 533398 | 230,50 | 161 | 152 | 2.30 | 45 | 0.41 | A2 | 12 | 0.85 |
| 150 | HS, HI | 1.80 |  |  |  |  |  |  | 70 | 0.39 | EEI=A3 | 20 | 0.77 |

[^13]
# Ballasts with <br> Thermal Cut-out and Thermal Fuse for HS and HI Lamps 35 to 150 W, Protection Class II 



With double insulation Shape: $53 \times 66 \mathrm{~mm}$

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI)
Thermal cut-out with automatic reset
Screw terminals: 0.5-2.5 mm²


## Protection class II

tw 130


| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Type | Ref. No. | Voltage AC V, Hz |  | $\begin{array}{\|l\|} \hline \mathrm{b} \\ \mathrm{~mm} \end{array}$ |  | Weight $\mathrm{kg}$ | $\begin{aligned} & \Delta t \\ & \mathrm{~K} \\ & \hline \end{aligned}$ | Power factor <br> $\lambda$ | Energy efficiency | $\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|l} \hline \mathrm{N} \\ \mathrm{~A} \\ \hline \end{array}$ |
| 35 | HS, HI | 0.53 | NaHZ 50/35.797* | 553806 | 230,50 | 108 | 92 | 36 | 1.07 | 45 | 0.40 | EEI=A3 | 6 | 0.22 |
| 50 | HS, HI | 0.76 |  |  |  |  |  |  |  | 70 | 0.37 | EEI=A3 | 8 | 0.30 |
| 50 | HS, HI | 0.76 | NaHJZ 70/50.785* | 509490 | 230,50 | 108 | 92 | 42 | 1.24 | 50 | 0.35 | EEI=A3 | 8 | 0.30 |
| 70 | HS, HI | 0.98 |  |  |  |  |  |  |  | 70 | 0.38 | EEI=A3 | 12 | 0.38 |
| 70 | HS, HI | 0.98 | NaHJZ 100/70.786* | 509491 | 230,50 | 145 | 120 | 69 | 1.83 | 55 | 0.38 | EEI=A3 | 12 | 0.38 |
| 100 | HS, HI | 1.20 |  |  |  |  |  |  |  | 65 | 0.41 | EEI=A3 | 12 | 0.55 |
| 100 | HS, HI | 1.20 | NaHJZ 150/100.787* | 509492 | 230,50 | 145 | 120 | 69 | 1.83 | 50 | 0.39 | EEI=A3 | 12 | 0.85 |
| 150 | HS, HI | 1.80 |  |  |  |  |  |  |  | 75 | 0.41 | EEI=A3 | 20 | 0.77 |

[^14]
## Ballasts for HS and HI Lamps 150 to 400 W

## Shape: $\mathbf{7 1 \times 7 5} \mathbf{m m}$

For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Vacuum-impregnated with polyester resin Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Protection class I
tw 130
Ballasts for pulse ignition system on request




| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Cap |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Type | Ref. No. | Voltage AC <br> V. Hz | $\mathrm{a}_{\mathrm{mm}}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$ | Weight <br> kg | $\left\lvert\, \begin{aligned} & \Delta t \\ & K \end{aligned}\right.$ | Power factor | Energy efficiency | $\begin{aligned} & \mathrm{Cp} \\ & \mathrm{uF} \end{aligned}$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$ |
| 250 | HS, HI | 3.00 | NaHJ 250.741 | 536147 | 220, 50 | 135 | 115 | 68 | 2.85 | 70 | 0.42 | A2 | 32 | 1.35 |
|  |  |  | NaHI 250.741 | 536148 | 230,50 | 135 | 115 | 68 | 2.85 | 75 | 0.40 | A2 | 32 | 1.30 |
|  |  |  | NaHJ 250.741 | 536149 | 240,50 | 135 | 115 | 68 | 2.85 | 75 | 0.39 | A2 | 32 | 1.25 |
|  |  |  | NaHJ 250.742 | 536150 | 220,60 | 135 | 115 | 68 | 2.85 | 70 | 0.42 | A2 | 25 | 1.40 |
| 400 | HS, HI | 4.45 | NaHJ 400.743 | 536142 | 220, 50 | 165 | 145 | 103 | 4.1 | 70 | 0.45 | A2 | 45 | 2.10 |
|  |  |  | NaH 400.743 | 535142 | 230,50 | 165 | 145 | 103 | 4.1 | 75 | 0.44 | A2 | 45 | 2.00 |
|  |  |  | NaHJ 400.743 | 536143 | 240, 50 | 165 | 145 | 103 | 4.1 | 75 | 0.40 | A2 | 45 | 1.85 |
|  |  |  | NaHJ 400.744 | 536144 | 220,60 | 165 | 145 | 103 | 4.1 | 70 | 0.44 | A2 | 40 | 2.05 |

## With Thermal Cut-out

Thermal cutout with automatic reset

| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current A | Type | Ref. No. | Voltage AC <br> V, Hz | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\mathrm{b}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$ | Weight <br> kg | $\begin{aligned} & \Delta t \\ & K \end{aligned}$ | Power factor <br> $\lambda$ | Energy efficiency | $\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$ | $\mathrm{IN}$ |
| 150 | HS, HI | 1.80 | NaHJ 150.216 | 554006 | 230/240,50 | 135 | 115 | 68 | 2.85 | 45 | 0.40 | A2 | 20 | 0.77 |
| 250 | HS, HI | 3.00 | NaHJ 250.741 | 539274 | 220,50 | 135 | 115 | 68 | 2.85 | 70 | 0.42 | A2 | 32 | 1.35 |
|  |  |  | NaHJ 250.741 | 544210 | 230,50 | 135 | 115 | 68 | 2.85 | 65 | 0.40 | A2 | 32 | 1.30 |
|  |  |  | NaHJ 250.741 | 536151 | 230, 50 | 135 | 115 | 68 | 2.85 | 75 | 0.40 | A2 | 32 | 1.30 |
|  |  |  | NaHJ 250.741 | 537726 | 230/240,50 | 135 | 115 | 68 | 2.85 | 75 | 0.40 | A2 | 32 | 1.30/1.25 |
|  |  |  | NaHJ 250.741 | 536152 | 240,50 | 135 | 115 | 68 | 2.85 | 75 | 0.39 | A2 | 32 | 1.25 |
| 400 | HS, HI | 4.45 | NaHJ 400.743 | 548259 | 220,50 | 165 | 145 | 103 | 4.1 | 70 | 0.44 | A2 | 45 | 2.10 |
|  |  |  | NaHJ 400.743 | 536145 | 230,50 | 165 | 145 | 103 | 4.1 | 75 | 0.44 | A2 | 45 | 2.00 |
|  |  |  | NaHJ 400.743 | 538204 | 230,50 | 165 | 145 | 103 | 4.1 | 65 | 0.41 | A2 | 45 | 2.00 |
|  |  |  | NaHJ 400.743 | 539209 | 230/240,50 | 165 | 145 | 103 | 4.1 | 75 | 0.41 | A2 | 45 | 2.00/1.85 |
|  |  |  | NaHJ 400.743 | 543986 | 240,50 | 165 | 145 | 103 | 4.1 | 70 | 0.40 | A2 | 45 | 1.85 |
|  |  |  | NaHJ 400.743 | 536146 | 240,50 | 165 | 145 | 103 | 4.1 | 75 | 0.40 | A2 | 45 | 1.85 |
|  |  |  | NaHJ 400.744 | 538620 | 220,60 | 165 | 145 | 103 | 4.1 | 70 | 0.44 | A2 | 40 | 2.05 |

## Ballasts for HS and HI Lamps 250 to 600 W

Shape: 92x 102 mm

For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Vacuum-impregnated with polyester resin
Screw terminals: 0.75-2.5 mm²
Protection class I
tw 130
Ballasts for pulse ignition system on request


| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Current <br> A | Type | Ref. No. | Voltage AC V, Hz | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\mathrm{b}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$ | Weight kg | $\begin{aligned} & \Delta t \\ & K \end{aligned}$ | Power factor $\lambda$ | Energy efficiency | $\begin{aligned} & \text { Cp } \\ & \mu \mathrm{F} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$ |
| 250 | HS, HI | 3.00 | NaHJ 250.003 | 179743 | 220,50 | 133 | 120 | 44 | 3.53 | 70 | 0.41 | EEI=A3 | 32 | 1.32 |
|  |  |  | NaHJ 250.727* | 178771 | 230,50 | 133 | 120 | 44 | 3.53 | 70 | 0.39 | EEI=A3 | 32 | 1.26 |
|  |  |  | NaHJ 250.727 | 500976 | 240,50 | 133 | 120 | 44 | 3.53 | 70 | 0.39 | EEI=A3 | 32 | 1.21 |
|  |  |  | NaHJ 250.011 | 500401 | 220,60 | 133 | 120 | 44 | 3.53 | 65 | 0.43 | A2 | 25 | 1.35 |
| 400 | HS, HI | 4.45 | NaHJ 400.006 | 179740 | 220,50 | 148 | 135 | 68 | 5.20 | 70 | 0.44 | A2 | 45 | 2.00 |
|  |  |  | NaHJ 400.006 | 178790 | 230,50 | 148 | 135 | 68 | 5.20 | 70 | 0.44 | A2 | 45 | 1.95 |
|  |  |  | NaHJ 400.737 | 500402 | 240,50 | 148 | 135 | 68 | 5.20 | 75 | 0.43 | A2 | 45 | 1.90 |
|  |  |  | NaHJ 400.012 | 500403 | 220,60 | 148 | 135 | 68 | 5.20 | 70 | 0.44 | A2 | 40 | 2.00 |
|  | Hi | 3.50 | J 400.027 | 505782 | 230/240,50 | 148 | 135 | 68 | 5.20 | 60 | 0.45 | A2 | 35 | 1.64/1.59 |
| 600 | HS | 6.20 | NaH 600.010 | 179742 | 220,50 | 173 | 160 | 96 | 6.80 | 70 | 0.44 | A2 | 65 | 2.90 |
|  |  |  | NaH 600.005 | 533484 | 230/240,50 | 173 | 160 | 96 | 6.80 | 70 | 0.44 | A2 | 65 | 2.90/2.85 |
|  |  |  | NaH 600.140 | 529560 | 220,60 | 173 | 160 | 96 | 6.80 | 65 | 0.46 | A2 | 55 | 3.00 |

* Ballasts without CE marking for replacements or markets outside of the EU


## With Thermal Cut-out

Thermal cut-out with automatic reset

| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current A | Type | Ref. No. | Voltage AC V, Hz | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\mathrm{b}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$ | Weight kg | $\begin{aligned} & \Delta t \\ & \mathrm{~K} \end{aligned}$ | Power factor $\lambda$ | Energy efficiency | $\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$ |
| 250 | HS, HI | 3.00 | NaHJ 250.727* | 500969 | 230/240,50 | 133 | 120 | 44 | 3.53 | 70 | 0.39 | EEI=A3 | 32 | 1.26/1.21 |
|  |  |  | NaHJ 250.011 | 508744 | 220,60 | 133 | 120 | 44 | 3.46 | 65 | 0.43 | A2 | 25 | 1.35 |
| 400 | HS, HI | 4.45 | NaHJ 400.737 | 179424 | 230/240,50 | 148 | 135 | 68 | 5.20 | 70/75 | 0.43 | A2 | 45 | 1.95/1.90 |
|  | HI | 3.50 | J 400.027 | 509613 | 230/240,50 | 148 | 135 | 68 | 5.20 | 60 | 0.45 | A2 | 35 | 1.64/1.59 |
|  | HS, HI | 4.45 | NaHJ 400.012 | 508741 | 220,60 | 148 | 135 | 68 | 5.20 | 70 | 0.44 | A2 | 40 | 2.00 |
| 600 | HS | 6.20 | NaH 600.005 | 179454 | 230/240,50 | 173 | 160 | 96 | 6.80 | 70 | 0.44 | A2 | 65 | 2.90/2.85 |

[^15]
## Ballasts for HS and HI Lamps 1000 W

Shape: 92x102 mm

For high pressure sodium lamps (HS) and metal halide lamps (HI)
Vacuum-impregnated with polyester resin Screw terminals: 0.75-2.5 mm²
Protection class I
tw 130
Ballasts for pulse ignition system on request



| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Current <br> A | Type | Ref. No. | Voltage AC <br> V, Hz | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$ | Weight $\mathrm{kg}$ | $\begin{array}{\|l\|} \Delta t \\ K \end{array}$ | Power factor <br> $\lambda$ | Energy efficiency | $\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$ | $\mathrm{IN}$ |
| 1000 | HS | 10.30 | NaHJ 1000.089 | 534487 | 220,50 | 203 | 188 | 124 | 8.90 | 80 | 0.47 | A2 | 100 | 5.1 |
|  | Hi | 9.50 |  |  |  |  |  |  |  | 70 | 0.51 | A2 | 85 | 5.0 |
| 1000 | HS | 10.30 | NaHJ 1000.089 | 539212 | 220/230,50 | 203 | 188 | 124 | 8.90 | 80 | 0.45 | A2 | 100 | 5.1 |
|  | H | 9.50 |  |  |  |  |  |  |  | 70 | 0.49 | A2 | 85 | 5.0 |
| 1000 | HS | 10.30 | NaHJ 1000.089 | 528548 | 230,50 | 203 | 188 | 124 | 8.90 | 80 | 0.45 | A2 | 100 | 5.1 |
|  | Hi | 9.50 |  |  |  |  |  |  |  | 70 | 0.49 | A2 | 85 | 5.0 |
| 1000 | HS | 10.30 | NaHJ 1000.089 | 544787 | 230/240,50 | 203 | 188 | 124 | 8.90 | 85 | 0.45 | A2 | 100 | 5.1 |
|  | H | 9.50 |  |  |  |  |  |  |  | 70 | 0.46 | A2 | 85 | 5.0 |
| 1000 | HS | 10.30 | NaHJ 1000.089 | 536140 | 240,50 | 203 | 188 | 124 | 8.90 | 85 | 0.42 | A2 | 100 | 4.8 |
|  | H | 9.50 |  |  |  |  |  |  |  | 75 | 0.46 | A2 | 85 | 4.9 |
| 1000 | HS | 10.30 | NaHJ 1000.089 | $528536$ | 220,60 | 203 | 188 | $124$ | 8.90 | 75 | 0.46 | A2 | 100 | 5.1 |
|  | Hi | 9.50 |  |  |  |  |  |  |  | 60 | 0.50 | A2 | 85 | 5.0 |

## Ballasts for HI Lamps up to 2500 W

## Shape: 150x150 mm

For metal halide lamps (HI)
Vacuum impregnated with polyester resin
Screw terminals: 0.75-4 mm²
For luminaires of protection class 1
tw 130


For Short Arc Lamps


| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Current A | Type | Ref. No. | Voltage AC <br> V, Hz | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\mathrm{b}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$ | Weight kg | $\begin{array}{\|l\|} \Delta t \\ K \end{array}$ | Power factor <br> $\lambda$ | Energy efficiency | $\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$ |
| 2000 | H | 8.8 | J 2000.71 | 554303 | 380/400,50 | 122 | 175 | 200 | 15 | 75 | 0.60 | A2 | 37 | 6 |
|  |  |  | J 2000.72 | 554304 | 380/400/415,50 | 122 | 135 | 160 | 14 | 70 | 0.58 | A2 | 37 | 6 |
|  |  |  | J 2000.73 | 554305 | 380, 60 | 122 | 175 | 200 | 15 | 75 | 0.53 | A2 | 30 | 6 |
| 2000 | HI | 10.3/11.3 | JD 2000.81 | 554270 | 380/400,50 | 122 | 175 | 200 | 15 | 80 | 0.53 | A2 | 60 | 6 |
|  |  |  | JD 2000.81 | 554306 | 380/400/415,50 | 122 | 135 | 160 | 14 | 75 | 0.52 | A2 | 60 | 6 |
|  |  |  | JD 2000.83 | 554283 | 380, 60 | 122 | 175 | 200 | 15 | 75 | 0.54 | A2 | 50 | 6 |
| 2000 | HI | 12.2 | JD 2000II. 91 | 554307 | 380/400,50 | 122 | 175 | 200 | 16 | 80 | 0.46 | A2 | 70 | 6 |
|  |  |  | JD 2000II. 92 | 554308 | 380, 60 | 122 | 175 | 200 | 16 | 75 | 0.45 | A2 | 60 | 6 |
| 2000 | HI | 16.5 | JD 20001.85 | 554309 | 230/240,50 | 122 | 135 | 160 | 14 | 80 | 0.57 | A2 | 125 | 10.5 |
|  |  |  | JD 20001. 86 | 554310 | 220,60 | 122 | 135 | 160 | 14 | 80 | 0.57 | A2 | 105 | 10 |
| For Short Arc Lamps 1200 and 2500 W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1200 | HI | 13.8 | J 1200.95 | 554311 | 208, 60 | 122 | 105 | 130 | 11 | - | 0.40 | A2 | 150 | 6 |
|  |  |  |  |  | 230/245,50 |  |  |  |  |  |  | A2 |  |  |
| 2500 | H | 25.6 | J 2500.96 | 554312 | 208, 60 | 122 | 175 | 200 | 16 | - | 0.44 | A2 | 260 | 12.3 |
|  |  |  |  |  | 230/245,50 |  |  |  |  |  |  | A2 |  |  |

## Ballasts for HM and HI Lamps 50 to 400 W

## Shape: $53 \times 66 \mathrm{~mm}$

For mercury vapour lamps (HM) and metal halide lamps $(\mathrm{HI})$ with ignition voltage 1 kV Vacuum-impregnated with polyester resin Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Protection class I
tw 130



| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & \text { V, Hz } \end{aligned}$ | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$ | Weight kg | $\begin{aligned} & \Delta t \\ & K \end{aligned}$ | Power factor $\lambda$ | Energy efficiency | $\begin{aligned} & C_{p} \\ & \mu \mathrm{~F} \end{aligned}$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$ |
| 50 | HM | 0.61 | Q 50.501 | 167100 | 220, 50 | 108 | 86 | 36 | 1.07 | 55 | 0.44 | EEI=A3 | 7 | 0.28 |
|  |  |  | Q 50.550* | 167213 | 230, 50 | 108 | 86 | 36 | 1.07 | 55 | 0.44 | EEI=A3 | 7 | 0.27 |
|  |  |  | Q 50.508 | 167125 | 240, 50 | 108 | 86 | 36 | 1.07 | 65 | 0.42 | EEI=A3 | 7 | 0.26 |
|  |  |  | Q 50.535 | 167185 | 220,60 | 108 | 86 | 36 | 1.07 | 50 | 0.44 | EEI=A3 | 6 | 0.28 |
| 50 | HM | 0.61 | Q 80/50.596* | 167311 | 230, 50 | 108 | 86 | 36 | 1.07 | 55 | 0.43 | EEI=A3 | 7 | 0.27 |
| 80 | HM | 0.80 |  |  |  |  |  |  |  | 70 | 0.51 | EEI=A3 | 8 | 0.41 |
| 50 | HM | 0.61 | Q 80/50.592 | 167306 | 220, 60 | 108 | 86 | 36 | 1.07 | 50 | 0.44 | EEI=A3 | 6 | 0.28 |
| 80 | HM | 0.80 |  |  |  |  |  |  |  | 60 | 0.53 | EEI=A3 | 7 | 0.43 |
| 80 | HM | 0.80 | Q 80.587 | 167302 | 220, 50 | 108 | 86 | 36 | 1.07 | 65 | 0.52 | EEI=A3 | 8 | 0.43 |
|  |  |  | Q 80.588* | 167304 | 230, 50 | 108 | 86 | 36 | 1.07 | 70 | 0.51 | EEI=A3 | 8 | 0.41 |
|  |  |  | Q 80.510 | 167132 | 240, 50 | 108 | 86 | 36 | 1.07 | 60 | 0.48 | EEI=A3 | 8 | 0.40 |
|  |  |  | Q 80.584 | 167299 | 220,60 | 108 | 86 | 36 | 1.07 | 55 | 0.51 | EEI=A3 | 7 | 0.43 |
| 80 | HM | 0.80 | Q 125/80.611* | 167326 | 230, 50 | 108 | 86 | 42 | 1.23 | 50 | 0.49 | EEI=A3 | 8 | 0.41 |
| 125 | HM | 1.15 |  |  |  |  |  |  |  | 70 | 0.54 | EEI=A3 | 10 | 0.60 |
| 80 | HM | 0.80 | Q 125/80.511 | 167136 | 240, 50 | 108 | 86 | 48 | 1.39 | 50 | 0.48 | EEI=A3 | 8 | 0.40 |
| 125 | HM | 1.15 |  |  |  |  |  |  |  | 70 | 0.52 | EEI=A3 | 10 | 0.58 |
| 125 | HM | 1.15 | Q 125.549 | 169947 | 220,50 | 108 | 86 | 36 | 1.07 | 70 | 0.56 | EEI=A3 | 10 | 0.63 |
|  |  |  | Q 125.568* | 167263 | 230,50 | 108 | 86 | 36 | 1.07 | 75 | 0.54 | EEI=A3 | 10 | 0.60 |
|  |  |  | Q 125.512 | 167140 | 240, 50 | 108 | 86 | 48 | 1.39 | 65 | 0.51 | EEI=A3 | 10 | 0.58 |
|  |  |  | Q 125.598 | 502818 | 220,60 | 108 | 86 | 36 | 1.07 | 60 | 0.57 | EEI=A3 | 10 | 0.65 |
| 250 | HM | 2.13 | Q 250.513 | 167144** | 220,50 | 145 | 120 | 75 | 2.10 | 75 | 0.58 | A2 | 18 | 1.26 |
|  |  |  | Q 250.528 | 167367** | 230, 50 | 145 | 120 | 75 | 2.10 | 75 | 0.56 | A2 | 18 | 1.20 |
|  |  |  | Q 250.703 | 507256** | 240,50 | 145 | 120 | 75 | 2.10 | 75 | 0.53 | A2 | 18 | 1.15 |
|  |  |  | Q 250.606 | 533705** | 220,60 | 145 | 120 | 64 | 1.80 | 70 | 0.58 | A2 | 15 | 1.30 |
| 400 | HM | 3.25 | Q 400.616 | 528236** | 220,50 | 160 | 135 | 95 | 2.50 | 80 | 0.60 | EEI=A3 | 25 | 2.00 |
|  |  |  | Q 400.561 | 167250** | 220,50 | 180 | 155 | 110 | 2.88 | 75 | 0.60 | A2 | 25 | 2.00 |
|  |  |  | Q 400.612 | 167330** | 230,50 | 180 | 155 | 110 | 2.88 | 75 | 0.56 | A2 | 25 | 1.90 |
|  |  |  | Q 400.669 | 167374** | 240,50 | 180 | 155 | 110 | 2.88 | 75 | 0.54 | A2 | 25 | 1.85 |
|  |  |  | Q 400.613 | 167335** | 220,60 | 180 | 155 | 110 | 2.88 | 65 | 0.60 | A2 | 25 | 2.00 |
|  |  |  | Q 400.613 | 508245** | 220,60 | 180 | 155 | 95 | 2.50 | 75 | 0.60 | A2 | 25 | 2.00 |

[^16]
## Ballasts for HM and HI Lamps 250 and 400 W

## Shape: $\mathbf{7 1 \times 7 5 m m}$

For mercury vapour lamps (HM) and metal halide lamps (HI) with ignition voltage 1 kV
Vacuum-impregnated with polyester resin
Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Protection class I
tw 130



| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Current <br> A | Type | Ref. No. | Voltage AC <br> V, Hz | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | c <br> mm | Weight kg | $\left\lvert\, \begin{aligned} & \Delta t \\ & K \end{aligned}\right.$ | Power factor $\lambda$ | Energy efficiency | $\begin{aligned} & C_{p} \\ & \mu \mathrm{~F} \end{aligned}$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$ |
| 250 | HM | 2.13 | Q 250.800 | 536260* | 230/240, 50 | 135 | 115 | 68 | 2.85 | 55 | 0.53 | A2 | 18 | 1.3 |
| 400 | HM | 3.25 | Q 400.715 | 537869* | 220,50 | 135 | 115 | 68 | 2.85 | 70 | 0.59 | A2 | 25 | 2.0 |
|  |  |  | Q 400.801 | 536258* | 230,50 | 135 | 115 | 68 | 2.85 | 75 | 0.58 | A2 | 25 | 2.0 |
|  |  |  | Q 400.801 | 538034* | 230,50 | 135 | 115 | 68 | 2.85 | 65 | 0.58 | A2 | 25 | 2.0 |
|  |  |  | Q 400.801 | 537703* | 230/240,50 | 135 | 115 | 68 | 2.85 | 75 | 0.58 | A2 | 25 | 2.0/1.85 |
|  |  |  | Q 400.732 | 537873* | 220,60 | 135 | 115 | 68 | 2.85 | 70 | 0.59 | A2 | 25 | 2.0 |

* Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI $1000 / 1 \mathrm{~K}$ (see page 52)


## With Thermal Cut-out

Thermal cutout with automatic reset

| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Type | Ref. No. | Voltage AC <br> V, Hz | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$ | Weight kg | $\begin{array}{\|l\|} \hline \Delta t \\ K \end{array}$ | Power factor <br> $\lambda$ | Energy efficiency | $C_{p}$ $\mu F$ | $\mathrm{IN}$ |
| 250 | HM | 2.13 | Q 250.800 | 536261* | 230/240,50 | 135 | 115 | 68 | 2.85 | 55 | 0.53 | A2 | 18 | 1.3 |
| 400 | HM | 3.25 | Q 400.801 | 536259* | 230, 50 | 135 | 115 | 68 | 2.85 | 75 | 0.58 | A2 | 25 | 2.0 |

[^17]
## Ballasts for HM and HI Lamps 250 to 1000 W

Shape: 92x 102 mm

For mercury vapour lamps $(\mathrm{HM})$ and metal halide lamps (HI) with ignition voltage 1 kV
Vacuum-impregnated with polyester resin Screw terminals: 0.75-2.5 mm²
Protection class 1
tw 130


| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current A | Type | Ref. No. | Voltage AC <br> V, Hz | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$ | Weight kg | $\begin{array}{\|l\|} \hline \Delta t \\ K \\ \hline \end{array}$ | Power factor $\lambda$ | Energy efficiency | $\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \\ & \hline \end{aligned}$ |
| 250 | HM | 2.13 | Q 250.417 | 504467* | 230/240,50 | 133 | 120 | 44 | 3.53 | 50 | 0.52 | A2 | 18 | 1.20 |
| 400 | HM | 3.25 | Q 400.001 | 504474* | 230/240,50 | 133 | 120 | 44 | 3.53 | 65 | 0.56 | A2 | 25 | 1.80 |
| 700 | HM | 5.40 | Q 700.035 | 528521 | 230/240,50 | 173 | 160 | 96 | 6.90 | 60 | 0.56 | A2 | 40 | 3.40 |
| 1000 | HM | 7.50 | Q 1000.097 | 537103* | 220,50 | 173 | 160 | 96 | 6.90 | 75 | 0.61 | A2 | 60 | 4.80 |
|  |  |  | Q 1000.096 | 538540* | 230,50 | 173 | 160 | 96 | 6.90 | 65 | 0.60 | A2 | 60 | 4.80 |
|  |  |  | Q 1000.096 | 528761* | 230,50 | 173 | 160 | 96 | 6.90 | 65 | 0.60 | A2 | 60 | 4.80 |
|  |  |  | Q 1000.145 | 528886* | 240,50 | 173 | 160 | 96 | 6.90 | 75 | 0.58 | A2 | 60 | 4.60 |
|  |  |  | Q 1000.311 | 526715* | 220,60 | 173 | 160 | 96 | 6.90 | 70 | 0.61 | A2 | 50 | 5.00 |

[^18]
## With Thermal Cut-out

Thermal cut-out with automatic reset

| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Type | Ref. No. | Voltage AC <br> V, Hz | mm | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | mm | Weight <br> kg | $\begin{array}{\|l\|} \Delta t \\ K \end{array}$ | Power factor <br> $\lambda$ | Energy efficiency | $\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \end{aligned}$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$ |
| 250 | HM | 2.13 | Q 250.417 | 508746* | 230/240,50 | 133 | 120 | 44 | 3.53 | 50 | 0.52 | A2 | 18 | 1.20 |
| 400 | HM | 3.25 | Q 400.001 | 505002* | 230/240, 50 | 133 | 120 | 44 | 3.53 | 65 | 0.56 | A2 | 25 | 1.80 |

[^19]
## Compact

Power Reduction Kits for HS Lamps 50 to 150 W

Ballast shape: $53 \times 66 \mathrm{~mm}$

For high pressure sodium lamps (HS)
Compact power reduction kit with ballast with or without patented, intelligent thermal cut-out with automatic reset (which evaluates the temperature and current of the ballast), ignitor, power switch and compensation capacitor
With luminaire terminal block:
screw terminal $0.75-2.5 \mathrm{~mm}^{2}$
With earth terminal
Permissible load capacity: 20-100 pF Lead length to the lamp: max. 1.5 m tw 130
Further outputs and voltages on request
With digital timer ignitor on request


As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.


Power reduction without control phase - Intelligent power switch PR 12 K LC (Light Control)

| $70 / 40 \%$ | $H S$ | 0.98 | PRKUNaH 70/40\%.525 | $\mathbf{5 4 3 3 8 4}$ | 220,50 | 0.38 | no | 117 | 86 | 151 | 76 | 60 | 1.5 | $>0.90$ | EEI=A3 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $100 / 40 \%$ | HS | 1.20 | PRKUNaH 100/40\%.522 | $\mathbf{5 4 3 3 8 8}$ | 220,50 | 0.56 | no | 123 | 92 | 151 | 76 | 60 | 1.7 | $>0.90$ | EEI=A3 |
| $150 / 40 \%$ | HS | 1.80 | PRKUNaH 150/40\%.142 | $\mathbf{5 4 3 3 8 5}$ | 220,50 | 0.77 | no | 151 | 120 | 154 | 79 | 60 | 2.3 | $>0.90$ | $E E I=A 3$ |
| $50 / 40 \%$ | HS | 0.76 | PRKUNaH $50 / 40 \% .021^{*}$ | $\mathbf{5 4 4 7 6 0}$ | 230,50 | 0.30 | yes | 117 | 86 | 151 | 76 | 56 | 1.5 | $>0.90$ | EEI=A3 |
| $70 / 40 \%$ | HS | 0.98 | PRKUNaH 70/40\%.525* | $\mathbf{5 4 3 7 4 2}$ | 230,50 | 0.38 | yes | 117 | 86 | 151 | 76 | 60 | 1.5 | $>0.90$ | EEI=A3 |
| $100 / 40 \%$ | HS | 1.20 | PRKUNaH 100/40\%.522* | $\mathbf{5 4 3 7 4 3}$ | 230,50 | 0.55 | yes | 123 | 92 | 151 | 76 | 60 | 1.7 | $>0.90$ | $E E I=A 3$ |
| $150 / 40 \%$ | HS | 1.80 | PRKUNaH 150/40\%.142* | $\mathbf{5 4 3 7 4 4}$ | 230,50 | 0.77 | yes | 151 | 120 | 154 | 79 | 60 | 2.3 | $>0.90$ | EEI=A3 |

Power reduction without control phase - Power switch PR 12 KD with selectable switching time

| 70/40\% | HS | 0.98 | PRKUNaH 70/40\%.525 | 539328 | 220,50 | 0.38 | no | 117 | 86 | 151 | 76 | 60 | 1.5 | > 0.90 | EEI=A3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100/40\% | HS | 1.20 | PRKUNaH 100/40\%. 522 | 539330 | 220,50 | 0.56 | no | 123 | 92 | 151 | 76 | 60 | 1.7 | > 0.90 | EEI=A3 |
| 150/40\% | HS | 1.80 | PRKUNaH 150/40\%. 142 | 539332 | 220,50 | 0.77 | no | 151 | 120 | 154 | 79 | 60 | 2.3 | > 0.90 | EEI=A3 |
| 70/40\% | HS | 0.98 | PRKUNaH 70/40\%.525* | 538690 | 230,50 | 0.38 | yes | 117 | 86 | 151 | 76 | 60 | . 5 | > 0.90 | EEI=A3 |
| 100/40\% | HS | 1.20 | PRKUNaH 100/40\%.522* | 538691 | 230,50 | 0.56 | yes | 123 | 92 | 151 | 76 | 60 | 1.7 | > 0.90 | EEI=A3 |
| 150/40\% | HS | 1.80 | PRKUNaH 150/40\%. 142 | 538692 | 230,50 | 0.77 | yes | 151 | 120 | 154 | 79 | 60 | 2.3 | > 0.90 | EEI=A3 |
| 70/40\% | HS | 0.98 | PRKUNaH 70/40\%. 525 | 538700 | 220,60 | 0.38 | no | 117 | 86 | 151 | 76 | 60 | 1.5 | > 0.90 | EEI=A3 |
| 100/40\% | HS | 1.20 | PRKUNaH 100/40\%. 522 | 538701 | 220,60 | 0.56 | no | 123 | 92 | 151 | 76 | 60 | 1.7 | > 0.90 | EEI=A3 |
| 150/40\% | HS | 1.80 | PRKUNaH 150/40\%. 142 | 538702 | 220,60 | 0.77 | no | 151 | 120 | 154 | 79 | 60 | 2.3 | > 0.90 | EEI=A3 |

Power reduction with control phase - Power switch PU 12 K

| $70 / 40 \%$ | HS | 0.98 | PRKUNaH 70/40\%.525 | $\mathbf{5 3 9 3 2 9}$ | 220,50 | 0.38 | no | 117 | 86 | 151 | 76 | 56 | 1.5 | $>0.90$ | EEI=A3 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $100 / 40 \%$ | HS | 1.20 | PRKUNaH 100/40\%.522 | $\mathbf{5 3 9 3 3 1}$ | 220,50 | 0.56 | no | 123 | 92 | 151 | 76 | 56 | 1.7 | $>0.90$ | EEI=A3 |
| $150 / 40 \%$ | HS | 1.80 | PRKUNaH 150/40\%.142 | $\mathbf{5 3 9 3 3 3}$ | 220,50 | 0.77 | no | 151 | 120 | 154 | 79 | 56 | 2.3 | $>0.90$ | EEI=A3 |
| $70 / 40 \%$ | HS | 0.98 | PRKUNaH 70/40\%.525* | $\mathbf{5 3 8 6 9 5}$ | 230,50 | 0.38 | yes | 117 | 86 | 151 | 76 | 56 | 1.5 | $>0.90$ | EEI=A3 |
| $100 / 40 \%$ | HS | 1.20 | PRKUNaH 100/40\%.522* | $\mathbf{5 3 8 6 9 6}$ | 230,50 | 0.56 | yes | 123 | 92 | 151 | 76 | 56 | 1.7 | $>0.90$ | EEI=A3 |
| $150 / 40 \%$ | HS | 1.80 | PRKUNaH 150/40\%.142* | $\mathbf{5 3 8 6 9 7}$ | 230,50 | 0.77 | yes | 151 | 120 | 154 | 79 | 56 | 2.3 | $>0.90$ | EEI=A3 |
| $70 / 40 \%$ | HS | 0.98 | PRKUNaH 70/40\%.525 | $\mathbf{5 3 8 7 0 5}$ | 220,60 | 0.38 | no | 117 | 86 | 151 | 76 | 56 | 1.5 | $>0.90$ | EEI=A3 |
| $100 / 40 \%$ | HS | 1.20 | PRKUNaH 100/40\%.522 | $\mathbf{5 3 8 7 0 6}$ | 220,60 | 0.56 | no | 123 | 92 | 151 | 76 | 56 | 1.7 | $>0.90$ | EEI=A3 |
| $150 / 40 \%$ | HS | 1.80 | PRKUNaH 150/40\%.142 | $\mathbf{5 3 8 7 0 7}$ | 220,60 | 0.77 | no | 151 | 120 | 154 | 79 | 56 | 2.3 | $>0.90$ | EEI=A3 |

[^20]
## Compact

## Power Reduction <br> Kits for HS Lamps 250 and 400 W

## Ballast shape: 71x75 mm



For high pressure sodium lamps (HS)
Compact power reduction kit with ballast with or without thermal cut-out with automatic reset, superimposed ignitor, power switch and compensation capacitor
With luminaire terminal block:
screw terminal $0.75-2.5 \mathrm{~mm}^{2}$
With earth terminal
Permissible load capacity: 20-100 pF Lead length to the lamp: max. 1.5 m tw 130
Further outputs and voltages on request With digital timer ignitor on request


As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.


Power reduction without control phase - Intelligent power switch PR 12 K LC (Light Control)

| $250 / 40 \%$ | HS | 3.00 | PRKUNaH 250/40\%.936* | $\mathbf{5 4 3 3 8 6}$ | 220,50 | 1.26 | no | 141 | 110 | 171 | 91 | 71 | 3.3 | $>0.90$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EEI=A3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $400 / 40 \%$ | HS | 4.45 | PRKUNaH 400/40\%.906 | $\mathbf{5 4 3 3 8 9}$ | 220,50 | 1.95 | no | 171 | 140 | 171 | 91 | 71 | 5.3 | $>0.90$ |
| $\mathbf{2 5 0 / 4 0 \%}$ | HS | 3.00 | PRKUNaH 250/40\%.936* | $\mathbf{5 4 3 7 4 5}$ | 230,50 | 1.26 | yes | 141 | 110 | 171 | 91 | 71 | 3.3 | $>0.90$ |
| $400 / 40 \%$ | HS | 4.45 | PRKUNaH 400/40\%.906 | $\mathbf{5 4 3 7 4 6}$ | 230,50 | 1.95 | yes | 171 | 140 | 171 | 91 | 71 | 5.3 | $>0.90$ |

## Power reduction without control phase - Power switch PR 12 KD with selectable switching time

| 250/40\% | HS | 3.00 | PRKUNaH 250/40\%.758 | 546585 | 220,50 | 1.26 | no | 171 | 140 | 171 | 91 | 71 | 5.3 | > 0.90 | EEI=A3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 250/40\% | HS | 3.00 | PRKUNaH 250/40\%.936 | 539334 | 220,50 | 1.26 | no | 141 | 110 | 171 | 91 | 71 | 3.3 | > 0.90 | EEI=A3 |
| 400/40\% | HS | 4.45 | PRKUNaH 400/40\%.906 | 539335 | 220,50 | 1.95 | no | 171 | 140 | 171 | 91 | 71 | 5.3 | > 0.90 | A2 |
| 250/40\% | HS | 3.00 | PRKUNaH 250/40\%.936* | 538693 | 230,50 | 1.26 | yes | 141 | 110 | 171 | 91 | 71 | 3.3 | > 0.90 | EEI=A3 |
| 400/40\% | HS | 4.45 | PRKUNaH 400/40\%.906 | 538694 | 230,50 | 1.95 | yes | 171 | 140 | 171 | 91 | 71 | 5.3 | > 0.90 | A2 |
| 250/40\% | HS | 3.00 | PRKUNaH 250/40\%.983 | 538703 | 220,60 | 1.26 | no | 141 | 110 | 165 | 86 | 71 | 3.3 | > 0.90 | EEI=A3 |
| 400/40\% | HS | 4.45 | PRKUNaH 400/40\%.937 | 538704 | 220,60 | 1.95 | no | 171 | 140 | 171 | 91 | 71 | 5.3 | > 0.90 | A2 |

Power reduction with control phase - Power switch PU 12 K

| $250 / 40 \%$ | HS | 3.00 | PRKUNaH 250/40\%.936 | $\mathbf{5 3 9 3 3 6}$ | 220,50 | 1.26 | no | 141 | 110 | 171 | 91 | 71 | 3.3 | $>0.90$ | EEI=A3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $400 / 40 \%$ | HS | 4.45 | PRKUNaH 400/40\%.906 | $\mathbf{5 3 9 3 3 7}$ | 220,50 | 1.95 | no | 171 | 140 | 171 | 91 | 71 | 5.3 | $>0.90$ | A2 |
| $250 / 40 \%$ | HS | 3.00 | PRKUNaH 250/40\%.936* | $\mathbf{5 3 8 6 9 8}$ | 230,50 | 1.26 | yes | 141 | 110 | 171 | 91 | 71 | 3.3 | $>0.90$ | EEI=A3 |
| $400 / 40 \%$ | HS | 4.45 | PRKUNaH 400/40\%.906 | $\mathbf{5 3 8 6 9 9}$ | 230,50 | 1.95 | yes | 171 | 140 | 171 | 91 | 71 | 5.3 | $>0.90$ | A2 |
| $250 / 40 \%$ | HS | 3.00 | PRKUNaH 250/40\%.983 | $\mathbf{5 3 8 7 0 8}$ | 220,60 | 1.26 | no | 141 | 110 | 165 | 86 | 71 | 3.3 | $>0.90$ | EEI=A3 |
| $400 / 40 \%$ | HS | 4.45 | PRKUNaH 400/40\%.937 | $\mathbf{5 3 8 7 0 9}$ | 220,60 | 1.95 | no | 171 | 140 | 171 | 91 | 71 | 5.3 | $>0.90$ | A2 |

[^21]
## Ballasts for

## Power Reduction

## of HS Lamps

70 to 250 W

## Shape: $53 \times 66 \mathrm{~mm}$

For high pressure sodium lamps (HS)
Vacuum-impregnated with polyester resin
Screw terminals: 0.5-2.5 mm²
Protection class I
tw 130



| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current A | Type | Ref. No. | Voltage AC <br> V, Hz | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\mathrm{b}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$ | Weight kg | $\begin{aligned} & \Delta t \\ & \mathrm{~K} \\ & \hline \end{aligned}$ | Power factor $\lambda$ | Energy efficiency | $\begin{aligned} & C_{p} \\ & \mu F \end{aligned}$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$ |
| 70 (42) | HS | 0.98 | UNaH 70/40\%.501 | 534128 | 220,50 | 108 | 86 | 42 | 1.23 | 65 | 0.39 | EEI=A3 | 12 | 0.40 |
|  |  |  | UNaH 70/40\%.525* | 535348 | 230,50 | 108 | 86 | 42 | 1.23 | 70 | 0.38 | EEI=A3 | 12 | 0.38 |
|  |  |  | UNaH 70/40\%.691 | 161460 | 220,60 | 108 | 86 | 48 | 1.39 | 60 | 0.42 | EEI=A3 | 10 | 0.40 |
| $100 \quad 1601$ | HS | 1.20 | UNaH 100/40\%.452 | 533947 | 220,50 | 117 | 92 | 55 | 1.52 | 65 | 0.43 | EEI=A3 | 12 | 0.55 |
|  |  |  | UNaH 100/40\%.522* | 535347 | 230,50 | 117 | 92 | 55 | 1.52 | 70 | 0.42 | EEI=A3 | 12 | 0.55 |
|  |  |  | NaHJ 100/70.709 | 161471 | 220,60 | 145 | 120 | 48 | 1.39 | 60/50 | 0.44 | EEI=A3 | 10 | 0.57 |
| 150 (90) | HS | 1.80 | UNaH 150/40\%.453 | 533948 | 220,50 | 145 | 120 | 75 | 2.03 | 75 | 0.42 | EEI=A3 | 20 | 0.80 |
|  |  |  | UNaH 150/40\%.142* | 535333 | 230,50 | 145 | 120 | 75 | 2.03 | 75 | 0.40 | EEI=A3 | 20 | 0.77 |
|  |  |  | UNaH 150/40\%.717 | 161475 | 220,60 | 145 | 120 | 75 | 2.03 | 70 | 0.44 | EEI=A3 | 20 | 0.77 |
| 250 (150) | $\mathrm{HS}$ | 3.00 | UNaH 250/40\%.454 | 533949 | 220,50 | 180 | 155 | 110 | 2.88 | 80 | 0.42 | EEI=A3 | 32 | 1.32 |
|  |  |  | UNaH 250/40\%.983 | 169892 | 220,60 | 145 | 120 | 75 | 2.03 | 75 | 0.40 | EEI=A3 | 32 | 1.32 |

[^22]
## Ballasts with <br> Thermal Cut-out for <br> Power Reduction of HS Lamps 50 to 150 W

## Shape: $53 \times 66 \mathrm{~mm}$

For high pressure sodium lamps (HS) Vacuum-impregnated with polyester resin Thermal cut-out with automatic reset Protection class I
tw 130




C Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$


| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & \text { V, Hz } \end{aligned}$ | Drawing mm | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\mathrm{b}$ |  | Weight <br> kg | $\begin{aligned} & \Delta t \\ & K \end{aligned}$ | Power factor $\lambda$ | Energy efficiency | $C_{p}$ $\mu \mathrm{F}$ | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$ |
| With push-in terminals: $\mathbf{0 . 5 - 1 . 5} \mathbf{~ m m}{ }^{\mathbf{2}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 70 (42) | HS | 0.98 | UNaH 70/40\%.525* | 544728 | 230, 50 | A | 108 | 86 | 42 | 1.23 | 70 | 0.38 | EEI=A3 | 12 | 0.38 |
| 100 (60) | HS | 1.20 | UNaH 100/40\%.522* | 544730 | 230,50 | A | 117 | 92 | 55 | 1.55 | 70 | 0.42 | EEI=A3 | 12 | 0.55 |
| 150 (90) | HS | 1.80 | UNaH 150/40\%.142* | 544729 | 230, 50 | A | 145 | 120 | 75 | 2.10 | 75 | 0.40 | EEI=A3 | 20 | 0.77 |
| 150 (101) | HS | 1.80 | UNaH 150/100.722* | 539050 | 230/240,50 | A | 160 | 135 | 95 | 2.50 | 65/50 | 0.41 | EEI=A3 | 20 | 0.77 |
| 150 (101) | HS | 1.80 | UNaH 150/100.722* | 507627 | 230/240,50 | A | 180 | 155 | 95 | 2.50 | 65/50 | 0.41 | EEI=A3 | 20 | 0.77 |

With screw terminals: 0.5-2.5 mm ${ }^{\mathbf{2}}$ (Drawing B) or 0.75-2.5 mm ${ }^{\mathbf{2}}$ (Drawing C)

| 50 (33) | HS | 0.76 | $\mathrm{NaH} 50 / 35.412$ | 563871 | 230,50 | B | 117 | 92 | 55 | 1.07 | 40/25 | 0.34 | A2 | 6 | 0.22 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | NaH 50/35.797* | 539515 | 230,50 | B | 108 | 86 | 36 | 1.07 | 70/45 | 0.37 | EEI=A3 | 6 | 0.22 |
| 70 (44) | HS | 0.98 | NaHJ 70/50.411 | 563870 | 230,50 | B | 108 | 86 | 48 | 1.34 | 50/35 | 0.37 | A2 | 12 | 0.38 |
|  |  |  | NaHJ 70/50.695* | 503136 | 230,50 | B | 108 | 86 | 48 | 1.34 | 70/50 | 0.37 | EEI=A3 | 12 | 0.38 |
|  |  |  | UNAH 70/40\%.413 | 563872 | 230,50 | B | 117 | 92 | 55 | 1.52 | 50/35 | 0.37 | A2 | 12 | 0.38 |
| $100 \quad 164)$ | HS | 1.20 | NaHJ 100/70.519 | 507628 | 230,50 | B | 145 | 120 | 75 | 2.03 | 60/50 | 0.42 | A2 | 12 | 0.55 |
|  |  |  | NaHJ 100/70.703* | 504131 | 230,50 | B | 117 | 92 | 48 | 1.39 | 70/60 | 0.43 | EEI=A3 | 12 | 0.55 |
|  |  |  | UNAH 100/40\%.41 | 563873 | 230,50 | B | 145 | 120 | 75 | 2.03 | 50 | 0.41 | A2 | 12 | 0.55 |
| 150(101) | HS | 1.80 | NaHJ 150/100.923 | 563876 | 230,50 | C | 135 | 115 | 68 | 2.87 | 45/35 | 0.40 | A2 | 20 | 0.77 |
|  |  |  | NaHJ 150/100.973* | 504135 | 230,50 | B | 145 | 120 | 75 | 2.10 | 75/55 | 0.41 | EEl=A3/A2 | 20 | 0.77 |
|  |  |  | UNAH 150/40\%.922 | 563874 | 230,50 | C | 135 | 115 | 68 | 2.87 | 45/35 | 0.40 | A2 | 20 | 0.77 |

[^23]
## Ballasts with Thermal Cut-out for Power Reduction of HS Lamps 70 to 150 W, Protection Class II



## Encapsulated ballast in compact plastic casing Shape: $61 \times 72 \mathrm{~mm}$

For high pressure sodium lamps (HS)
With cable holder
Thermal cut-out with automatic reset
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$

## Protection class II

tw 130
= II
= II


| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  | citor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Current <br> A | Type | Ref. No. | Voltage AC V, Hz | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\mathrm{b}$ | Weight $\mathrm{kg}$ | $\begin{array}{\|l\|} \hline \Delta t \\ K \\ \hline \end{array}$ | Power factor $\lambda$ | Energy efficiency | $\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \end{aligned}$ | $\begin{array}{\|l\|} \hline \mathrm{N} \\ \mathrm{~A} \\ \hline \end{array}$ |
| 70 (44) | HS | 0.98 | NaHJZ 70/50.520* | 533395 | 230,50 | 134 | 125 | 1.52 | 65/45 | 0.36 | EEI=A3 | 12 | 0.38 |
| 100 (64) | HS | 1.20 | NaHJZ 100/70.519* | 533396 | 230,50 | 161 | 152 | 2.10 | 60/45 | 0.42 | EEI=A3 | 12 | 0.55 |
| 150 (101) | HS | 1.80 | NaHJZ 150/100.466* | 533398 | 230,50 | 161 | 152 | 2.30 | 70/45 | 0.39 | EEI=A3 | 20 | 0.77 |

[^24]
## Ballasts for <br> Power Reduction of HS Lamps 250 to 600 W

Shape: $71 \times 75 \mathrm{~mm}$
Shape: 92x102 mm

For high pressure sodium lamps (HS)
Vacuum-impregnated with polyester resin Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Protection class I
tw 130


B



| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Type | Ref. No. | Voltage AC <br> V, Hz | Drawing | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | b <br> mm | c | Weight <br> kg | $\left.\right\|^{\Delta t}$ | $\begin{aligned} & \text { Power } \\ & \text { factor } \\ & \lambda \\ & \hline \end{aligned}$ | Energy efficiency | Cp <br> $\mu \mathrm{F}$ | $I_{N}$ <br> A |
| 250 (150) | HS | 3.00 | UNaH 250/40\%.746 | 539283 | 220,50 | A | 135 | 115 | 68 | 2.85 | 75 | 0.42 | EEI=A3 | 32 | 1.35 |
|  |  |  | UNaH 250/150.176 | 530509 | 230,50 | B | 133 | 120 | 44 | 3.97 | 65 | 0.40 | A2 | 32 | 1.30 |
|  |  |  | UNaH 250/40\%.936* | 543747 | 230,50 | A | 135 | 115 | 68 | 2.85 | 75 | 0.40 | EEI=A3 | 32 | 1.30 |
|  |  |  | UNaH 250/40\%.747 | 539517 | 220,60 | A | 135 | 115 | 68 | 2.85 | 75 | 0.42 | EEI=A3 | 25 | 1.40 |
| 400 (240) | HS | 4.45 | UNaH 400/40\%.892 | 538592 | 220,50 | A | 165 | 145 | 103 | 4.13 | 75 | 0.44 | A2 | 45 | 2.10 |
|  |  |  | UNaH 400/40\%.906 | 543748 | 230,50 | A | 165 | 145 | 103 | 4.13 | 75 | 0.42 | A2 | 45 | 2.00 |
|  |  |  | UNaH 400/40\%.937 | 538715 | 220,60 | A | 165 | 145 | 103 | 4.13 | 75 | 0.44 | A2 | 40 | 2.05 |
| 600 (360) | HS | 6.20 | UNaH 600/40\%.060 | 539384 | 230/240,50 | B | 173 | 160 | 108 | 6.80 | 75 | 0.44 | A2 | 65 | 2.80 |

* Ballasts without CE marking for replacements or markets outside of the EU


## With Thermal Cut-out

Thermal cutout with automatic reset

| Lamp |  |  | Ballast |  |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Current <br> A | Type | Ref. No. | Voltage AC $\mathrm{V}, \mathrm{~Hz}$ | Drawing |  | b <br> mm |  | Weight <br> kg | $\Delta t$ <br> K | Power <br> factor <br> $\lambda$ | Energy efficiency | Cp <br> uF | $\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$ |
| 250 (150) | HS | 3.00 | UNaH 250/40\%.936* | 538711 | 230,50 | A | 135 | 115 | 68 | 2.85 | 75 | 0.40 | EEI=A3 | 32 | 1.30 |
| 400 (240) | HS | 4.45 | UNaH 400/40\%.906 | 538710 | 230,50 | A | 165 | 145 | 103 | 4.13 | 75 | 0.42 | A2 | 45 | 2.00 |

[^25]
## SUPERIMPOSED, PULSE AND INSTANT RESTRIKE



## ELECTRONIC IGNITORS

## Superimposed ignitors

Superimposed ignitors work independently of ballasts and generate defined ignition pulses during every half-wave within the stipulated voltage ranges. As the mains frequency only plays a subordinate role, these systems work equally well at 50 Hz and 60 Hz .

Superimposed ignitors should be mounted near the lampholder. The clearance needed between the ignitor and the lamp is determined by the respective maximum load capacitance, which is specified for each ignitor in the technical details. The capacitive load of the cable is dependent on its physical properties and wiring layout; this value usually ranges between $70-100 \mathrm{pF}$ per metre.

## Pulse ignitors

As pulse ignitors use the winding of an inductive ballast to generate the requisite pulse voltage, such ballasts must be designed to withstand these high ignition voltages.

## Instant restrike ignitors

Instant restrike ignitors are a special type of ignitor for high-pressure discharge lamps. In comparison to superimposed and pulse ignitors, instant restrike ignitors have a very specified field of application. However, safety-relevant lighting systems, e.g. in power plants, stadiums, but also in television studios, make instant re-ignition of hot high-pressure discharge lamps necessary.

On the following pages, Vossloh-Schwabe presents an extensive range of ignitors for all areas of application.

2 Ignitors and Accessories for Discharge Lamps
Electronic superimposed ignitors ..... 42-50
Pulse ignitors ..... 51-52
Instant restrike ignitors ..... 53-54
Electronic power switches ..... 55
Electronic superimposed ignitors with power switch ..... 56
Switch units for electronic operating devices with 1-10 V interface ..... 57
Start-up switches ..... 58-59
Electronic discharge units ..... 60
Technical details for discharge lamps ..... 78-1 19
General technical details ..... 348-356
Glossary357-359

## Electronic <br> Superimposed <br> Ignitors <br> for HS Lamps <br> up to 70 W

Standard version or with automatic switch-off For high pressure sodium lamps $(H S)$ and ceramic discharge lamps C-HI-TT/ET with base E27 Phasing of the ignition voltage: $60-90^{\circ} \mathrm{el}$ and 240-270 ${ }^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II


Al casing


PC casing - K


PC casing - K D20


PC casing - with push-in terminals


| Type |
| :--- |

[^26]

[^27]
## Electronic <br> Superimposed Ignitors <br> for HS Lamps <br> 70 (DE) to 250 W and HI Lamps 35 to $\mathbf{2 5 0}$ W

Standard version or with automatic switch-off For high pressure sodium lamps (HS), metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II


Al casing


PC casing - K


PC casing - K D20


PC casing - with push-in terminals


| Type |
| :--- |
| Ref. No. |

[^28]

[^29]
## Electronic

Superimposed

## Ignitors

for HS Lamps
70 (DE) to 400 W
and HI Lamps

## 35 to 400 W

Standard version or with automatic switch-off
For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$


Screw terminals: 0.75-4 mm²
Al casing


Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

| Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \\ & \hline \end{aligned}$ | Max. <br> lamp current <br> A | Internal <br> loss <br> W | Inherent heating K | Ignition <br> voltage <br> kV | Load capacity pF | Switch-off time $\text { sec. } / \mathrm{Hz}$ | $\begin{aligned} & \text { Casing } \\ & \text { d }(\varnothing) \\ & \text { mm } \end{aligned}$ | a <br> mm |  | $\left\lvert\, \begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}\right.$ | Weight $9$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminium casing (Al) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Z 400 S | 140427 | 220-240 | 5 | < 3 | <25 | 4-5 | 20-100 | - | 45 | 76 | - | - | 250 |
| Z 400 S D20 | 141583* | 220-240 | 5 | < 3 | <25 | 4-5 | 20-100 | 1216/50-60 | 45 | 90 | - | - | 280 |

[^30]
## Electronic

Superimposed
Ignitors
for HS Lamps
70 (DE) to 400 W
and HI Lamps
35 to 400 W
Standard version or with automatic switch-off
Compact shape
For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Ignition voltage: 4-5 kV
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and 240-270 ${ }^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II
For luminaires of protection class I
(140594, 147707)


Al casing


PC casing - K


PC casing - K D20


PC casing - with push-in terminals


| Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$ | Max. <br> lamp current <br> A | Internal <br> loss <br> W | Inherent heating K | Ignition voltage kV | Load capacity pF | Switch-off time$\text { sec. } / \mathrm{Hz}$ | Casing |  |  |  | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | d ( $\varnothing$ ) | a | b | c |  |
|  |  |  |  |  |  |  |  |  | mm | mm | mm | mm |  |

Aluminium casing (Al) with screw terminals: 0.75-4 mm ${ }^{\mathbf{2}}$

| Z 400 M | 140594 | 220-240 | 5 | < 3 | < 35 | 4-5 | 20-50 | - | 35 | 76 | - | - | 140 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Z 400 M VS-Power | 147707** | 220-240 | 5 | < 3 | < 35 | 4-5 | 20-50 | - | 35 | 76 | - | - | 140 |
| Z 400 M S | 140693 | 220-240 | 5 | <3 | < 35 | 4-5 | 20-50 | - | 35 | 76 | - | - | 140 |

Plastic casing (PC) with screw terminals: $0.75-4$ mm $^{2}$

| Z 400 MK | 140597 | 220-240 | 5 | < 3 | < 35 | 4-5 | 20-50 | - | - | 78 | 34 | 27 | 130 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Z 400 M K VS-Power | 142897** | 220-240 | 5 | < 3 | < 35 | 4-5 | 20-50 | - | - | 78 | 34 | 27 | 130 |
| Z 400 M K D20 | 141582* | 220-240 | 5 | < 3 | < 35 | 4-5 | 20-50 | 1216/50-60 | - | 80 | 34 | 30 | 145 |

Plastic casing (PC) with push-in terminals: 0.5-2.5 mm²

| Z 400 M K D20 | $\mathbf{1 4 2 3 7 0}^{*}$ |
| :--- | :--- |
| Recommended for outdoor lighting |  |

* With IPP technology
** Not suitable for C-HI lamps


## Electronic

Superimposed

## Ignitors <br> for HS Lamps 600 and 750 W

Standard version
For high pressure sodium lamps (HS)
Phasing of the ignition voltage
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: 0.75-4 mm²
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II


Al casing


| Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$ | Max. lamp current A | Internal <br> loss <br> W | Inherent <br> heating <br> K | Ignition <br> voltage <br> kV | Load capacity pF | Switch-off time sec. $/ \mathrm{Hz}$ | Casing <br> d ( $\varnothing$ ) <br> mm | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$ | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Electronic

Superimposed

## Ignitors

for HS and
HI Lamps 250 to 1000 W


Al casing


Standard version or with automatic switch-off For high pressure sodium lamps (HS)
and metal halide lamps (HI)
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and 240-270 ${ }^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$

$$
\text { (Z } 1000 \text { S: 0.75-4 mm²) }
$$

Fastening: male nipple with pre-assembled washer and nut
For luminaires of protection class I and II

2


Z 1000 TOP


[^31]** For flange-mounting with gasket for degree of protection IP55

| Type | Ref. No. | Voltage AC $50-60 \mathrm{~Hz}$ V | Max. <br> lamp current <br> A | $\begin{aligned} & \text { Internal } \\ & \text { loss } \\ & \text { W } \end{aligned}$ | Inherent heating K | Ignition voltage kV | Load capacity pF | Switch-off time$\text { sec. } / \mathrm{Hz}$ | Casing |  |  |  | $\begin{aligned} & \text { Weight } \\ & g \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | $d\|\varnothing\|$ | a | b | c |  |
|  |  |  |  |  |  |  |  |  | mm | mm | mm | mm |  |

## Aluminium casing (Al)

| Z 1000 S | 140430 | 220-240 | 12 | < 6 | < 35 | 4-5 | 20-100 | - | 50 | 80 | - | - | 340 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Z 1000 TOP | 140607** | 220-240 | 12 | < 6 | < 35 | 4-5 | 20-100 | - | - | 83 | 83 | 68 | 620 |
| Z 1000 S D20 | 141584* | 220-240 | 12 | < 6 | < 35 | 4-5 | 20-100 | 1216/50-60 | 50 | 80 | - | - | 340 |



## Electronic <br> Superimposed <br> Ignitors for HS and <br> HI Lamps <br> up to 1000 W

Standard version
For high pressure sodium lamps (HS)
and metal halide lamps (HI)

## For long lead lengths

Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: 0.75-2.5 mm²
Fastening: male nipple with pre-assembled
washer and nut


Al casing


## For HS and HI lamps 150 to 1000 W

Phasing of the ignition voltage: $60-90^{\circ} \mathrm{el}$
For luminaires of protection class I

| Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$ | Max. <br> lamp current <br> A | Internal <br> loss <br> W | Inherent <br> heating <br> K | Ignition <br> voltage <br> kV | Load capacity pF | Switch-off time sec. $/ \mathrm{Hz}$ | Casing d ( $\varnothing$ ) mm |  | $\left\lvert\, \begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}\right.$ | $\left\lvert\, \begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}\right.$ | Weight <br> g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Aluminium casing (Al)


* Not suitable for HI lamps types NDL, WDL or for HS lamps types S, de-Luxe, Comfort or similar

For HS lamps 600 to 1000 W/400 V and HI lamps 1000 W/400 V
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
For luminaires of protection class I and |I

| Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$ | Max. <br> lamp current <br> A | Internal <br> loss <br> W | Inherent <br> heating <br> K | Ignition <br> voltage <br> kV | Load capacity pF | Switch-off time sec. $/ \mathrm{Hz}$ | Casing <br> d ( $\varnothing$ ) <br> mm |  |  | c | Weight <br> g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminium casing (Al) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Z $1000 \mathrm{~S} / 400 \mathrm{~V}$ | 140496 | 380-415 | 6 | < 3.3 | <28 | 4-5 | 20-2000 | - | 45 | 84 | - | - | 295 |

## Electronic

Superimposed

## Ignitors for Projection Lamps up to 1200 W

Standard version
For high-pressure discharge lamps
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: 0.75-2.5 mm²
Fastening: male nipple with pre-assembled washer and nut
For luminaires of protection class I


## Al casing



| Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$ | Max. <br> lamp current <br> A | Internal loss W | Inherent heating K | Ignition voltage kV | Load capacity pF | Switch-off time $\text { sec. } / \mathrm{Hz}$ | Casing $d(\varnothing)$ mm | a mm | b mm | C mm | Weight <br> g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminium casing (Al) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Z 1200/2.5 | 140608* | 220-240 | 15 | < 7.5 | < 40 | 2-2.5 | 20-200 | - | 50 | 80 | - | - | 330 |
| Z 1200/9 | 140609** | 220-240 | 15 | < 10 | < 40 | 7-8 | 20-50 | - | 50 | 135 | - | - | 650 |

## Electronic

## Superimposed

## Ignitors

for HI Lamps
up to 3500 W
Standard version
For metal halide lamps (HI)
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II


B


| Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$ | Max. <br> lamp current <br> A | $\begin{array}{\|l} \hline \text { Internal } \\ \text { loss } \\ \text { W } \end{array}$ | Inherent heating K | Ignition voltage kV | Load capacity pF | Switch-off <br> time <br> sec. $/ \mathrm{Hz}$ | Drawing | Casing $d(\varnothing)$ mm |  | b mm | c mm | Weight g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminium casing (AI) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Z 2000 S | 140432 | 220-240 | 20 | < 6 | < 30 | 4-5 | 20-100 | - | A | 65 | 96 | - | - | 640 |
| Z 2000 S/400 V | 140497 | 380-415 | 12.7 | < 5 | < 32 | 4-5 | 20-2000 | - | B | 50 | 88 | - | - | 340 |
| Z 3500 S/400 V | 140499 | 380-415 | 20 | < 7 | < 35 | 4-5 | 20-100 | - | A | 65 | 96 | - | - | 650 |

## Pulse Ignitors for HS and HI Lamps up to 1000 W

With automatic switch-off
For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Max. permitted casing temperature: $95^{\circ} \mathrm{C}$
Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I
This pulse ignitor is only for use with ballasts that have a dedicated tapping, as this determines the size of the ignition voltage.


Al casing


## PC casing



For HS lamps 50 to 1000 W,
HI lamps 35 to 1000 W and C-HI lamps 35 to 400 W

| Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$ | Number of ignition pulses per mains period | Ignition <br> voltage <br> kV | Load capacity pF | Programmed switch-off time $\mathrm{sec} . / \mathrm{Hz}$ | Casing |  |  | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | $\mathrm{lb}$ | c |  |
|  |  |  |  |  |  |  | mm | mm | mm |  |

## Plastic casing (PC)



With IPP technology

* Suitable ballasts (type: NaHJ...PZT) are available on request

For HS lamps 600 to 1000 W/400 V and HI lamps 1000 W/400 V

| Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$ | Number of ignition pulses per mains period | Ignition <br> voltage <br> kV | Load capacity pF | Programmed switch-off time sec./Hz | Casing $d(\varnothing)$ mm | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$ | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Aluminium casing (Al)



[^32]
## Pulse Ignitors for HS Lamps 50 to 1000 W

Standard version
For standard high pressure sodium lamps (HS)
Max. permitted casing temperature: $95^{\circ} \mathrm{C}$
Screw terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I


| Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$ | Number of ignition pulses per mains period | Ignition <br> voltage <br> kV | Load capacity pF | Programmed switch-off time sec. | Casing $d(\varnothing)$ mm | a mm | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | c mm | Weight <br> 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Not suitable for HS lamps types Plus, Super, XL, HO
Suitable ballasts type: NaH...P) are available on request

## Pulse Ignitors for HI Lamps <br> 250 to 2000 W, <br> Ignition Voltage up to $\mathbf{1} \mathbf{~ k V}$

Standard version
For metal halide lamps (HI)
with ignition voltage of 0.9 kV
Max. permitted casing temperature: $95^{\circ} \mathrm{C}$
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fastening: male nipple with pre-assembled

washer and nut
For luminaires of protection class I

| Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$ | Number of ignition pulses per mains period | Ignition voltage kV | Load capacity pF | Programmed switch-off time sec. | $\begin{aligned} & \text { Casir } \\ & \text { a } \\ & \mathrm{mm} \end{aligned}$ |  | $\left\lvert\, \begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}\right.$ | Weight <br> g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plastic casing (PC) |  |  |  |  |  |  |  |  |  |  |
| PZI 1000/1 K | 140617 | 220-240 | $\geq 1$ | 0.7-0.9 | max. 10000 | - | 57 | 28 | 27 | 50 |

[^33]
## Instant Restrike Ignitors for High-pressure Discharge Lamps up to 600 W

For high pressure sodium lamps (HS), metal halide lamps (HI), ceramic discharge lamps (C-HI) and projection lamps in accordance with the lamp table shown below For installation as a symmetric ignition device (whereby the ignition voltage is split equally over both lamp electrodes)
For installation in luminaires of protection class 1 Max. permitted ambient temperature ta: $60^{\circ} \mathrm{C}$ Mains connection: screw terminal 3 -poles,

$$
0.75-2.5 \mathrm{~mm}^{2}
$$

Lamp connection: screw terminal $0.75-2.5 \mathrm{~mm}^{2}$ for circuit 1 and 2
Fastening: 2 mounting slots for screws M4
Material: plastic casing made of ABS

## CAUTION

Defective lamps must be replaced immediately



Lamp

| Lamp table |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Circuit 2 |  |  |
| Lamp type | Base | VS lampholder type | Catalogue page | Lamp type | Base | VS lampholder type |
| CDM-TD 70 W | RX7s | 306 | 77 | HBO 50 W | SFa8-2 | - |
| HCl-TS 70 W | RX7s | 306 | 77 | MSR 125 HR | GZX9.5 | - |
| HI 70 W (DE) | RX7s | 306 | 77 | HBO 200 W | SFc 1 0-4 | - |
| HS 70 W (DE) | RX7s | 306 | 77 | HBO 200 W | SFc 10-4 | - |
| RCI-TS 70 W | RX7s | 306 | 77 | MSR 200 HR | GZX9.5 | - |
| HS 150 W (DE) | RX7s | 306 | 77 | HTI 250 W | FaX1.5 | - |
| HMI 200 W | X5 15 | - |  | HMI $400 \mathrm{~W} / \mathrm{SE}$ | GZZ9.5 | - |
| HMI 200 W/X | GZY9. 5 | - |  | HMP 400 W | FaX1.5 | - |
| MSI 200 W | GZY9.5 | - |  | HTI 400 W | FaX1.5 | - |
| RSI 200 W | X515 | - |  | RSI 400 W | GZX9.5 | - |
| HS 250 W (DE) | Fc2 | 025 | 77-78 | HBO 500 W | SFcY13-5 | - |
| HS 400 W (DE) | Fc2 | 025 | 77-78 | HMP 575 W | SFc10-4 / G22 | - |
| MSR 400 HR | GZZ9.5 | - |  | HMI 575 W | SFc 10-4 | - |
| MSI 575 W | SFc 10 | - |  | RSI 575 W | G22 | - |
| MSR 575 HR | G22 | - |  | HTI 600 W | FaX1.5 | - |

## Instant Restrike Ignitors for High-pressure Discharge Lamps 1000 W/230 V and 2000 W/400 V

For high pressure sodium lamps (HS), metal halide lamps (HI), ceramic discharge lamps (C-HI) in accordance with the lamp table shown below For installation as a symmetric ignition device (whereby the ignition voltage is split equally over both lamp electrodes)
Degree of protection: IP65
For installation in luminaires of protection class I Max. permitted ambient temperature ta: $60^{\circ} \mathrm{C}$ Mains connection: screw terminal 3 -poles, max. 4 mm $^{2}$
Earth connection: screw terminal max. $4 \mathrm{~mm}^{2}$ Lamp connection: screw terminal max. $4 \mathrm{~mm}^{2}$ Fastening: 4 holes $\varnothing 6.3 \mathrm{~mm}$ in the base of casing Material: casing made of fibreglass-reinforced polyester

## CAUTION

Defective lamps must be replaced immediately


Circuit diagram HZ 1000 K/230V


Circuit diagram HZ 2000 K/400 V


| Type | Ref. No. | Voltage AC $50-60 \mathrm{~Hz}$ <br> V | Max. <br> lamp current <br> A | Internal <br> loss <br> W | Inherent <br> heating <br> K | Ignition <br> voltage* <br> kV | Ignition <br> time <br> sec. | Load capacity pF | Casing |  |  | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | b | c |  |
|  |  |  |  |  |  |  |  |  | mm | mm | mm | g |
| HZ 1000 K | 147791 | $230 \pm 10 \%$ | 12 | < 5 | < 10 | 36 | approx. 6 | 5-50 | 218 | 120 | 92 | 3745 |
| HZ $2000 \mathrm{~K} / 400 \mathrm{~V}$ | 147793 | $400 \pm 10 \%$ | 12.7 | < 5 | < 10 | 36 | approx. 6 | 5-30 | 218 | 120 | 92 | 3745 |

* The ignition voltage is split equally over both lamp electrodes

| Lamp table HZ 1000 K |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lamp type | Lamp manufacturer | Base | VS lampholder type | Catalogue page | Lamp type | Base | VS lampholder type | Catalogue page |
| CDM-TD 150 W | Philips | RX7s | 306 | 77 | HI 400 W (DE) | Fc2 | 025 | 77-78 |
| HCl-TS 150 W | Osram | RX7s | 306 | 77 | HS 400 W (DE) | Fc2 | 025 | 77-78 |
| HI 150 W (DE) |  | RX7s | 306 | 77 | HI 1000 W (DE) | Fc2 | 025 | 77-78 |
| HS 150 W (DE) |  | RX7s | 306 | 77 | HS 1000 W (DE) | Cable, K12s-7 | 211 | 79 |
| HI 250 W (DE) |  | Fc2 | 025 | 77-78 | - | - | - | - |
| HS 250 W (DE) |  | Fc2 | 025 | 77-78 | - | - | - | - |


| Lamp table HZ 2000 K/400 V |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Lamp type | Base | VS lampholder type | Catalogue page | Note |
| HI 2000 W (DE) | Cable, K 12s-7 | 211 | 79 | not suitable for HRI-TS 2000 W/N/L, HQ1-TS 2000 W/N/L |

## Electronic

## Power Switches

for HS Lamps up to 600 W and HM Lamps up to 700 W


PU 12 K/PR 12 KD/PR 12 K LC
For high pressure sodium lamps (HS) and mercury vapour lamps (HM) For power reduction by using ballasts with multiple voltage tapping and superimposed ignitors


PR $12 \mathrm{~K} L C$ and PR 12 K D are also suitable for
power switching of LED drivers and electronic ballasts.
Casing: PC
PU 120 K
Max. permitted casing temperature tc: $80^{\circ} \mathrm{C}$
Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II


Circuit diagrams for power reduction
see pages 96-97.

PU 121 K


## Advantages of PR 12 K LC

- intelligent, auto-adaptive concept
- eliminates the time-consuming task of continually adjusting the times of power-reduced operation to suit constantly changing day-night cycles
- removes the need for making adjustments due to daylight-saving times
- easy programming via dial
- no additional control line necessary
- optimal suitable for the supplementary integration into existing luminaires
- suitable for luminaires of protection class I and II



## Power reduction with control phase

| PU 12 K | 140621 | 230,50 / 220,60 | 8/0.5 | 12/1 | < 25 | - | disconnect or connect | 74 | 34 | 27 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PU 120 K | 140622* | 230,50 / 220,60 | 8/0.5 | 12/1 | < 10 | 327 sec. | disconnect | 74 | 34 | 27 | 100 |
| PU 121 K | 140623* | 230, $50 / 220,60$ | 8/0.5 | 12/1 | <25 | 327 sec. | connect | 74 | 34 | 27 | 100 |
| Power reduction without control phase |  |  |  |  |  |  |  |  |  |  |  |
| PR 12 KLC **** | 142170** | $\begin{aligned} & 220-230 \pm 10 \%, 50 \\ & 220 \pm 10 \%, 60 \end{aligned}$ | 8/0.5 | 12/1 | < 12 | selectable | without control phase | 76 | 34 | 31 | 100 |
| PR 12KD**** | 142150*** | $\begin{aligned} & 220-230 \pm 10 \%, 50 \\ & 220 \pm 10 \%, 60 \end{aligned}$ | 8/0.5 | 12/1 | < 12 | selectable | without control phase | 76 | 34 | 31 | 100 |

[^34]
## Electronic <br> Superimposed Ignitors with Power Switch for HS Lamps 50 to 250 W



For ignition and power reduction of high pressure sodium lamps (HS)
Casing: PC
Control voltage: $230 \mathrm{~V} \pm 10 \%$
Response/cut-out voltage: 170-198 V
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature $\mathrm{t}_{\mathrm{c}}: 80^{\circ} \mathrm{C}$
Push-in terminals: $0.75-1.5 \mathrm{~mm}^{2}$


Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

Applicable for positive switch logic allowing for terminal
pin assignment of power switch

- Full load lamp start is guaranteed
- Switching to power reduced operation after delay time of approx. 5 min .

| Type | Ref. No. | Voltage AC $\mathrm{V}, \mathrm{~Hz}$ | Max. lamp current A | Number of ignition pulses per mains period | Internal loss <br> W | Inherent heating K | Ignition voltage <br> kV | Load capacity pF | Programmed switch-off time sec./ Hz | Cas <br> a <br> mm | b |  | Weight <br> g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HS lamps 50 and 70 W |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ZPU 70 K D20 | 142098 | 230, 50/220, 60 | 2 | 4 | <2 | < 15 | 1.8-2.3 | 20-200 | 1216/50-60 | 96 | 50 | 32 | 240 |
| HS lamps 70 (DE) to 250 W |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ZPU 250 K D20 | 142099 | 230,50/220,60 | 3 | 6 | <2 | < 15 | 4-5 | 20-50 | 1216/50-60 | 96 | 50 | 32 | 240 |

Circuit diagrams see page 95

## Switch Units for Electronic Operating Devices with 1-10 V Interface

Vossloh-Schwabe's switch units are designed to enable one-step power reduction of lamps (FL, CFL, LED, HS, HI and C-HII with the help of the respective electronic ballast or converter.

To this end, the switch units utilises the $1-10 \mathrm{~V}$ interface of the control gear unit. The switch unit is mainly intended for outdoor luminaires in systems with or without a control phase.

Shape: $56 \times 28 \times 27 \mathrm{~mm}$
Casing: PC
Screw terminals: 0.75-2.5 mm²
Max. permissible casing temperature $t_{c}: 80^{\circ} \mathrm{C}$
Min. permissible ambient temperature ta: $-30^{\circ} \mathrm{C}$
Fastening: plastic male nipple with pre-assembled washer and nut

Circuit diagram SU 1-10 V K


## Power reduction SU 1-10 V K for lighting systems featuring an Lst control phase

The switch unit employs a positive switching to reduce power, i.e. power is reduced when the control phase is switched off (LST $=0 \mathrm{~V}$ ).


The $1-10 \mathrm{~V}$ interface of the electronic ballast is addressed at the moment that power reduction is effected.

## Power reduction PR 1-10 V K LC for

 lighting systems without a control phaseThis switch unit can be used to effect power reduction in lighting systems that do not feature a control phase.
The $1-10 \mathrm{~V}$ interface is addressed on the basis of the fundamental operating principle used by Vossloh-Schwabe's PR 12 K LC power switch (details of which can be made available on request). This power switch is capable of determining the starting time of reduced-power operation over the measured operating time of a lighting system. As a result, it is no longer necessary to spend valuable time modifying the power-reduction unit to suit the continually changing day-night cycle; changing the clocks in line with daylight saving measures in the summer and winter is equally unnecessary. The $1-10 \mathrm{~V}$ interface of the electronic ballast is addressed as soon as the system is switched to reduced power.

Circuit diagram PR 1-10 V K LC



| Type | Ref. No. | Control voltage LST <br> $\mathrm{V}, 50 / 60 \mathrm{~Hz}$ | Externally (on site) connected resistor (Rext.) <br> $\mathrm{k} \Omega(\min .0 .1 \mathrm{~W})$ | Selfheating <br> K | Weight <br> g |
| :--- | :--- | :--- | :--- | :--- | :--- |
| For lighting systems with control phase |  |  |  |  |  |
| SU 1-10 V K | $\mathbf{1 4 9 9 9 2}$ | $220-240 \mathrm{~V} \pm 10 \%$ | $1-70$ | $<10$ | 50 |
| For lighting systems without control phase |  |  |  |  |  |
| PR 1-10 V K LC | $\mathbf{1 4 9 9 9 3}$ | - | $1-70$ | $<10$ | 50 |

# Start-up Switches for <br> HS and HI Lamps 35 to 1000 W and HM Lamps 50 to 700 W 

To bridge a phase of darkness during the starting-up period of high-pressure discharge lamps and also after a brief interruption of the power supply until the high-pressure discharge lamps are restarted

For mercury vapour lamps (HM),
high-pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
For $\mathrm{HS}, \mathrm{HI}$ and $\mathrm{C}-\mathrm{HI}$ lamps only if used together with a superimposed ignitor
Nominal voltage/frequency:
$220-230 \mathrm{~V} \pm 10 \% / 50-60 \mathrm{~Hz}$
$240 \mathrm{~V} \pm 10 \% / 50 \mathrm{~Hz}$
Max. permitted casing temperature tc: $85^{\circ} \mathrm{C}$
Screw terminals: 0.75-2.5 mm²
Fastening: male nipple with pre-assembled
washer and nut
Max. wattage of incandescent lamp: 1000 W
Automatic switch-off at $60 \%$ of the discharge
lamp's luminous flux

## Circuit for HM lamps



AS 1000 K
Casing: PC
Weight: 100 g
Internal loss: < 0.8 W
Inherent heating: < 10 K
Type: AS 1000 K
Ref. No.: 140627

The time diagram shows some typical switching examples of a luminaire equipped with a highpressure discharge lamp, incandescent lamp and start-up switch AS 1000 K.

During the ignition and start-up period, the start-up switch activates an incandescent lamp to provide a basic level of lighting. After a brief interruption in the supply voltage during the re-ignition of the discharge lamp, the integrated control electronics also bridges the phase of darkness by switching on the auxilliary lighting. The incandescent lamp is automatically switched off when the discharge lamp has achieved a sufficient luminous flux (approx. 60\%).

## Circuit for HS and HI lamps




## Ignitors and Accessories for Discharge Lamps

## AS 1000 K A 10

Specially for using with electronic ballasts or pulse ignitors for high-
pressure discharge lamps
Casing: PC
Delayed switching: $655 \mathrm{sec} .(50 \mathrm{~Hz})$
For luminaires of protection class I and II
Max. contact current: 6 A at $\lambda 0.5,10 \mathrm{~A}$ at $\lambda 1$
Internal loss: < 1 W
Inherent heating: < 12 K
Weight: 100 g
Type: AS 1000 K A10
Ref. No.: 141193

## Circuit with electronic ballast



The time diagram shows some typical switching examples of a luminaire equipped with a highpressure discharge lamp, incandescent lamp and start-up switch AS 1000 K AlO.


## Electronic Discharge Units for Parallel Connected Capacitors 0.1 to $100 \boldsymbol{\mu F}$

On luminaires with parallel compensation and designed for plug connection to the mains supply, the plugs retain their charge for a relatively long time after disconnection from the power supply. The discharge resistors built into the compensation capacitor are designed for stationary lamps and when disconnected from the mains permit a voltage reduction to 50 V after 1 minute at the earliest.

According to European standard EN 60598-1, the compensation capacitor on mobile lamps must be discharged to 34 V within 1 second. Until now so-called discharge chokes built like conventional ballasts have been used for this purpose. These conventional discharge chokes are connected in parallel to the compensation capacitor and after disconnection from the power supply rapidly discharge the capacitor owing to their low ohmic resistance.

In their rated operating conditions, conventional discharge chokes exhibit a considerable inductive reactance which diminishes the effect of the compensation capacitor particularly if it has a low capacitance.

Furthermore, conventional discharge chokes cause considerable losses and feature high weight.

## CE 50

All electronic, wear resistant switching element
Casing: aluminium
Nominal voltage: $34-264 \mathrm{~V}$
Nominal frequency: $50-60 \mathrm{~Hz}$
Internal loss: $<0.5 \mathrm{~W}$
Inherent heating: <6 K
Max. permitted casing temperature: $95^{\circ} \mathrm{C}$
Push-in terminals: $1 \mathrm{~mm}^{2}$
Fastening: male nipple with pre-assembled washer and nut
Weight: 40 g
Type: CE 50
Ref. No.: 140537

With the aid of the electronic discharge unit CE 50, it is possible to discharge a capacitor with a capacitance of up to $100 \mu \mathrm{~F}$ to 34 V within 1 second, i.e. within the time specified in EN 60598-1.


Thanks to its high reliability, low inherent losses, small dimensions and low weight, the CE 50 represents an inexpensive solution to the problem of capacitor discharge.


Ignitors and Accessories for Discharge Lamps

## THERMOPLASTICS AND PORCELAIN



## THE RIGHT MATERIAL MIX SPELLS A DECISIVE ADVANTAGE

The lampholders presented in this chapter are designed for highpressure discharge lamps, for which high ignition voltages and high starting currents are characteristic. High temperatures can also occur with higher lamp outputs.

Vossloh-Schwabe therefore attaches great importance to ensuring casings, contacts and cables are made of high-grade materials.

Owing to the high ignition voltages, these lampholders are also governed by stricter requirements regarding creepage and air clearance distances.

When operating high-pressure discharge lamps with E27 and E40 Edison bases, care must be taken to ensure that the respective lampholders are approved for use with discharge lamps. Lampholders that are suitable in this respect are marked with " 5 kV ".

Lampholders with E26 and E39 bases and UL-approved wiring can be found under www.unvlt.com

2 Lampholders for Discharge Lamps
E27 lampholders 64-66
E40 lampholders ..... 67-68
G8.5 lampholders ..... 69
GU6.5 lampholders ..... 69
GX10 lampholders ..... 70
GY9.5 lampholders ..... 71
G12 lampholders ..... 71
RX7s lampholders ..... 72-75
Fc2 lampholders ..... 75-76
K 12x30s lampholders ..... 77
K12s-7 support ..... 77
Technical details for discharge lamps ..... 78-1 19
General technical details ..... 348-356Glossary357-359

## E27 Lampholders

## For discharge lamps with base E27

E27 lampholders, for cover caps (see p. 291-293)
Profiled shape, external thread 40×2.5 IEC 60399
Nominal rating: 4/250/5 kV
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $15 / 16.5 \mathrm{~g}$, unit: 500 pcs .
Type: 64719
Ref. No.: $\mathbf{5 0 5 7 2 1}$ PET GF, black, T210
Ref. No.: 505720 LCP, black, T270
E27 lampholders, for cover caps (see p. 291-293)
Profiled shape, plain
Nominal rating: 4/250/5 kV
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: 15 g , unit: 500 pcs.
Type: 64770
Ref. No.: $\mathbf{5 0 5 3 8 9}$ PET GF, black, T210
Ref. No.: 505014 LCP, black, T270
E27 lampholders
Casing: PPS, black, T230
Nominal rating: $4 / 500 / 5 \mathrm{kV}$
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing holes for screws M4 and M5
Weight: 35/35.4 g, unit: 250 pcs.
Type: 62150

## Ref. No.: 108718

Type: 62151 with lamp safety catch

## Ref. No.: 108719

## E27 lampholders

Casing: porcelain, white, T210
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Oblong holes for screws M4
Weight: 65/67.7 g, unit: 200 pcs.
Type: 62600

## Ref. No.: 102635

Type: 62601 with lamp safety catch
Ref. No.: 102637


## Lampholders for Discharge Lamps

E27 lampholder
Casing: porcelain, white, T210
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Threaded bushes for screws M3
Weight: 69.3 g , unit: 200 pcs.
Type: 62622
Ref. No.: 108416

## E27 lampholders

Casing: porcelain, white, T210
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Oblong holes for screws M4, length max. 15 mm
Weight: 106.8/103.9 g, unit: 100 pcs.
Type: 62104

## Ref. No.: 102615

Type: 62105 with lamp safety catch

## Ref. No.: 102617

## E27 lampholders

Casing: porcelain, white, T210
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing bracket with slot for screws M5
Weight: 113 g , unit: 100 pcs .
Type: 62110

## Ref. No.: 106585

Type: 62111 with lamp safety catch
Ref. No.: 109568

## E27 lampholders

Casing: porcelain, white, T270
Nominal rating: $4 / 250 / 5 \mathrm{kV}$
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 60.6 g , unit: 200 pcs.
Type: 62050

## Ref. No.: 102599

Type: 62010 with lamp safety catch (with spring)

## Ref. No.: 102577

Type: 62009 with lamp safety catch (with crushing)

## Ref. No.: 544605

E27 lampholder
Casing: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fastening bushes for screws M3
Weight: 66.3 g , unit: 200 pcs.
Type: 62015
Ref. No.: 102582



E27 lampholder, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 60.5 g , unit: 200 pcs.
Type: 02070
Ref. No.: 543304

E27 lampholder
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
With lateral fixing flange,
tilt angle: $15^{\circ}$
Spring loaded central contact
Fixing hole for screw M4
Weight: 67.6 g , unit: 200 pcs.
Type: 02415

## Ref. No.: 543414

E27 lampholder, for cover caps (see page 291-293)
Casing: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 66.5 g , unit: 150 pcs .
Type: 62310


Ref. No.: 102624

E27 lampholder
For cover caps type 80010, 97735
and 97742 (see page 299)
Casing: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing oblong holes for screw M4
Weight: 66.5 g , unit: 200 pcs .
Type: 62370
Ref. No.: 543303

# E40 Lampholders 

For discharge lamps with base E40

Nominal rating: $18 / 500 / 5 \mathrm{kV}$
Screw terminals: $1.5-4 \mathrm{~mm}^{2}$
Spring loaded central contact

## E40 lampholders

Casing: PPS, black, T240
Oblong holes for screws M5
Weight: $111.7 / 112.1 \mathrm{~g}$, unit: 40 pcs.
Type: 12600/12601

## Ref. No.: 400913

Ref. No.: 400914 with lamp safety catch
With steel thread
Ref. No.: 533428
Ref. No.: 533429 with lamp safety catch

E40 lampholders
Casing: PPS, black, T240
Fixing bracket with slots for screws M5
Weight: 122.3/122.7 g, unit: 40 pcs.
Type: 12610/12611
Ref. No.: 400915
Ref. No.: 400916 with lamp safety catch
With steel thread
Ref. No.: 533430
Ref. No.: 533431
with lamp safety catch

## E40 lampholders

Casing: PPS, black, T240
Fixing bracket with tapped fixing holes M5
Weight: 122.9/123.3 g, unit: 40 pcs.
Type: 12614/12612
Ref. No.: 400917
Ref. No.: 400918 with lamp safety catch
With steel thread
Ref. No.: 536220
Ref. No.: 533432 with lamp safety catch

## E40 lampholders

Casing: porcelain, white, T270
Oblong holes for screws M5
Weight: 224/229.3 g, unit: 48 pcs.
Type: 12800/12801

## Ref. No.: 108208

Ref. No.: 107780 with lamp safety catch
With steel thread
Ref. No.: 532602
Ref. No.: 532603 with lamp safety catch


10

## E40 lampholders

Casing: porcelain, white, T270
Fixing bracket with slots for screws M5
Weight: 252.3/243 g, unit: 48 pcs.
Type: 12810/12811
Ref. No.: 108374
Ref. No.: 108375 with lamp safety catch
With steel thread

## Ref. No.: 532604

Ref. No.: 532605 with lamp safety catch

## E40 lampholders

Casing: porcelain, white, T270
Fixing bracket with tapped fixing holes M5
With lamp safety catch
Weight: 252.8 g , unit: 48 pcs.
Type: 12812
Ref. No.: 108373
With steel thread
Ref. No.: 532606

E40 lampholders
Only for lamps with base E40/E45
Casing: porcelain, white, T270
Oblong holes for screws M5
Weight: 206 g, unit: 50 pcs.
Type: 12900/12901
Ref. No.: 528252
Ref. No.: 528958 with lamp safety catch

E40 lampholders
Only for lamps with base E40/E45
Casing: porcelain, white, T270
Fixing bracket with slots for screws M5
Weight: 217 g , unit: 50 pcs.
Type: 12910/12911
Ref. No.: 528253
Ref. No.: 528254 with lamp safety catch


## G8.5 Lampholders

## For discharge lamps with base G8.5

Nominal rating: 2/500/5 kV
Multipoint contacts: CuNiZn
Fixing holes for screws M3


G8.5 lampholders
Push-in terminals for stranded conductors with ferrule bare end of cores $\varnothing 1.4-1.8 \mathrm{~mm}$
Type: 33600 casing: LCP, black, T260
Weight: 5 g , unit: 1000 pcs.

## Ref. No.: 502394

Type: 33650 casing: ceramic, T300
Weight: 12.6 g, unit: 150 pcs.

## Ref. No.: 554542

## G8.5 lampholder

Casing: ceramic, T300
Welded leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 300 mm


Weight: 26.4 g , unit: 100 pcs .
Type: 33671
Ref. No.: 554543

## GU6.5 Lampholders

## For discharge lamps with base GU6.5

Suitable for luminaries of protection class II
Casing: ceramic, cover: PPS, T250
Nominal rating: 2/250/5 kV
Leads: Cu nickel-plated, stranded conductors $0.75 \mathrm{~mm}^{2}$, double PTFE-insulation, length: 250 mm

## GU6.5 lampholders

Weight: 13.8 g , unit: 100 pcs.
Type: 34510 fixing holes for screws M3

## Ref. No.: 547761

Type: 34511 threaded bushes for screws M3
Ref. No.: 534220

## GU6.5 lampholder

Fixing holes for screws M3
Identical mounting hole layout and lamp focus of the PGJ5 lampholder 34120 offer an effortless interchangeability of both lamp technologies.
Weight: 15 g , unit: 100 pcs.


Type: 34520


Ref. No.: 539497

## GX10 Lampholders

## For discharge lamps with base GX10

GXIO lampholder, for luminaires of protection class II
Casing: PPS, black, T240, nominal rating: 2/250/5 kV
Push-in twin terminals for stranded conductors

with ferrule bare end of cores max. $\varnothing 1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 9 g, unit: 100 pcs.. Type: 31400

## Ref. No.: 509356

GX10 lampholder, for luminaires of protection class II
Casing: steatite, cover plate: PPS
T240, nominal rating: 2/500/5 kV
Push-in terminals for stranded conductors
with ferrule bare end of cores $\varnothing 1.5-1.8 \mathrm{~mm}$
For leads with outer diameter: max. 3 mm
Fixing holes for screws M3
Weight: 14 g , unit: 100 pcs .
Type: 31500

## Ref. No.: 536469

GX10 lampholder
Casing: steatite, cover plate: PPS
T240, nominal rating: $2 / 500 / 5 \mathrm{kV}$
Welded leads: $2 \times 0.75 \mathrm{~mm}^{2}$, stranded conductors, length: 400 mm
5 kV : Cu nickel-plated, PTFE-insulation,
Cu tinned, Si-insulation


Fixing holes for screws M3
Weight: 36.3 g , unit: 100 pcs.
Type: 31500
Ref. No.: 549999
GX10 lampholder, for luminaires of protection class II
Casing: steatite, cover plate: PPS
T240, nominal rating: 2/500/5 kV
Welded leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, double PTFE-insulation, length: 250 mm
Fixing holes for screws M3
Weight: 23.3 g , unit: 100 pcs.
Type: 31530
Ref. No.: 543267


## GY9.5 Lampholders

For discharge lamps with base GY9.5

GY9. 5 lampholder
Casing: ceramic, cover plate: PPS, black
T240, nominal rating: $10 / 500 / 5 \mathrm{kV}$, contacts: Ni
Leads: Cu tinned, stranded conductors
$5 \mathrm{kV}: 1 \mathrm{~mm}^{2}$, Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$,
length: 300 mm and Cu tinned,
stranded conductors $0.75 \mathrm{~mm}^{2}$, Si-insulation,
length: 300 mm
Fixing holes for screws M3
Weight: 48 g , unit: 150 pcs.
Type: 37001
Ref. No.: 533663

## G12 Lampholders

## For discharge lamps with base G12

G12 lampholders
Casing: ceramic, cover plate: LCP
T250, nominal rating: 5/500/5 kV
Contacts: CrNi
Push-in terminals for leads with
ferrule bare end of cores max. $\varnothing 1.8 \mathrm{~mm}$
Weight: 30.7 g , unit: 25 pcs.
Type: 42200/42210
Ref. No.: $\mathbf{5 3 5 7 5 0}$ fixing holes $\varnothing 4.2 \mathrm{~mm}$
Ref. No.: 535751 threaded bushes M3

G12 lampholders
Casing: ceramic
T250, nominal rating: 5/500/5 kV
Contacts: CrNi
Welded leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$ Si-insulation, white, length: 300 mm
Weight: 43/52 g, unit: 25 pcs.
Type: 42222/42242
Ref. No.: 535755 cover plate: LCP
Ref. No.: 543643 cover plate: ceramic

G12 lampholder
Casing: LCP, black
T250, nominal rating: $2 / 500 / 5 \mathrm{kV}$
Contacts: CrNi
Push-in terminals for leads with
ferrule bare end of cores max. $\varnothing 1.8 \mathrm{~mm}$
For tinned lead ends: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Weight: 13.6 g , unit: 250 pcs.
Type: 42000
Ref. No.: 509213




10


## RX7s Lampholders

If the central hole on the bracket is used for fixing it has to be ensured by an additional support within the luminaire that the bracket cannot be deformed. If the lampholders are used for lamps with ignition voltage max. 20 kV the luminaire manufacturer is responsible for sufficient creepage distances and clearances.

## RX7s lampholders

Contact pin: Ni, nominal rating: 2/500/5 kV Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,

Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 300 mm Fixing holes for screws M4
Weight: 23.3/20.1 g, unit: 25 pcs.
Type: 31662/31672 PPS, black, T220
Ref. No.: 107065 lead exit right
Ref. No.: 107066 lead exit left
Type: 31695/31696 LCP, black, T260
Ref. No.: 504416 lead exit right
Ref. No.: 504669 lead exit left

RX7s lampholder
Casing: PPS, black, T220
Contact pin: Cu, silver bulb
Nominal rating: 2/250/5 kV
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6$ mm, length: 200 mm
With screw M4
Weight: 14 g , unit: 300 pcs.
Type: 34301

## Ref. No.: 509117

RX7s lampholder
Casing: PPS, black, T220
Contact pin: Cu, silver bulb
Nominal rating: 2/250/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central hole for screw M4
Other bracket versions on request
Weight: 43.8 g , unit: 200 pcs.
Type: 34311 contact distance 114.2 mm

## Ref. No.: 529841

## RX7s lampholder

Casing: PPS, black, T220
Contact pin: Cu, silver bulb
Nominal rating: 2/250/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm Oblong holes for screws M4
Central tapped hole M4
Weight: 47.5 g , unit: 200 pcs.
Type: 34326 contact distance: 132 mm
Ref. No.: 529845

## Remark on lampholders type

## 323 and 343:

The luminaire design must ensure protection from electric shock as well as sufficient creepage distances and clearances from live parts on the back of lampholder.

## Type 343:

With doubled insulated leads suitable for luminaires of protection class II


Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu , silver bulb
Nominal rating: 4/500/5 kV
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6$ mm, length: 200 mm Fixing screw M4
Weight: 26.2 g , unit: 300 pcs.
Type: 32301
Ref. No.: 100913

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6$ mm, length: 200 mm
Oblong holes for screws M4
Central hole for screw M4
Weight: 74.8 g , unit: 200 pcs.
Type: 32311 contact distance: 114.2 mm
Ref. No.: 100921

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central tapped holes M4
Weight: 76 g, unit: 200 pcs.
Type: 32321 contact distance: 114.2 mm

## Ref. No.: 100922

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$, Si-insulation max. $\varnothing 3.6$ mm, length: 200 mm
Oblong holes for screws M4
Central hole for screw M4
Weight: 74 g , unit: 200 pcs.
Type: 32341 contact distance: 114.2 mm

## Ref. No.: 100932

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6$ mm, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 75.5 g , unit: 200 pcs.
Type: 32361 contact distance: 114.2 mm
Ref. No.: 100934





## 

## Lampholders for Discharge Lamps

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu , silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 76.4 g , unit: 200 pcs.
Type: 32381 contact distance: 114.2 mm

## Ref. No.: 100937

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu , silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6$ mm, length: 200 mm
Oblong holes for screws M4
Central tapped hole M4
Weight: 78.3 g , unit: 200 pcs .
Type: 32326 contact distance: 132 mm

## Ref. No.: 100925

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 77.6 g , unit: 200 pcs.
Type: 32330 contact distance: 132 mm

## Ref. No.: 100928

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$, Si-insulation max. $\varnothing 3.6$ mm, length: 200 mm Oblong holes for screws M4
Central hole for screw M5
Weight: 75.7 g, unit: 200 pcs.
Type: 32336 contact distance: 132 mm

## Ref. No.: 100931

Protection caps for RX7s lampholders
For push-fit onto lampholders type 323
Protection against electrical shock
on the rear side of the lampholder
Lampholders with assembled protection cap on request
Weight: $0.7 / 0.6 \mathrm{~g}$, unit: 1000 pcs .
Type: 97528
Ref. No.: 507592 LCP, natural
Ref. No.: 507593 PET, white


## Lampholders for Discharge Lamps

RX7s lampholder
Casing: ceramic, T250
Contact pin: Ni
Nominal rating: 10/500/5 kV
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6$ mm, length: 300 mm Fixing holes for screws M4
Weight: 72 g, unit: 25 pcs.
Type: 30602
Ref. No.: 100723

## RX7s lampholder

Casing: ceramic, T250, contact pin: Ni
Nominal rating: 10/500/20 kV
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation with spun glass filler $\varnothing 7 \mathrm{~mm}$,
for ignition voltage: max. 20 kV ,
length: 1000 mm
Fixing holes for screws M4
Weight: 120 g , unit: 25 pcs .
Type: 30620
Ref. No.: 100741

## Fc2 Lampholders

For discharge lamps with base Fc2
If the lampholders are used for lamps with ignition voltage max. 20 kV the luminaire manufacturer is responsible for sufficient creepage distances and clearances.

## Fc2 lampholder

Casing: ceramic, T250
Nominal rating: 10/500/5 kV
Contacts: Ni
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6$ mm, length: 300 mm
Fixing holes for screws M4
Weight: 100 g , unit: 200 pcs.
Type: 02500
Ref. No.: 108937

## Fc2 lampholder

Casing: ceramic, T250
Nominal rating: 10/500/5 kV, contacts: Ni
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 300 mm Fixing screws $M 4$, captive
Weight: 102 g , unit: 25 pcs.
Type: 02574 rigid fixing
Ref. No.: 100096




10

## Lampholders for Discharge Lamps

Fc2 lampholder
Casing: ceramic, T250
Nominal rating: 10/500/5 kV, contacts: Ni
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 300 mm
Fixing screws M4, captive
Weight: 102 g, unit: 25 pcs.
Type: 02575 adjustable fixing
Ref. No.: 100098


Fc2 lampholder
Casing: ceramic, T250
Nominal rating: 10/500/20 kV, contacts: Ni Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,

Si-insulation with spun glass filler $\varnothing 7 \mathrm{~mm}$,
for ignition voltage: max. 20 kV ,
length: 500 mm
Fixing screws M4, captive
Weight: 120 g , unit: 25 pcs .
Type: 02525 rigid fixing
Ref. No.: 100082
Fc2 lampholder
Casing: ceramic, T250
Nominal rating: 10/500/20 kV, contacts: Ni
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation with spun glass filler $\varnothing 7 \mathrm{~mm}$,
for ignition voltage: max. 20 kV ,
length: 500 mm
Fixing screws M4, captive
Weight: 120 g , unit: 25 pcs.
Type: 02543 adjustable fixing
Ref. No.: 100086

Lamp safety catch
For push-fit onto the lampholders 100082,
100086, 100096 and 100098
Casing: ceramic
Spring: stainless steel
Weight: 21 g , unit: 50 pcs.
Type: 86037
Ref. No.: 103818

## K12x30s Lampholders

For discharge lamps with base K12×30s

K12×30s lampholders
Suitable for luminaires of protection class II
Casing: LCP, black, T150
Nominal rating: 4/500/3 kV
Contacts: CuSn6, silver plated
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$
Si-insulation, doubled insulated
Rear recess M4, wrench size 7
Rear and bottom fixing holes for screws M5
Weight: 75.9/61.5 g, unit: 100 pcs.
Type: 13010
Ref. No.: $\mathbf{5 3 2 4 3 0}$ lead length: 705 mm
Ref. No.: 532431 lead length: 155 mm


## K12s-7 Support

For metal halide lamps 1000 and 2000 W Type Osram HQI TS and Radium HRI TS

The luminaire design must ensure protection
from electric shock as well as sufficient creepage and clearance distances.

K12s-7 support
Cable connection on cable lug for lead $0.75-2.5 \mathrm{~mm}^{2}$
Casing: ceramic, T300
Support: stainless steel, heat-resistant
Oblong holes for screws M5
Weight: 70 g , unit: 25 pcs.
Type: 21100
Ref. No.: 107677



## Technical Details

## 2 Components for Discharge Lamps

Electronic ballasts ..... 79-84
Assembly instructions for mounting and installing ..... 80-84
Circuit diagrams ..... 84
Electromagnetic ballasts ..... 84-89
Power reduction ..... 84-85
Assembly instructions for mounting and installing ..... 89-92
Electromagnetic control gear units ..... 86-89
Assembly instructions for mounting and installing ..... 86-89
Circuit diagrams - Electromagnetic ballasts ..... 93-95
Lampholders for high-pressure discharge lamps ..... 96-97
Ignitors ..... 97-102
Assembly instructions for mounting and installing ..... 100-102
Power switches ..... 103-105
Switch units ..... 105-106
Lamp table ..... 107-1 19
Energy efficiency classification ..... 118
General technical details ..... 348-356
Glossary ..... 357-359

If the electrical current through a discharge lamp is increased, a discharge channel with very high luminous efficiency is created in the discharge chamber. Luminous flux and light output increase substantially. The internal pressure of the discharge chamber rises and attains between 1 and 10 bar these are so-called high-pressure discharge lamps or simply discharge lamps. The light output and colour rendition of high-pressure lamps vary considerably depending on the lamp family.

Discharge lamps can only be operated with ballasts. Ignitors are additionally required for sodium lamps and metal halide lamps. Furthermore, to compensate blind current when using magnetic ballasts, compensation capacitors must be fitted. The lampholders enable the lamp to be fixed in the luminaire and ensure simple exchange of lamps at the end of their service life.

As well as stabilising the lamp's operating point, ballasts also influence the lamp's output and luminous flux, the system's light output, the service life of the lamps as well as the colour temperature of the light.

The following chapters provide technical information regarding VS components for

- High-pressure sodium lamps
(HS lamps)
- Metal halide lamps
(HI lamps)
- Metal halide lamps with a ceramic discharge tube
(C-HI lamps)
- Mercury vapour lamps
(HM lamps)
- Low-pressure sodium lamps
(LS lamps)

Electromagnetic or electronic ballasts can be used for high-pressure discharge lamps. Unlike with fluorescent lamps, lamp efficiency is not decisively altered by the use of electronic ballasts. In contrast, electronic ballasts lead to a reduction of the inherent losses and thus to an increase in system efficiency. In addition, electronic ballasts ensure gentle lamp operation, which increases the lamp's service life.

Independent electronic and electromagnetic ballasts have also been developed, which in the form of control gear units then provide special advantages during application.

## Electronic Ballasts for HI and C-HI Lamps

Electronic ballasts are fitted with all the components required to operate discharge lamps. Furthermore, they safely shut down lamps at the end of their service life to prevent high temperatures from being generated within the luminaires that could influence the service life of the luminaires and components.

By adding a strain-relief module, VS electronic built-in ballasts turn into independent operating devices that can, for instance, be used as a power unit and can also be installed in intermediate ceilings in this form.

## Technical Details - Components for Discharge Lamps

# Assembly Instructions for Electronic Ballasts 

## Assembly instructions for mounting and installing electronic ballasts for high-pressure discharge lamps

## Mandatory regulations

DIN VDE 0100 Erection of low voltage installations
EN 60598-1 Luminaires - part 1: general requirements and tests

EN 61347-1 Operating devices for lamps - part 1: general and safety requirements
EN 61347-2-12 Control gear for lamps; part 2-12: Particular requirements for d.c. or a.c. supplied electronic ballasts for discharge lamps (excluding fluorescent lamps)

EN 55015 Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment

EN 61000-3-2 Electromagnetic Compatibility (EMC) - part 3: maximum values - main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)

EN 61547 Installations for general lighting purposes - EMC immunity requirements

## Descriptions of VS EBs for discharge lamps

The type designations for VS HID ballasts all follow the same pattern, as follows:

| EHXc | 70 | .326 |
| :--- | :--- | :--- |
| Electronic ballast for HID lamps | Wattage | Serial number |

## Mechanical mounting

Surface Firm, flat surface required to ensure good heat transfer. Avoid mounting on protruding surfaces.

Mounting location
Electronic ballasts must be protected against moisture and heat. Installation in outdoor luminaires: water protection rate of $>4$ (e.g. IP54 required).

Fastening Using M4 screws in the designated holes
Heat transfer If the ballast is destined for installation in a luminaire, sufficient heat transfer must be ensured between the electronic ballast and the luminaire casing. Electronic ballasts should be mounted with the greatest possible clearance to heat sources or lamps. During operation, the temperature measure at the ballast's tc point must not exceed the specified maximum value.

## Supplement for independent electronic ballasts

## Mounting position

Any position using the mounting tabs

Clearance Min. of 0.10 m from walls, ceilings and insulation
Min. of 0.10 m from further electronic ballasts
Min. of 0.25 m from sources of heat (lamp)

Surface Solid; EB must not be allowed to sink into insulation materials

## Technical Details - Components for Discharge Lamps

## Technical specifications

| Type | Operating voltage | Protective | Mean service | Power | Temperature | Possible no. of VS devices/automatic cutout type |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | range <br> AC: 220 V .. 240 V | conductor <br> mA | $\begin{aligned} & \text { life*** } \\ & \text { hrs. } \end{aligned}$ | $\begin{aligned} & \text { factor } \\ & \lambda \end{aligned}$ | protection* | B (10A) | B (16A) | C (10A) | C (16A) |

## Standard EB

| EHXc 35.325(183033;183034) | $\pm 10 \%$ | $\leq 0.5$ | 32,000 ( $\mathrm{t}_{\mathrm{c}} 85^{\circ} \mathrm{C}$ ) | 0.95 | yes** | 7 | 12 | 12 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 40,000 ( ¢ $c^{8} 80^{\circ} \mathrm{C}$ ) |  |  |  |  |  |  |
|  |  |  | $50,000\left(\dagger_{c} 75^{\circ} \mathrm{C}\right)$ |  |  |  |  |  |  |
| $\begin{aligned} & \text { EHXC } 35.325 \\ & (183035) \end{aligned}$ | $\pm 10 \%$ | $\leq 0.5$ | 32,000 ( t $^{6} 80^{\circ} \mathrm{C}$ ) | 0.95 | yes | 7 | 12 | 12 | 20 |
|  |  |  | 40,000 ( $\mathrm{tc}_{\mathrm{c}} 75^{\circ}{ }^{\circ} \mathrm{C}$ ) |  |  |  |  |  |  |
|  |  |  | 50,000 ( $\mathrm{t}_{\mathrm{c}} 70^{\circ} \mathrm{C}$ ) |  |  |  |  |  |  |
| EHXc 35G. 327 | +6-10\% | $\leq 0.5$ | $30,000\left(t_{c} 80^{\circ} \mathrm{C}\right.$ ) | > 0.95 | yes | 7 | 12 | 12 | 20 |
| EHXc 70.326 | $\pm 10 \%$ | $\leq 0.5$ | $32,000\left(t_{c} 80^{\circ} \mathrm{C}\right)$ | 0.95 | yes** | 7 | 12 | 12 | 20 |
| (183036) |  |  | 40,000 ( $\mathrm{t}_{\mathrm{c}} 75^{\circ} \mathrm{C}$ ) |  |  |  |  |  |  |
|  |  |  | 50,000 ( $\mathrm{tc}_{\mathrm{c}} 70^{\circ} \mathrm{C}$ ) |  |  |  |  |  |  |
| EHXc 70.326 | $\pm 10 \%$ | $\leq 0.5$ | 26,000 ( $\mathrm{t}_{\mathrm{c}} 75^{\circ} \mathrm{C}$ ) | 0.95 | yes | 7 | 12 | 12 | 20 |
| (183038) |  |  | $40,000\left(\dagger_{c} 65^{\circ} \mathrm{C}\right)$ |  |  |  |  |  |  |
|  |  |  | 50,000 ( $\mathrm{t}_{\mathrm{c}} 60^{\circ} \mathrm{C}$ ) |  |  |  |  |  |  |
| EHXc 150G. 334 | +6-10\% | $\leq 0.5$ | 50,000 ( $\dagger_{\mathrm{c}} 75^{\circ} \mathrm{C}$ ) | > 0.98 | yes | 4 | 7 | 7 | 12 |

* The devices are fitted with a temperature switch to protect against impermissible overheating.

Once the device has cooled down, it is switched on again. It may prove necessary to briefly dis- and then reconnect the device to the mains voltage.
** The temperature protection inside the luminaire must be checked when using devices without a cap.
*** To achieve the mean service life, the max. temperature (tc max.) at the tc point must not be exceeded; failure rate $=0.2 \%$ per 1000 hrs

## Product features

Shutdown of defective lamps
In the event of a lamp failing to ignite or of a lamp with an increased operating voltage (end of the lamp's service life), the electronic ballast will switch off after a defined period of time (< 20 minutes). The ballast will also shut down if the lamp fails to attain its specified rated output. The ballast can be reset by disconnecting and then reconnecting the mains voltage. The ballast must always be disconnected from the mains prior to changing a lamp.

EOL Effect In high-pressure discharge lamps, the EOL effect manifests itself in a change of the lamp's voltage. These changes can, for instance, occur due to unsealed parts of the burner or the rectifier effect. An automatic EOL cut-out prevents safety risks at the end of the service life of high-pressure discharge lamps. EOL tests are conducted to check the behaviour of electronic ballasts at the end of a lamp's service life. The EOL cut-out stops the lamp base overheating at the end of a lamp's service life.

Short-circuit resistance
The ballast outputs (to the lamp) are short-circuit-proof. Short-circuits between the lamp connection and the casing (earth conductor) will destroy the ballast.

Temperature protection
To prevent excess temperatures, some ballasts are fitted with temperature protection. A ballast will restart after it has cooled down. It might be necessary to briefly interrupt the supply voltage. The above table contains a list of temperature-protected devices.

Transient mains peak protection
Values are in compliance with EN 61547 (interference immunity).
$\qquad$

[^35]
## Electrical installation

Wiring - The wiring between the mains, electronic ballast and lamp must comply with the respective circuit diagram. Note: the luminaire casing (metal) must be connected to the earth conductor.

- The electronic ballast must be earthed using a toothed washer or similar (protection class I, compliance with RFI/BCI standards).
- To ensure compliance with RFI suppression limits, mains conductors should not be wired parallel to lamp conductors and maximum clearance should be ensured.
- After the installation of electronic ballasts, luminaires must be tested to ensure compliance with maximum values laid down in EN 55015.
It is permissible to connect the protective conductor of the ballast by attaching the ballast to metal conductors that are connected to the protective conductor. In doing so, care must be taken to ensure the protective conductor is contacted in accordance with EN 60598. If, however, a ballast is fitted with a connection terminal for a protective conductor without through-wiring and if this is to be used to connect the protective conductor, this connection terminal may only be used for the ballast itself.

Push-in terminals The used terminals can be connected using rigid or flexible conductors with a section of $0.75-2.5 \mathrm{~mm}^{2}\left(\mathrm{~K} 35\right.$ ballasts: $0.5-1.5 \mathrm{~mm}^{2}$ ). The stripped conductor length is $10-11 \mathrm{~mm}$ (K35 ballasts: $8.5-9.5 \mathrm{~mm}$ ) for terminal grid 3.5 mm . Conductors must not be tin-plated.

Error current Impulse-resistant leak-current protection must be installed. Distribute the luminaires to phases L1, L2 and L3; install tri-phase FI switches. If permissible, install FI switches with 30 mA leak current; connect no more than 15 luminaires as Fl switches can be triggered at half the leak current value.

Tri-phase connection of luminaires with EB

- Prior to operating newly installed lighting systems: check the mains voltage is appropriate to the electronic ballast's mains voltage range (AC, DC).
- The N-type conductor must be properly connected to all luminaires or ballasts.
- Conductors can only be connected or disconnected if the ballast is disconnected from the mains. Attention: N-type conductors must never be disconnected individually or as the first element.
- Insulation resistance test: from L to PE (L and N must not be connected)
- The neutral conductor must be reconnected after completion of the test.

Electromagnetic Compatibility (EMC)
Vossloh-Schwabe's electronic ballast range was developed in accordance with valid EMC standards (interference, interference immunity and mains harmonics) and specially designed to ensure safe compliance with the limiting values. It is assumed that any remarks regarding conductor wiring and conductor length in the instructions for installing electronic ballasts in luminaires or for independent ballasts will be observed.

Compensation Luminaires with electronic ballasts do not need compensation (power factor $\geq 0.95$ ).

## Selection of automatic cut-outs

Dimensioning automatic cut-outs
High transient currents occur when an EB is switched on because the capacitors have to load. Lamp ignition occurs almost simultaneously. This also causes a simultaneous high demand for power. These high currents when the system is switched on put a strain on the automatic conductor cut-outs, which must be selected and dimensioned to suit.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B, C characteristics.

No. of electronic ballasts (see table on page 81)
The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by $20 \%$ for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m [ $2.5 \mathrm{~mm}^{2}$ ] of conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of ballasts by $10 \%$.

## Additional information

Information on the installation of electronic ballasts for optimising EMC. To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic ballasts:

- Conductors between the EB and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference).
- Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another. The distance between HF and mains conductors should be as large as possible, ideally $>5 \mathrm{~cm}$. (This prevents the induction of interference between the mains and lamp conductors.)
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
- Devices must be properly earthed. EBs require secure contacts to the luminaire casing or must be earthed using a PE connection. This PE connection should be effected using an independent conductor to achieve better dissipation of the leak current. EMC improves af frequencies greater than 30 MHz .
- The mains conductor must not be laid too close to the EB or the lamp (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another if at all possible.
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Temperature Reference point temperature $t_{c}$
The safe operation of electronic ballasts is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point $-t_{c}$ max. - on all EB casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this tc point. This point is determined by testing the converter during normal, IEC-standardised operation at the specified ambient temperature (ta), which is also indicated on the type plate. As both the design-related ambient temperature and the ballast's inherent heat, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the tc point under real installation conditions.

Ambient temperature ta
The ambient temperature - as specified on every EB - denotes the permissible temperature range within the luminaire.

Reliability and service life
If the max. temperature at the $t_{c}$ reference point (as specified on the type plate and the technical documentation of the ballast) is not exceeded, the defined service life can be expected to be achieved, assuming a switching cycle of 165 minutes on and 15 minutes off. See table on page 81 for service life details.

## Technical Details - Components for Discharge Lamps

Circuit diagrams for metal halide lamps (HI) and high-pressure sodium lamps (HS) with electronic ballasts (EB)


## Electromagnetic Ballasts for Discharge Lamps

## Electromagnetic ballasts for HI and HS Lamps

As the lamp manufacturer's reference values regarding lamp current and voltage are generally identical for metal halide (HI) and high-pressure sodium lamps (HS) of the same lamp wattage and the impedance values required for the ballast are also identical, the same ballasts can frequently be used for both lamp types. It should be remembered that HI lamps react sensitively to impedance deviations from the rated value with appreciable colour changes. Vossloh-Schwabe ballasts therefore comply with the lamp's narrower tolerances. Moreover, ballasts remain below the maximum peak DC value for HI lamps. This value is not specified for HS lamps; instead, the maximum stated start-up current must not be exceeded.

In order to keep the temperature of the luminaires and the electrical values of the lamps within tolerable limits, the impedance of the ballasts must remain constant over the entire service life. A so-called service life test (test of thermal durability) provides proof of this requirement having been met.

HI and HS lamps constitute a special case in terms of thermal testing. In rare cases, a safety risk can occur at the end of the service life of lamps fitted with external bulbs. The safety risk is caused by the so-called lamp rectifier effect, which can lead to overheating of ballasts, ignitors, lampholders and conductors and can therefore destroy the luminaire. Against this background, the luminaire standard EN 60598-1 "luminaires; part 1: general requirements and tests" has been supplemented by tests concerning this safety risk. As a result, since 1 September 2002, it has been illegal to market luminaires that do not comply with the new regulations. This means luminaires need to be fitted with thermal protection that prevents a luminaire from overheating in the event of this malfunction.

In this respect, it is recommended to use VS ballasts with temperature
switches that have already been tested using this circuit.

## Electromagnetic ballasts for HM lamps

Even in the event of major mains fluctuations (92-106\% of the rated voltage), the ballast must not fall short of the no-load voltage specified by the lamp manufacturer nor exceed a fixed short-circuit current. The startup current must be high enough to ensure that at least $90 \%$ of the lamp's operating voltage is achieved within 15 minutes.

## Technical Details - Components for Discharge Lamps

## Power reduction with HS and HM lamps

The lamp wattage can be reduced by operating the ballast at a higher impedance value, higher than the rated value. The lamp manufacturer's specifications must be observed in doing so to avoid shortening the lamp's service life. The lamps should be started at the ballast's rated impedance and only switched down to reduced operation after a period of at least five minutes.
The impedance value can be altered by using an additional ballast (high-effort option) or by using a switch-able ballast (low-cost option). These ballast models can be switched using either a modern, time-controlled electronic power reduction switch, which is equipped with an additional control conductor (230 V), or a power reduction switch with a constant incentive rate setting (no control conductor).

The construction of power reduction switches with control conductors differs according to the selected increase in impedance.

## Power reduction with switchable ballasts

| Ballast type | Tested with | Mains voltage | System output 100\% W | Reduced system output W \% | Reduced luminous flux \% (approx. values) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| U-NaHJ 70/40\% | HS 70 | 230,50 | 83 | 50 60 | 55 |
| U-NaH 100/40\% | HS 100 | 230,50 | 114 | 67 58 | 55 |
| U-NaH 150/40\% | HS 150 | 230,50 | 160 | 98 61 | 55 |
| U-NaH 250/40\% | HS 250 | 230,50 | 271 | 150 (1) 55 | 50 |
| U-NaH 400/250.805 | HS 400 | 230,50 | 421 | 253 60 | 50 |
| Q 80/50.596 | HM 80 | 230,50 | 90 | 55 61 | 55 |
| Q 125/80.611 | HM 125 | 230,50 | 134 | 89 65 | 55 |
| U-Q 250/150.438 | HM 250 | 230,50 | 274 |  | 55 |
| U-Q 400/250.437 | HM 400 | 230,50 | 422 | 267 65 | 55 |

Example: Osram lamp, type NAV, HQL

## Start-up switches

As high-pressure lamps operate with a start-up phase, the lamp's full luminous flux will only be reached after completion of this start-up period. In the event of disconnection from the mains, this start-up phase is dependent on the lamp's temperature. If an additional source of light is desired or required for this start-up period for safety-relevant applications, it is possible to switch on an auxiliary lamp with the help of a start-up switch.
There are two types of start-up switches:

- AS 1000 K for superimposed ignition systems. This switch monitors the lamp's operating voltage. If this is below a defined value (approx. $60 \%$ of the lamp's luminous flux), an auxiliary lamp is switched on.
- AS 1000 K A1O for pulse ignition systems and electronic ballasts.

This model switches the auxiliary lamp off after a defined period of time (10 minutes), after which the high-pressure lamp will have reached the desired illumination level.

| Lamp family | Typical start-up time | Typical restart time <br> (mains interruption at lamp operating temperature) |
| :--- | :--- | :--- |
| HS | 3 min. | 5 min. |
| $\mathrm{HI} / \mathrm{C}-\mathrm{HI}$ | 3 min. | 10 min. |
| HM | $4-5 \mathrm{~min}$. | $4-5 \mathrm{~min}$. |
| LS | 10 min. | 5 min. |

Switching to reduced power using additional impedance (second ballast)

Switching to reduced power using a switchable ballast (ballast with tapping points)




## Control Gear Units for High-pressure Discharge Lamps

## With electromagnetic ballasts

Control gear units with electromagnetic ballasts for high-pressure sodium lamps (HS), metal halide lamps $(\mathrm{HI})$ and metal halide lamps with a ceramic discharge tube (C-HI) are fitted with all the components needed to ensure safe normal operation. Apart from a ballast, control gear units also contain a digital timer ignitor with IPP++ technology (Intelligent-Pulse-Pause-Mode), a compensation capacitor and a temperature switch with automatic reset. As all these components form a matched system, they create optimum operating conditions for lamps and small models. These compact control gear units remove the need for separate installation and wiring of individual components, thus considerably reducing assembly time.

## Mandatory regulations

DIN VDE 0100 Erection of low voltage installations
EN 60598-1 Luminaires - part 1: general requirements and tests

EN 61347-1 Operating devices for lamps - part 1: general and safety requirements
EN 61347-2-1 Control gear for lamps; part 2-1: special requirements for ignitors
(other than glow starters)
EN 61347-2-9 Control gear for lamps; part 2-9: special requirements for ballasts
for discharge lamps (except fluorescent lamps)

EN 60923 Ballasts for discharge lamps - performance requirements

EN 60927 Operating devices for lamps; ignitors (glow starters); performance requirements

EN 61048 Operating devices for lamps - capacitors for fluorescent lamp circuits and other discharge lamp circuits; general and safety requirements

EN 61049 Operating devices for lamps - capacitors for fluorescent lamp circuits and other discharge lamp circuits; performance requirements

EN 55015 Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment

EN 61000-3-2 Electromagnetic Compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)

EN 61547 Installations for general lighting purposes - EMC immunity requirements

## Technical Details - Components for Discharge Lamps

## Technical specifications

Operating voltage range
Control gear units can be operated at the specified mains voltage within a tolerance range of $\pm 10 \%$ for $\mathrm{HS} / \mathrm{HI}$ lamps and $\pm 3 \%$ for $\mathrm{C}-\mathrm{HI}$ lamps.

Leak current $\leq 0.1 \mathrm{~mA}$

Compensation/power factor
Parallel-compensated control gear units with a power factor of $\lambda<0.9$
$(\lambda<0.85$ for 100 W )

Degree of protection
IP40, IP65
IP54 for aluminium casing

Protection class Independent, protection class II control gear units (plastic casing)
Independent, protection class I control gear units (aluminium casing)

Max. ambient temperature
See ta value on the type plate of the control gear unit

Lead length to lamp
Max. 10 m
"F" designation Suitable for mounting on surfaces of normal flammability

## Mechanical mounting

Mounting position
Any position using the mounting tabs
Clearance Min. of 0.20 m from walls, ceilings and insulation
Min. of 0.20 m from further control gear units
Min. of 0.25 m from sources of heat (lamp)

Surface Solid; control gear unit must not be allowed to sink into insulation materials

## Electromagnetic compatibility (EMC)

Interference
Interference voltage measurements only have to be taken at the connection terminals for luminaires with electromagnetic control gear units as these systems operate with lamp voltages of under 100 Hz . These low-frequency interference voltages are generally not critical with high-pressure discharge lamps with electromagnetic control gear units.

Interference immunity
Thanks to the robust design and choice of materials, electromagnetic control gear units provide a high degree of interference immunity and are not impaired by normal mains power interference.

## Mains Harmonics

After every zero crossing of the lamp current, discharge lamps experience a re-ignition peak as the lamps go out for a brief (imperceptible) moment. These re-ignition peaks of discharge lamps generate mains harmonics that are smoothed by the ballast's impedance. VS electromagnetic control gear units all comply with the stipulated maximum values.

## Technical Details - Components for Discharge Lamps

## Selection of automatic cut-outs for VS control gear units

Dimensioning automatic cut-outs
When a control gear unit is switched on, high transient current peaks occur due to the smoothing capacitor having to load. The lamps are ignited almost simultaneously, which also causes energy consumption peaks. These high system switch-on currents put a strain on the automatic conductor cut-outs, which must be selected and dimensioned to suit.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B and C characteristics.

No. of control gear units
The following values are meant as guidelines only and may vary depending on the respective lighting system. The specified maximum number applies to the number of devices that can be switched on simultaneously. Specifications apply to single-pole fuses; using multi-pole fuses reduces the maximum number by $20 \%$. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m [2.5 mm²] of conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of control gear units by $10 \%$.

| Type of control gear unit | Type of automatic cut-out |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{B}(10 \mathrm{~A})$ | $\mathrm{B}(16 \mathrm{~A})$ | $\mathrm{C}(10 \mathrm{~A})$ | $\mathrm{C}(16 \mathrm{~A})$ |
| VNaH 35PZT | 7 | 12 | 12 | 20 |
| VNaHJ 70 PZT | 7 | 12 | 12 | 20 |
| VNaHJ 100 PZT | 6 | 10 | 10 | 16 |
| VNaHJ 150 PZT | 5 | 8 | 8 | 14 |
| VNaHJ 250 PZT | 3 | 5 | 5 | 7 |
| VNaHJ 400 PZT | 2 | 4 | 3 | 5 |

## Safety functions

Shutdown of defective lamps
In the event of a lamp failing to ignite the control gear unit will automatically shut down after a preset safety period. The programmed switch off time prevents flickering at the end of the lamp's service life. The control gear unit can be reset after shut down and lamp changing by disconnecting and then reconnecting the mains voltage.

Temperature protection
To protect against impermissible excess temperatures, the devices are fitted with a temperature fuse.

Protection against installation and wiring errors
The integrated IPP++ function will prevent the power unit from making any attempt to start the lamp in the event of an installation or wiring error and also if the neutral conductor is dislodged within the existing mains voltage network (three-phase supply network). Should the nominal supply voltage be connected, the power unit will begin starting the lamp immediately.

## Reliability and service life

The control gear units can be expected to provide a service life of 50,000 operating hours provided that the assembly instructions are observed and the maximum tw value of the ballast is not exceeded. Failure rate: $<0.1 \% / 1,000$ hrs

## Technical Details - Components for Discharge Lamps

## Electrical installation

Connection terminals
Terminals can be contacted with rigid or flexible conductors

- Rigid conductors: max. $2.5 \mathrm{~mm}^{2}$
- Flexible conductors: max. $2.5 \mathrm{~mm}^{2}$
- Stripped lead length: $10-11 \mathrm{~mm}$
- Conductors must not be tin-plated

Admissible diameter $7-9 \mathrm{~mm}$
The suitability of luminaire conductors and cables for use within luminaires with ignition devices must be checked in accordance with luminaire standard EN 60598-1 10.2.2. In general, all silicone and standard PVC cables meet these requirements.

Wiring The wiring between the supply mains, control gear unit and lamp must be in accordance with the circuit diagram shown on the type plate.
Note: luminaire casing (metal) must be connected to the protective earth conductor.

## Assembly Instructions for Electromagnetic Ballasts

For mounting and installing electromagnetic ballasts for high-pressure discharge lamps

## Mandatory regulations

DIN VDE 0100 Erection of low voltage installations
EN 60598-1 Luminaires - part 1: general requirements and tests

EN 61347-1 Operating devices for lamps - part 1: general and safety requirements
EN 61347-2-9 Operating devices for lamps; part 2-9: special requirements for ballasts for discharge lamps (except fluorescent lamps)

EN 60923 Ballasts for discharge lamps - performance requirements

EN 55015 Maximum values and methods of measurement for RFI suppression in electrical lighting installations and similar electrical appliances

EN 61000-3-2 Electromagnetic Compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics
(device input current up to and including 16 A per conductor)

EN 61547 Installations for general lighting purposes - EMC immunity requirements

## Technical Details - Components for Discharge Lamps

## Technical specifications

Operating voltage range
The ballasts can be operated at the specified mains voltage within a tolerance range of $\pm 10 \%$ for $\mathrm{HS} / \mathrm{HI}$ and HM lamps and $\pm 3 \%$ for C-HI lamps.

Leak current $\leq 0.1 \mathrm{~mA}$

Compensation/power factor
Inductive ballasts: $\lambda \leq 0.5$
Parallel-compensated ballasts: $\lambda \geq 0.85$

## Mechanical mounting

Mounting position
Any
Mounting location
Ballasts are designed for installation in luminaires or comparable devices. Independent ballasts do not need to be installed in a casing.

Fastening Preferably using M4 to M6 screws, depending on the size of the ballast. Encapsulated ballasts may only be used with flat-headed screws (M5), underlaid with a washer (DIN 9021). (Tightening torque $\approx 2 \mathrm{Nm}$ )

Temperature The winding temperature tw must be checked during operation and must not exceed the specified maximum value. It must be tested by using the standardised method of measuring resistance. The $\Delta t$ marking on the type plate is a measure of the ballast's inherent heating and thus of its power loss. The lower this value is the lower the power loss of the ballast. This value is determined using standardised measuring regulations and constitutes a benchmark for comparing ballasts of the same design for selection purposes.

## Electromagnetic compatibility (EMC)

Interference Interference voltage measurements have to be taken at the connection terminals for luminaires with electromagnetic ballasts as these are systems that operate with lamp voltages of under 100 Hz . These low-frequency interference voltages are generally not critical with high-pressure discharge lamps with electromagnetic ballasts.

Interference immunity
Thanks to the robust design and choice of materials, electromagnetic ballasts provide a high degree of interference immunity and are not impaired by normal mains power interference.

Mains Harmonics
After every zero crossing of the lamp current, discharge lamps experience a re-ignition peak as the lamps go out for a brief (imperceptible) moment. These re-ignition peaks of discharge lamps generate mains harmonics that are smoothed by the ballast's impedance. VS electromagnetic ballasts all comply with the stipulated maximum values.

## Selection of automatic cut-outs for VS electromagnetic ballasts

Dimensioning automatic cut-outs
When a ballast is switched on, high transient current peaks occur due to parasite capacitances that can accumulate with the number of luminaires. These high system switch-on currents put a strain on the automatic conductor cutouts. For this reason, only surge-current-proof automatic cut-outs should be used for lighting systems.

## Technical Details - Components for Discharge Lamps

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B and C characteristics.

No. of ballasts The following values are meant as guidelines only and may vary depending on the respective lighting system. The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to singlepole fuses. The number of permissible ballasts must be reduced by 20\% for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m of [ $2.5 \mathrm{~m}^{2}$ ] conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of ballasts by $10 \%$. The values quoted in the following tables are guidelines and can be affected by system-specific factors.

Possible number of ballasts connected to automatic cut-outs with or without compensation


## Mercury vapour lamps (HM)

| 50 | 230 | 7 | 10 | 19 | 13 | 25 | 15 | 31 | 18 | 39 | 23 | 49 | 8 | 10 | 11 | 12 | 13 | 15 | 16 | 18 | 20 | 23 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 80 | 230 | 8 | 6 | 12 | 7 | 15 | 9 | 19 | 11 | 24 | 14 | 30 | 6 | 6 | 8 | 7 | 10 | 9 | 12 | 11 | 15 | 14 |
| 125 | 230 | 10 | 4 | 7 | 5 | 9 | 7 | 12 | 7 | 15 | 9 | 19 | 4 | 4 | 5 | 5 | 7 | 6 | 9 | 7 | 10 | 9 |
| 250 | 230 | 18 | 2 | 4 | 3 | 5 | 3 | 6 | 3 | 7 | 4 | 9 | 2 | 2 | 3 | 2 | 3 | 3 | 4 | 3 | 5 | 4 |
| 400 | 230 | 25 | 1 | 2 | 1 | 3 | 2 | 4 | 2 | 5 | 2 | 6 | 1 | 1 | 1 | 1 | 2 | 22 | 3 | 2 | 3 | 2 |
| 700 | 230 | 40 | - | 1 | - | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | - | 1 | - | 1 | 1 | 1 | 1 | 2 | 1 |
| 1000 | 230 | 60 | - | 1 | - | 1 | - | 1 | 1 | 2 | 1 | 2 | - | - | - | - | 1 | - | 1 | 1 | 1 | 1 |

## Metal halide lamps (HI)

| 35 | 230 | 6 | 11 | 22 | 14 | 29 | 18 | 36 | 23 | 45 | 29 | 50 | 9 | 11 | 12 | 14 | 15 | 18 | 18 | 23 | 23 | 27 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70 | 230 | 12 | 7 | 12 | 9 | 15 | 11 | 18 | 14 | 23 | 17 | 29 | 5 | 8 | 6 | 10 | 8 | 13 | 9 | 16 | 12 | 20 |
| 100 | 230 | 12 | 6 | 10 | 7 | 13 | 9 | 16 | 11 | 20 | 14 | 25 | 4 | 7 | 5 | 9 | 6 | 11 | 8 | 14 | 10 | 17 |
| 150 | 230 | 20 | 4 | 7 | 5 | 9 | 6 | 11 | 7 | 14 | 9 | 17 | 2 | 5 | 3 | 6 | 4 | 8 | 5 | 10 | 6 | 12 |
| 250 | 230 | 32 | 2 | 5 | 2 | 6 | 3 | 7 | 4 | 9 | 5 | 11 | 1 | 3 | 1 | 4 | 2 | 5 | 3 | 6 | 4 | 8 |
| 400 | 230 | 35 | 2 | 3 | 2 | 4 | 3 | 5 | 4 | 7 | 5 | 8 | 1 | 2 | 1 | 3 | 2 | 4 | 2 | 5 | 3 | 6 |
| 1000 | 230 | 85 | - | 1 | - | 1 | 1 | 1 | 1 | 3 | 1 | 3 | - | - | - | - | - | 1 | 1 | 1 | 1 | 2 |
| 2000 | 380 | 60 | - | 1 | - | 1 | - | 2 | - | 2 | - | 3 | - | - | - | - | - | 1 | - | 1 | - | 2 |
| 2000 | 380 | 37 | - | - | - | - | - | 1 | - | 1 | - | 2 | - | - | - | - | - | - | - | 1 | - | 1 |
| 3500 | 380 | 100 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |

High pressure sodium vapour lamps (HS)

| 35 | 230 | 6 | 11 | 22 | 14 | 29 | 18 | 36 | 23 | 45 | 29 | 50 | 9 | 11 | 12 | 14 | 15 | 18 | 18 | 23 | 23 | 27 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 230 | 10 | 9 | 16 | 11 | 20 | 14 | 24 | 18 | 31 | 22 | 38 | 6 | 11 | 8 | 14 | 10 | 17 | 13 | 22 | 16 | 27 |
| 70 | 230 | 12 | 7 | 12 | 9 | 15 | 11 | 18 | 14 | 23 | 17 | 29 | 5 | 8 | 6 | 10 | 8 | 13 | 10 | 16 | 12 | 20 |
| 100 | 230 | 12 | 6 | 10 | 7 | 13 | 9 | 16 | 11 | 20 | 14 | 25 | 4 | 7 | 5 | 9 | 6 | 11 | 8 | 14 | 10 | 17 |
| 150 | 230 | 20 | 4 | 7 | 5 | 9 | 6 | 11 | 7 | 14 | 9 | 17 | 2 | 5 | 3 | 6 | 4 | 8 | 5 | 10 | 7 | 12 |
| 250 | 230 | 36 | 2 | 5 | 2 | 6 | 3 | 7 | 4 | 9 | 5 | 11 | 1 | 3 | 1 | 4 | 2 | 5 | 3 | 6 | 4 | 8 |
| 400 | 230 | 45 | 1 | 3 | 1 | 3 | 2 | 4 | 3 | 5 | 4 | 7 | 1 | 2 | 1 | 2 | 1 | 3 | 2 | 4 | 2 | 5 |
| 600 | 230 | 60 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 3 | 2 | 4 | - | 1 | - | 1 | 1 | 2 | 2 | 2 | 2 | 3 |
| 1000 | 230 | 100 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | - | - | - | - | - | 1 | 1 | 1 | 1 | 2 |

## Safety functions

The VS range includes ballasts with an integrated temperature switch that safely disconnects the lamp from the power supply if the lamp should develop the rectifier effect towards the end of its service life. The cut-out behaviour of the temperature switch is influenced by the luminaire construction. The luminaire manufacturer is responsible for checking the factory settings of the temperature switch in accordance with EN 60598-1 Section 12.5. VS can adjust the temperature switch to the appropriate cut-out temperature to suit requirements.

## Technical Details - Components for Discharge Lamps

## Reliability and service life

Provided the maximum winding temperature is not exceeded, the ballasts can be expected to yield a service life of 100,000 operating hours
Failure rate $<0.025 \% / 1,000$ hrs

## Electrical installation

Push-in terminals Terminals can be contacted with rigid conductors up to a maximum of $1.5 \mathrm{~mm}^{2}$.
Screw terminals - Terminals can be contacted with rigid or flexible conductors with ferrules on bare end of core

- Conductor cross-sections are determined by the terminals and can vary according to type 0.5-1.5 mm² / 0.75-2.5 mm² / 1.5-2.5 mm²
- Stripped lead length: 8-9 mm
- Conductors must not be tin-plated
- Max. tightening torque 0.5 Nm

Wiring The wiring between the power supply, ballast and lamp must be in accordance with the respective circuit diagram (see pages 93-95).

Components High-pressure discharge lamps must only be fitted with components that are rated to withstand the respective ignition voltage.

Circuit diagrams for high-pressure sodium lamps (HS) and metal halide lamps (HI)


Superimposed ignition of HS and HI lamps


Superimposed ignition of HS and HI lamps (ballasts with two alternative power tapping points)


Pulse ignition of HI lamps, ignition voltage 0.9 kV

Start-up switch for HI lamps, ignition voltage 0.9 kV


Start-up switch for HS and HI lamps


Superimposed ignition of HS and HI lamps with three alternative power tapping points



Superimposed ignition of HS and HI lamps (ballasts with two alternative voltage tapping points)


Superimposed ignition of HS and HI lamps (ballasts with two alternative voltage and power tapping points)

58


Pulse ignition for HS and Hl lamps


Start-up switch for standard HS lamps

63


SDW-T lamps


Superimposed ignition of HS and HI lamps with polyphase power systems


Superimposed ignition of HS and HI lamps (ballasts with three alternative voltage tapping points)

55


Pulse ignition of standard HS lamps


Start-up switch for HS and HI lamp

64


HS lamps with internal ignitor (ballasts with two alternative voltage tapping points)

## Technical Details - Components for Discharge Lamps

## Circuit diagrams for mercury vapour lamps (HM)

67


HM lamps

## 70



HM lamps (ballasts with two alternative voltage and power tapping points apiece)

68


HM lamps (ballasts with two alternative voltage tapping points)


Start-up switch for HM lamps with auxiliary lamp

## Power reduction of mercury vapour lamps (HM lamps)

LsT connectable to L1, L2 and L3


Disconnected control phase (LST = O V)
with ballasts with two tapping points


Connected control phase (LST $=230 \mathrm{~V}$
with ballasts with two tapping points

## 96



Disconnected control phase (LST = O V)
with two ballasts connected in paralle

69


HM lamps (ballasts with two alternative power tapping points)


Disconnected control phase (LST = O V) with ballasts with two tapping points

## 97



Electronic power reduction without control phase

98


Ballasts with two tapping points and
two voltage tapping points (LST = O V or $\mathrm{LST}>0 \mathrm{~V}$ )

## Technical Details - Components for Discharge Lamps

Power reduction of high-pressure sodium lamps (HS lamps) - superimposed ignition system
LST connectable to L1, L2 or L3


86


Ballast with two tapping points and two voltage tapping points (LST $=0 \mathrm{~V}$ or $\mathrm{LST}>0 \mathrm{~V}$ )

89

Disconnected control phase (LST $=0 \mathrm{~V}$ )
with ballasts with two tapping points


## Power switching of LED drivers and electronic ballasts

100


## Lampholders for High-pressure Discharge Lamps

Metal halide and high-pressure sodium lamps feature extremely different bases, which include RX7s, Fc2, G8.5, GX8.5, GU8.5, GX10, G12, GX12, PG12, PGJ5, GU6.5, E27 and E40, depending on whether the lamp is single- or double-ended. All lampholders are subject to the same typical conditions found with discharge lamps: high ignition voltages and temperatures. The high start-up currents deserve particular attention in lampholder design. This is also reflected by the insulation materials, which are usually solid ceramics or heat-resistant plastic (e.g. PPS - polyphenylene sulphide). Depending on the lamp's requirements (voltage, current, temperature, etc. ), silver, nickel and copper alloys with thick nickel coatings are used as conductors. The luminaire regulation EN 60598-1 (VDE 0711 part 1), defines the safety requirements with regard to ignition voltages in connection with creepage and air clearance distances. Special care must be taken to ensure that lampholders are approved for discharge lamps when using high-pressure lamps with E27 and E40 Edison bases. Lampholders that are suitable for this purpose are marked with a maximum value of " 5 kV " and comply with the increased creepage and air clearance distances specified by the lampholder requirements in EN 60238 (VDE 0616 part 1). The lampholder regulations governing special lampholders, EN 60838-1 (VDE 0616 part 5), apply analogously to all other base systems. The high ignition voltage pulses also place special demands on the conductors. In practice, silicone-insulated conductors with an outer diameter of 3.6 mm have proved to be suitable for discharge lamps. Silicone-insulated conductors with a glass-silk lining with a diameter of 7 mm should be used for lamps with an instant hot restart ( 20 kV ) function.

When connecting lampholders to push-in terminals of ballasts, the diameter of the conductor and the length of the stripped cables must be taken into account to ensure correct operation of the installed components. To this end, Vossloh-Schwabe can make additional versions available with compacted cable ends as further options.

When using compacted cable ends, the reduction of the cable diameter at the end of the cable must be taken into account, which means that the respective ballast push-in terminal has to be capable of taking the next-smaller cable diameter (see table with examples).

When using screw terminals to connect a ballast, it is recommended to use a ferrules on the bare end of core.

| Cable cross-section <br> $\mathrm{mm}^{2}$ | Push-in terminal range on the ballast when using compacted cable ends <br> $\mathrm{mm}^{2}$ |
| :--- | :--- |
| 0.75 | $\geq 0.5$ |
| 1 | $\geq 0.75$ |

VS lampholders for the UL market and UL approved leads are available for all common lamp types.

Further information can be found at www.unvlt.com.

## Ferrule on bare end of core



Compacted cable ends


Bases for the most commonly used HI and HS lamps

| $\Xi \square$ | *- | 雪 吨 |  | $\stackrel{-1}{\square}$ | $\stackrel{\square}{\square}$ | 9 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G8.5 | GX8.5 | GY9.5 | GU6.5 | GU8.5 | GX10 | G12 | GX12 | PG12-1 | PG 12-2 |
| $\mathrm{F}-\\|$ | - 0 |  |  | Honcm |  |  |  |  |  |
| PGJ5 | RX7s | Fc2 |  | E27 | E40/41 | E40/45 |  | E40/80×50 |  |

## Bases for the most commonly used HM lamps

Edison bases are predominantly used for mercury vapour lamps (HM)


## Ignitors

## Ignition voltages for high-pressure sodium lamps (HS) and metal halide lamps (HI)

The ignition voltage of HS and H l lamps is determined by the respective lamp technology as well as the creepage and air clearance distances of the base-lampholder system. High-pressure sodium lamps of 35 , 50 and 70 W with an E27 base are ignited with a voltage of between 1.8 and 2.3 kV . All other high-pressure lamps of the sodium and metal halide families require an ignition voltage of between 4 and 5 kV (except for special lamps and lamps with base PGJ5).

## Superimposed ignitors

Superimposed ignitors work independently of ballasts and generate defined ignition pulses within the voltage ranges of $220-240 \mathrm{~V} \pm 10 \%$ and $380-415 \mathrm{~V} \pm 10 \%$. As the mains frequency only plays a minor role, these systems work equally well at 50 Hz and 60 Hz . In accordance with the lamp manufacturer's specifications, pulses or clusters of pulses of defined width and height are generated in every half wave. Although lamp current flows through superimposed ignitors, they only cause low losses in relation to the system's power consumption. The maximum ambient temperature can be calculated by subtracting the ignitor's self-heating, which is caused by the inherent losses, from the specified maximum casing temperature ( $t_{c}$ ).

Superimposed ignitors should be mounted near the lampholder. The clearance needed between the ignitor and the lamp is determined by the respective maximum load capacitance, which is specified for each ignitor in the technical specifications. The capacitive load of the cable is dependent on its physical properties and wiring layout; this value usually ranges between 70 pF and 100 pF per metre. The casing temperature must not fall below $-30^{\circ} \mathrm{C}$ and must not exceed the maximum value specified on the device.

## Pulse ignitors

Pulse ignitors use the winding of an inductive ballast to generate the pulse voltage needed to ignite high-pressure discharge lamps. For that reason, ballasts must be designed to withstand these high ignition voltages. In this respect, special attention is paid to the insulation as well as the creepage and air clearance distances. As pulse ignition systems generate high-energy pulses, they are also suitable in the event of longer conductor distances between ignitor and lamp. State-of-the-art ignitors feature electronic circuitry. Depending on their design and the technical requirements, the simplest solution is to connect pulse ignitors in parallel with the lamp. Further models make partial use of the winding of a ballast, which will either feature multiple tapping points for voltage selection or special tapping points for pulse operation.


Circuit principle of a pulse ignitor


## Technical Details - Components for Discharge Lamps

## VS ignitors provide the following advantages:

- fully electronic construction
- compact design
- large nominal voltage range
- large output range
- low self-heating
- minimal power loss
- low noise
- long service life
- high electrical safety due to high-quality components (e.g. approved capacitors)
- highly heat-resistant (max. permissible casing temperature $\mathrm{t}_{\mathrm{c}}: 105^{\circ} \mathrm{C}$ for superimposed ignitors and $95^{\circ} \mathrm{C}$ for pulse ignitors)
- highly fire-resistant potting compound (certified according to EN 60926 and UL 94-VO)
- environmentally compatible potting compound (waste key No. 57110)


## Product range

Vossloh-Schwabe's product range covers superimposed and pulse ignitors in standard models and with automatic cut-outs. Superimposed ignitors with automatic cut-outs are available with various cut-out times and ignition voltage pulse mechanisms (A and D). In this respect, D-series ignitors featuring the intelligent pulse-pause mode (IPP) are the best solution in terms of ignition reliability and switching off defective lamps.

Electronic ignitors with integrated cut-outs capture data on ignition behaviour during the ignition process. These data, e.g. regarding ignition frequency or failure, serve to identify ageing lamps and to ensure the ignition process is reliably switched off after a defined period of time at the end of the lamp's service life or in the event of defective lamps. This reduces the negative consequences associated with defective lamps.

## Superimposed and Pulse Ignitors with Automatic Cut-out

## Ignitors with IPP technology and extended cut-out - D series

After connection to mains voltage, D series ignitors generate ignition voltage pulses that are controlled and if necessary switched off by the ignitor in accordance with the lamp's operating state, lamp recognition and the safe burning time. If the safe burning time is not attained after three consecutive ignition attempts, pulse generation will cease.

Appropriately programmed microprocessors enable these performance features
of ignitors with IPP technology (Intelligent Pulse-Pause Mode) and extended cut-outs.

Z ... D20/
PZ ... D20
for $\mathrm{HS}, \mathrm{HI}$ and $\mathrm{C}-\mathrm{HI}$ lamps
programmed cut-out time: 1,216 seconds

Ignitors with IPP technology and extended cut-outs are available up to an output of 1,000 W.

## Technical Details - Components for Discharge Lamps

## Programmed cut-out function of VS ignitors

## A5

## Ignitors with automatic cut-out - A series

After connection to mains voltage, A series ignitors supply a continuous stream of ignition voltage pulses until the lamp has ignited or the predefined cutout time (sum of all ignition periods) has been reached if the lamp fails to ignite.

PZ ... A5 for HSI lamps
programmed cut-out time: ca. 300 seconds

## Pulse ignition systems - overview of technical specifications

For HS, HI and C-HI lamps - PZ 1000 K D20
for high-pressure sodium lamps (HS) 50-1000 W,
metal halide lamps (HI) 35-1000 W and
for ceramic discharge tube lamps (C-HI) 35-400 W
Ignition voltage: $1.8-2.3 \mathrm{kV}$ or $4-5 \mathrm{kV}$
No. of pulses: 2 per mains period
Load capacitance: 20-1000 pF
Ignitors with automatic cut-out and IPP technology
Suitable ballast types: NaHJ ... PZT with special winding tapping point, whose position is determined by the magnitude of the ignition voltage

For HS lamps - PZS 1000 K
for standard high-pressure sodium lamps (HS) 50-1000 W
Not suitable for discharge lamp models SUPER, PLUS, XL, etc.
Ignition voltage: approx. 4 kV
No. of pulses: 1 per second
Load capacitance: 20-4000 pF
Suitable ballast types:
NaH ... P with winding tapping point
(20 V voltage difference)

For HI lamps - PZI 1000/1 K
for metal halide lamps (HI)
with an ignition voltage up to 0.9 kV
No. of pulses: 1 per mains period
Load capacitance: max. 10,000 pF
Suitable ballast models: Q...



## Technical Details - Components for Discharge Lamps

## Assembly Instructions for Ignitors

## For mounting and installing ignitors

## Mandatory regulations

| DIN VDE 0100 | Erection of low voltage installations |
| :--- | :--- |
| EN 60598-1 | Luminaires - part 1: general requirements and tests |
| EN 61347-1 | Operating devices for lamps - part 1: general and safety requirements |
| EN 61347-2-1 | Control gear for lamps; part 2-1: special requirements for ignitors <br> (other than glow starters) |
| EN 60927 | Control gear for lamps; ignitors (other than glow starters); performance requirements |
| EN 55015 | Maximum values and methods of measurement for RFI suppression in electrical lighting <br> installations and similar electrical appliances |
| EN 61000-3-2 | Electromagnetic Compatibility (EMC) - part 3: <br> maximum values - main section part 2: maximum values for mains harmonics <br> (device input current up to and including 16 A per conductor) |
| EN 61547 | Installations for general lighting purposes - EMC immunity requirements |

## Technical specifications

Operating voltage range
Ignitors can be operated at the specified mains voltage within a tolerance range of $\pm 10 \%$.

Max. casing temperature $t_{c}$
A maximum casing temperature tc of $105^{\circ} \mathrm{C}$ or $95^{\circ} \mathrm{C}$ is specified for superimposed ignitors and pulse ignitors, respectively. Tests carried out during operation must ensure this maximum value is not exceeded. Selecting an ignitor for higher lamp currents can reduce self-heating and thus also the temperature at the to measuring point. Details regarding self-heating can be found in the following table. The temperature structure in the luminaires is negatively influenced by ageing lamps.

Minimum ambient temperature $t_{a}$
The minimum ambient temperature ta for all superimposed and pulse ignitors is $-30^{\circ} \mathrm{C}$. Ignitors for use in applications with special requirements to the ambient temperature (for example $-40^{\circ} \mathrm{C}$ ) are available on request.

Technical Details - Components for Discharge Lamps

## Superimposed ignitors - Technical specifications

| Voltage <br> V/Hz | Ignitor type | Max. lamp current A | Power loss <br> W | Inherent heating <br> K | Ignition voltage <br> kV | Max. <br> load capacily pF | Max. <br> conductor length between ignitor and lamp* <br> m | Connection terminals $\left(\mathrm{mm}^{2}\right)$ |  | Casing material | Dimensions (dia. x L or $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) length without threaded stud mm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 220-240/ | Z 70 S | 2 | < 0.6 | < 5 | 1.8-2.3 | 200 | 2 | 0.75-4 | - | Al | $\varnothing 35 \times 76$ |
| 50-60 | Z 70 K | 2 | < 0.6 | < 5 | 1.8-2.3 | 200 | 2 | 0.75-4 | - | PC | $78 \times 34 \times 27$ |
|  |  |  |  |  |  |  |  | - | 0.5-2.5 |  | $81 \times 34 \times 27$ |
|  | Z 70 K D20 | 2 | < 0.6 | < 5 | 1.8-2.3 | 100 | 2 | 0.75-4 | - | PC | $80 \times 34 \times 30$ |
|  |  |  |  |  |  |  |  | - | 0.5-2.5 |  | $83 \times 34 \times 30$ |
|  | Z 250 S | 3.5 | < 1.8 | < 20 | 4.0-5.0 | 100 | 1 | 0.75-4 | - | Al | $\varnothing 35 \times 76$ |
|  | Z 250 K | 3.5 | < 1.8 | < 20 | 4.0-5.0 | 100 | 1 | 0.75-4 | - | PC | $78 \times 34 \times 27$ |
|  |  |  |  |  |  |  |  | - | 0.5-2.5 |  | $81 \times 34 \times 27$ |
|  | Z 250 K D20 | 3.5 | < 1.8 | <20 | 4.0-5.0 | 100 | 1 | 0.75-4 | - | PC | $80 \times 34 \times 30$ |
|  |  |  |  |  |  |  |  | - | 0.5-2.5 |  | $83 \times 34 \times 30$ |
|  | Z 400 S | 5 | < 3.0 | < 25 | 4.0-5.0 | 100 | 1 | 0.75-4 | - | Al | $\varnothing 45 \times 76$ |
|  | $\begin{aligned} & \text { Z } 400 \text { M } \\ & \text { Z } 400 \text { M VS-Power } \\ & \text { Z } 400 \text { M S } \end{aligned}$ | 5 | < 3.0 | < 35 | 4.0-5.0 | 50 | 0.5 | 0.75-4 | - | Al | $\varnothing 35 \times 76$ |
|  | Z 400 M K | 5 | < 3.0 | < 35 | 4.0-5.0 | 50 | 0.5 | 0.75-4 | - | PC | $78 \times 34 \times 27$ |
|  |  |  |  |  |  |  |  | - | 0.5-2.5 |  | $81 \times 34 \times 27$ |
|  | Z 400 M K VS-Power | 5 | < 3.0 | < 35 | 4.0-5.0 | 50 | 0.5 | 0.75-4 | - | PC | $78 \times 34 \times 27$ |
|  |  |  |  |  |  |  |  | - | 0.5-2.5 |  | $81 \times 34 \times 27$ |
|  | Z 400 S D20 | 5 | < 3.0 | <25 | 4.0-5.0 | 100 | 1 | 0.75-4 | - | Al | $845 \times 90$ |
|  | Z 400 M K D20 | 5 | < 3.0 | < 35 | 4.0-5.0 | 50 | 0.5 | 0.75-4 | - | PC | $80 \times 34 \times 30$ |
|  |  |  |  |  |  |  |  | - | 0.5-2.5 |  | $83 \times 34 \times 30$ |
|  | Z 750 S | 8 | < 3.0 | < 20 | 4.0-5.0 | 100 | 1 | 0.75-2.5 | - | Al | $850 \times 90$ |
|  | Z 1000 S | 12 | < 6.0 | < 35 | 4.0-5.0 | 100 | 1 | 0.75-2.5 | - | Al | $\varnothing 50 \times 80$ |
|  | Z 1000 TOP |  |  |  |  |  |  |  |  |  | $83 \times 83 \times 68$ |
|  | Z 1000 S D20 | 12 | < 6.0 | < 35 | 4.0-5.0 | 100 | 1 | 0.75-2.5 | - | Al | $\varnothing 50 \times 89$ |
|  | Z 1000 L | 12 | < 6.0 | < 35 | 4.0-5.0 | 2000 | 20 | 0.75-2.5 | - | Al | $\varnothing 50 \times 97$ |
|  | Z 1200/2,5 | 15 | < 7.5 | < 40 | 2.0-2.5 | 200 | 2 | 0.75-2.5 | - | Al | $\varnothing 50 \times 80$ |
|  | Z 1200/9 | 15 | $<10.0$ | < 40 | 7.0-8.0 | 50 | 0.5 | 0.75-2.5 | - | Al | $\varnothing 50 \times 135$ |
|  | Z 2000 S | 20 | < 6.0 | < 30 | 4.0-5.0 | 100 | 1 | 0.75-2.5 | - | Al | $\varnothing 65 \times 96$ |
| 380-420/ | Z 1000 S/400V | 6 | < 3.3 | <28 | 4.0-5.0 | 2000 | 20 | 0.75-2.5 | - | Al | $\varnothing 45 \times 84$ |
| 50-60 | Z 2000 S/400V | 12 | < 5.0 | < 32 | 4.0-5.0 | 2000 | 20 | 0.75-2.5 | - | Al | $\varnothing 50 \times 88$ |
|  | Z 3500 S/400V | 20 | < 7.0 | < 35 | 4.0-5.0 | 100 | 1 | 0.75-2.5 | - | Al | $\varnothing 65 \times 96$ |

* With a conductor of, for instance, 100 pF per m $\left(3 \times 2.5 \mathrm{~mm}^{2}\right)$

Pulse ignitors - Technical specifications

| Nominal voltage/ frequency <br> $\mathrm{V} / \mathrm{Hz}$ | Pulse ignitor type | Casing temperature $t_{c}$ <br> ${ }^{\circ} \mathrm{C}$ | Ignition voltage kV | Max. load capacity <br> pF | Max. conductor length between ignitor and lamp* <br> m | Connection screw terminals <br> $\mathrm{mm}^{2}$ | Casing material | Dimensions (dia. $\times \mathrm{L}$ or $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) length without threaded stud mm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 220-240/50-60 | PZS 1000 K | 95 | approx. 4 | 4000 | 40 | 0.5-1.5 | PC | $50 \times 28 \times 27$ |
| 220-240/50-60 | PZ 1000 K D20 | 95 | $\begin{aligned} & 1.8-2.3 / \\ & 4.0-5.0 \end{aligned}$ | 1000 | 10 | 0.75-2.5 | PC | $74 \times 34 \times 27$ |
| 220-240/50-60 | PZI 1000/1 K | 95 | 0.7-0.9 | 10000 | 100 | 0.5-2.5 | PC | $57 \times 28 \times 27$ |
| 380-420/50-60 | PZ 1000/400 V A5 | 95 | 4.0-5.0 | 800 | 8 | 0.75-2.5 | Al | $\varnothing 40 \times 80$ |

[^36]
## Technical Details - Components for Discharge Lamps

## Mechanical mounting

Mounting position
Any

Mounting location
Ignitors are designed for installation in luminaires or comparable constructions. Ignitors must be protected against radiation of direct lamp heat by appropriate installation.

Clearance from lamp
The clearance needed between ignitor and lamp is determined by the load capacitance of the conductors and by the type of ignitor pulses. The table on page 101 gives details of the clearance needed for a typical 3-phase lead with a cross-section of $2.5 \mathrm{~mm}^{2}$ per conductor.

Casing materials Unmarked in the type description: aluminium; marked "K": polycarbonate

Fastening Via threaded stud M8x10 (Z 2000 S, Z 3500 S/400 V: M12x12)
Dimensions The table on page 101 provides details of ignitor dimensions.

## Electromagnetic compatibility (EMC)

Interference Ignitors only generate interference due to the high ignition voltages during lamp ignition. This is classified as click interference and is not evaluated in lighting technology. However, as this interference occurs continuously in the event of old lamps that fail to ignite, operators of lighting systems are legally obliged to exchange such lamps.

Interference immunity
Owing to their design and the materials used, VS ignitors are characterised by high interference immunity and comply with the specified maximum values.

Mains harmonics
Are not observed during lamp ignition. VS ignitors meet the requirements.

## Reliability and service life

The service life of an ignitor is dependent on strict compliance with the casing temperature $t_{c}$ during operation. As the ignitors are only subjected to loads during high-voltage lamp ignition, a service life of 10 years can be expected provided the tc values are not exceeded. Failure rate: $<0.04 \% / 1,000$ hrs.

## Electrical installation

Connection terminals
Ignitors feature screw or push-in terminals. For screw terminals a maximum torque value of 0.8 Nm must not be exceeded when connecting the conductor. Push-in terminals are for rigid conductors with a cross section of $0.5-2.5 \mathrm{~mm}^{2}$ or respective flexible conductors with ferrule bare end of cores. Stripped lead ends of $8-9 \mathrm{~mm}$ are required. Tinned lead ends are not permitted. The permissible conductor cross-sections can be seen in the table on page 101.

Wiring The ignitors must be wired between ballast and lamp in accordance with the circuit diagrams on pages 93-95. The load capacitances of the wiring must also be taken into account. Distances to lamps should be kept as short as possible.

## Technical Details - Components for Discharge Lamps

## Power switches for street lighting

In view of the drive to cut public spending on energy and also in the light of environmental policies to protect resources, reducing the power consumption of high-pressure discharge lamps is becoming increasingly important.

Power reduction is possible on high-pressure sodium vapour and mercury vapour lamps and is realised with the aid of electronic actuators or by switching the inductance in the luminaire itself with the aid of power switches.

Provided that the lamp still emits an acceptable minimum of light output and uniformity, these lamps can be used to reduce the lighting level of outdoor lighting systems during off-peak traffic periods (e.g. in accordance with DIN 5044 for street lighting).In conjunction with the appropriate ballasts, the VS power switches constitute a perfect all-round solution for power switching purposes. This VS system has been approved by leading lamp manufacturers.

## Power switch PR 12 K LC - Power reduction without control line

The new VS PR 12 K LC power switch is capable of setting the period of power-educed operation based on the measured burning time of a lighting system. This eliminates the time-consuming task of continually adjusting the times of power-educed operation to suit constantly changing day-night cycles; it also removes the need for making adjustments due to daylight-saving times and is thus suitable for use worldwide (regionally independent).

## Function

The intelligent PR 12 K LC power switch does not require a control line to reduce lamp output; it uses the tapping of the ballast. Thanks to an integrated microprocessor, the PR 12 K LC power switch can measure the burning time of the luminaire. This value is then compared to data stored on the chip and used to set the time at which the luminaire will switch over to power-reduced operation. The luminaire will be operated at reduced power for a minimum of six hours (reduced by approx. $40 \%$ of the lamp's nominal rating at $50 \%$ of luminous flux). This period of power reduction can be extended to a maximum of 10 hours.

## Setting periods of power-reduced operation

The power switch is delivered in its default setting - i.e. the dial is set to 'Test (Code 0)'. After the luminaire has been installed, the desired power reduction time must be set using the dial on the power switch. The power-eduction period can be set to a minimum of six hours and can be extended by up to two hours in both directions (i.e. earlier or later). This results in a maximum power-reduction period of 10 hours.


The dial enables the following settings:

| Dial settings <br> Position |  | $\dagger 1$ <br> Hours | Basic power <br> reduction period (hrs) |  | t2 <br> Hours | Total power <br> reduction fime (hrs) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Test | Factory setting: 5 seconds on full load, followed by power reduction |  |  |  |  |
| 1 | $0 / 0$ | 0 | 6 | 0 | 6 |  |
| 2 | $0 / 1$ | 0 | 6 | 1 | 7 |  |
| 3 | $0 / 2$ | 0 | 6 | 2 | 8 |  |
| 4 | $0.5 / 0$ | 0.5 | 6 | 0 | 6.5 |  |
| 5 | $0.5 / 1$ | 0.5 | 6 | 1 | 7.5 |  |
| 6 | $0.5 / 2$ | 0.5 | 6 | 2 | 8.5 |  |
| 7 | $1 / 0$ | 1 | 6 | 0 | 7 |  |
| 8 | $1 / 1$ | 1 | 6 | 1 | 8 |  |
| 9 | $1 / 2$ | 1 | 6 | 2 | 9 |  |
| A | $1.5 / 0$ | 1.5 | 6 | 0 | 7.5 |  |
| B | $1.5 / 1$ | 1.5 | 6 | 1 | 8.5 |  |
| C | $1.5 / 2$ | 1.5 | 6 | 2 | 9.5 |  |
| D | $2 / 0$ | 2 | 6 | 0 | 8 |  |
| E | $2 / 1$ | 2 | 6 | 1 | 9 |  |
| F | $2 / 2$ | 2 | 6 | 2 | 10 |  |

- 


## Technical Details - Components for Discharge Lamps

## Determining operating/power reduction periods

- The dial is set to the desired period of power reduction, e.g. to position $1(0 / 0)$, which corresponds to a power-reduction period of six hours.
- In the first night, the luminaire is activated by the twilight switch (e.g. at 20:30 hours) and will operate at its nominal rating. After four hours (default setting), the luminaire will be switched down by $40 \%$ of the lamp output by the power switch and will then remain in power-reduced operation until the twilight switch turns the system off (e.g. at 06:30 hours)
- During this time, the power switch will measure the entire burning time of the lamp ( 10 hours in our example).
- The power switch then compares the measured burning period with values stored on the microprocessor. The integrated comparative values of the power switch form the basis for the starting point of power-reduced operation for the following night. The "new" starting time will then be stored by the power switch until the following night.
- In the second night, the lighting system - controlled by the twilight switch and thus dependent on the day/night cycle of the respective region and the time of year - will be activated (and deactivated) at a slightly different time as compared to the first night (either earlier or later, depending on the season)
- With the dial set to position 1, the power switch will thus activate the six-hour period of powerreduced operation after two hours, as per our example, and will then revert to nominal operation before the twilight switch finally sends the signal to switch the lighting system off.
- During the night, the power switch will again measure the entire burning time, compare this value with the stored values and then reset the starting time for power-reduced operation.
- The period of power-reduced operation can be adjusted by changing the dial setting. This period can be extended in both directions (i.e. earlier or later) as detailed in the table on page 103.
- If the dial is, for instance, set to $9(1 / 2)$ this will produce a total period of power-reduced operation of 9 hours $(1+6+2)$. As a result, power-reduced operation will begin one hour earlier than the value determined the night before would ordinarily prescribe and will then extend the minimum period of powerreduced operation by two hours.
- If, in very rare cases, the total burning period of the lighting system should remain under six hours per night, the power switch will activate power-reduced operation after 15 minutes of nominal operation and stay in power-reduced mode until the lighting system is switched off. Switching diagram for power reduced operation.


## Switching diagram for power reduced operation



## Deactivating reduced-power operation for the night

The functional scope of the PR 12 K LC power switch has been extended with an extra function that permits the operator to deactivate reduced-power operation of the lighting system for a single night. The function can be useful for local festivities or events (e.g. town fêtes) during which it would not be appropriate to operate the local street lighting system at reduced power for safety reasons.

The power switch can be easily programmed to operate the lighting system at normal (i.e. 100\%) power for the immediately following night cycle. The power switch is programmed by briefly switching the lighting system on for a period of min. 60 and max. 90 seconds during the day of the event and then switching it off again. The intelligent power switch recognises this command and sets the usual reduced-power operation to zero. The power switch can be successively programmed in this manner as many days in a row as necessary. For every night the lighting system is to be operated at normal (100\%) power, the lighting system will have to be switched on for a period of min. 60 and max. 90 seconds during the day. The lighting system will be operated at normal $100 \%$ ) power in the respective night following day-time activation of the extra function.

## Technical Details - Components for Discharge Lamps

The power switch does not need to be reprogrammed to return to power-reduced operation of the lighting system. The power switch will automatically return to its original (power-educing) program if the lighting system is not switched on during the day for a period of min. 60 and max. 90 seconds.

## Luminaire testing

The 'Test (Code O)' dial setting on the power switch is used for luminaire testing during production as well as for direct function tests for "subsequent" installation in the lighting system. After the luminaire is switched on, the lamp is first operated at its nominal rating. After only five seconds, the system will be switched over to power-reduced operation, which will produce a visible change even though the lamp will not yet have attained its full output.

## Maintenance work on the lighting system

Maintenance work that requires the lighting system to be switched on for a period of less than two hours will not influence the settings of power switch PR $12 \mathrm{~K} L C$.
Should the lighting system need to be switched on for more than two hours during maintenance work, the PR 12 K LC power switch will activate power-reduced operation after 15 minutes of nominal operation in the following night and will then start to re-measure the total burning time of the lighting system. To determine the starting time of power-reduced operation for subsequent nights, the power switch will again use the stored comparative values.

## Switch Units

## For power reduction using electronic ballasts with a $\mathbf{1 - 1 0} \mathbf{V}$ interface

## Suitable for a broad range of lamps

Vossloh-Schwabe's switch units are designed to enable one-step power reduction of lamps (FL, CFL, LED, HS, HI and C-HI) with the help of the respective electronic ballast or converter. To this end, the switch units utilises the $1-10 \mathrm{~V}$ interface of the control gear unit. The switch unit is mainly intended for outdoor luminaires in systems with or without a control phase.

Discharge lamps may only be operated at reduced power if they have been expressly approved for this purpose by the manufacturer. In addition, the unit can also be used to dim tubular and compact fluorescent lamps as well as LEDs.

The $1-10 \mathrm{~V}$ interface is addressed via an external circuit at the output of the switch unit using a suitably dimensioned resistor. The type of resistor and circuitry are selected by the luminaire manufacturer to suit the desired degree of power reduction.
The switch unit satisfies the provisions of DIN EN 61347 and is suitable for use in outdoor luminaires of protection classes I and II.

## Technical Details - Components for Discharge Lamps

## Function PR 1-10 V K LC

The intelligent PR 1-10 V K LC switch unit does not require a control line to reduce lamp output.

Thanks to an integrated microprocessor, the PR 1-10 VK LC switch unit can measure the burning time of the luminaire. This value is then compared to data stored on the chip and used to set the time at which the luminaire will switch over to power-reduced operation.

The luminaire will be operated at reduced power for a minimum of six hours (reduced by approx. $40 \%$ of the lamp's nominal rating at $50 \%$ of luminous flux). This period of power reduction can be extended to a maximum of 10 hours.

## Setting periods of power-reduced operation for PR 1-10 V K LC

The PR 1-10 V K LC switch unit is delivered in its default setting - i.e. the dial is set to 'Test (Code O)'.
After the luminaire has been installed, the desired power reduction time must be set using the dial on the switch unit. The power-reduction period can be set to a minimum of six hours and can be extended by up to two hours in both directions (i.e. earlier or later). This results in a maximum power-reduction period of 10 hours.

The dial enables the following settings:

| Dial Settings Position | Timings | $\dagger$ <br> Hours | Basic power reduction period (hrs) | †2 <br> Hours | Total power reduction time (hrs) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Test | Factory setting: 5 seconds on full load, followed by power reduction |  |  |  |
| 1 | 0/0 | 0 | 6 | 0 | 6 |
| 2 | 0/1 | 0 | 6 | 1 | 7 |
| 3 | 0/2 | 0 | 6 | 2 | 8 |
| 4 | 0.5/0 | 0.5 | 6 | 0 | 6.5 |
| 5 | 0.5/1 | 0.5 | 6 | 1 | 7.5 |
| 6 | 0.5/2 | 0.5 | 6 | 2 | 8.5 |
| 7 | 1/0 | 1 | 6 | 0 | 7 |
| 8 | 1/1 | 1 | 6 | 1 | 8 |
| 9 | 1/2 | 1 | 6 | 2 | 9 |
| A | 1.5/0 | 1.5 | 6 | 0 | 7.5 |
| B | 1.5/1 | 1.5 | 6 | 1 | 8.5 |
| C | 1.5/2 | 1.5 | 6 | 2 | 9.5 |
| D | 2/0 | 2 | 6 | 0 | 8 |
| E | 2/1 | 2 | 6 | 1 | 9 |
| F | 2/2 | 2 | 6 | 2 | 10 |



## Circuit diagrams for switch units



## Lamp Table for Discharge Lamps

High-pressure sodium lamps (HS lamps)

| Philips | SDW-T | PG12-1 | 0.48 | ignitor/ <br> stabiliser | NaH 35II | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sylvania | SHP-S...CO/E | E27 | 0.53 | Z 70... | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | - | - |

## Lamp output 50 W

| Aura | ST 50 W | E27 | 0.80 | Z 70... | NaH 50 | PZ 1000KD20 | NaH 50PZT | - | - | VNaH 50 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aura | SE 50 W | E27 | 0.80 | Z 70. | NaH 50 | PZ 1000KD20 | NaH 50PZT | - | - | VNaH 50 | - |
| GE | LU... | E27 | 0.76 | Z 70... | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| GE | LU....XO | E27 | 0.76 | Z 70. | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| GE | LU... SBY | E27 | 0.76 | Z 70. | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| Iwasaki | NH.../HV/. | E27 | 0.76 | Z 70. | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| Narva | NA | E27 | 0.76 | Z 70. | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| Narva | NA...-D | E27 | 0.76 | Z 70. | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| Osram | NAVE .../E | E27 | 0.76 | Z 70. | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| Osram | NAVEE...4Y | E27 | 0.76 | z 70... | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| Osram | NAV-T...Super 4Y | E27 | 0.76 | Z 70. | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| Philips | SDW-T | PG12-1 | 0.78 | ignitor/ stabiliser | NaH 501 l | - | - | - | - | - | - |
| Philips | SON...Hg free | E27 | 0.76 | Z 70... | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| Philips | SON...Pro | E27 | 0.76 | Z 70. | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| Philips | SON-T...Plus | E27 | 0.76 | Z 70. | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| Radium | RNP | E27 | 0.76 | Z 70. | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| Sylvania | SHP-S | E27 | 0.76 | Z 70. | NaH 50 | PZ 1000KD20 | - | - | - | - | - |
| Sylvania | SHP-TS | E27 | 0.76 | Z 70. | NaH 50 | PZ 1000KD20 | - | - | - | - | - |

## Lamp output 70 W

| Aura | ST 70 W | E27 | 0.98 | Z 70. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aura | SE 70 W | E27 | 0.98 | Z $70 \ldots$ | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| BLV | HST-SE | E27 | 0.98 | Z 70... | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| GE | LU | E27 | 0.98 | Z 70... | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| GE | LU....RFL | E27 | 0.98 | Z $70 \ldots$ | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| GE | LU...SBY | E27 | 0.98 | z 70.. | NaHI 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| GE | LU...XO | E27 | 0.98 | Z $70 \ldots$ | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Iwasaki | NH.../HV/. | E27 | 0.98 | Z 70. | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | - |
| Narva | NA. | E27 | 0.98 | Z 70. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Narva | NA...D | E27 | 0.98 | Z 70. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Osram | NAVE.../E | E27 | 0.98 | Z 70. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Osram | NAVE... 4 Y | E27 | 0.98 | Z $70 .$. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Ostam | NAV-T | E27 | 0.98 | Z 70... | NaHI 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Ostam | NAV-T.. 4 Y | E27 | 0.98 | z 70... | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Ostam | NAV-T...Super 4Y | E27 | 0.98 | z 70.. | NaHI 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Ostam | NAV-TS...Super 4Y | RX7s | 0.98 | Z 400. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | HZ 600K | NaHJ 70 | VNaHJ 70 | - |
| Philips | SON...Hg free | E27 | 0.98 | Z 70. | NaHI 70 | PZ 1000KD20 | NaHJ 70 PZT | - | - | VNaHJ 70 | - |
| Philips | SON...Pro | E27 | 0.98 | Z 70. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Philips | SON-T...Plus | E27 | 0.98 | Z 70. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Philips | SON-T... Pro | E27 | 0.98 | Z 70. | NaHI 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Radium | RNP-E | E27 | 0.98 | Z $70 .$. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Radium | RNP-T | E27 | 0.98 | Z 70... | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Radium | RNP-TS | RX7s | 0.98 | z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | HZ 600K | NaHJ 70 | VNaHJ 70 | - |
| Sylvania | SHP | E27 | 0.98 | Z 70. | NaHI 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Sylvania | SHP-T | E27 | 0.98 | Z 70... | NaHI 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Sylvania | SHP-TS | E27 | 0.98 | Z 70. | NaHI 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Sylvania | SHP.../CO-E | E27 | 0.98 | z $70 .$. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| Sylvania | SHP-S | E27 | 0.98 | z 70. | NaHI 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |

## Lamp output 100 W

| Aura | ST 100 W | E40 | 1.20 | Z 250..., Z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aura | SE 100 W | E40 | 1.20 | Z 250..., Z 400. | NaHJ 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |
| BLV | HST-SE | E40 | 1.20 | Z 250..., Z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |
| GE | LU | E40 | 1.20 | Z 250..., Z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |
| GE | LU...SBY | E40 | 1.20 | Z 250..., Z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |
| GE | LU...XO | E40 | 1.20 | Z 250..., Z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |
| I wasaki | NH...F | E40 | 1.20 | Z 250..., Z 400. | NaHI 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |
| I wasaki | NHT...F | E40 | 1.20 | Z 250..., Z 400. | NaH 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |
| Narva | NA. | E40 | 1.20 | Z 250..., Z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |

## Lamp Table for Discharge Lamps

High-pressure sodium lamps (HS lamps)


## Lamp output 150 W

| Aura | ST 150 W | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aura | SE 150 W | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| BLV | HST-DE | Fc2 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 600K | NaHJ 150 | VNaHJ 150 | - |
| BLV | HST-DE | RX7s | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 600K | NaHJ 150 | VNaHJ 150 | - |
| BLV | HST-SE | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| GE | LU | E40 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| GE | LU...SBY | E40 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| GE | LU...XO | E40 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| I wasaki | NH | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| I wasaki | NHT | E40 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Narva | NA | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Narva | NA...-D | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Osram | NAV-E | E40 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Osram | NAV-E...4Y | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Osram | NAV-E...Super 4Y | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Osram | NAV-T | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Osram | NAV-T...4Y | E40 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Osram | NAV-T... Super 4Y | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Osram | NAV-TS...Super 4Y | RX7s | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 600K | NaHJ 150 | VNaHJ 150 | - |
| Philips | SON...Hg free | E40 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Philips | SON...Plus | E40 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Philips | SON...Pro | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Philips | SON...Comfort Pro | E40 | 1.82 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Philips | SON-T...Hg free | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Philips | SON-T...Plus | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Philips | SON-T...Pro | E40 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Philips | SON-T....Comfort Pro | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Radium | RNP-E | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Radium | RNP-T | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Radium | RNP-TS | RX7s | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 600K | NaHJ 150 | VNaHJ 150 | - |
| Sylvania | SHP-S | E40 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Sylvania | SHP-T | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Sylvania | SHP-TS | E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |

## Lamp output 250 W

| Aura | ST 250 W | E40 | 3.00 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250 PZT | - | - | VNaHJ 250 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aura | SE 250 W | E40 | 3.00 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| BLV | HST-DE | RX7s | 3.00 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | HZ 600K | NaHJ 250 | V NaHJ 250 | - |
| BLV | HST-SE | E40 | 3.00 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| GE | LU | E40 | 3.00 | Z 250..., z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| GE | LU...SBY | E40 | 3.00 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| GE | LU...TD | RX7s | 2.95 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | HZ 600K | NaHJ 250 | VNaHJ 250 | - |
| GE | LU... XO | E40 | 2.95 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| I wasaki | NH | E40 | 3.00 | Z 250..., z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| Iwasaki | NHT | E40 | 3.00 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |

## Lamp Table for Discharge Lamps

High-pressure sodium lamps (HS lamps)


## Lamp Table for Discharge Lamps

High-pressure sodium lamps (HS lamps)

| Manufacturer | Designation | Base | Lamp current | Superimposed ignition system |  | Pulse ignition system |  | Instant restrike ignition system |  | Control gear unit | EB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lamp output 600 W |  |  |  |  |  |  |  |  |  |  |  |
| Aura | ST 600 W | E40 | 6.20 | Z 1000... | NaHJ 600 | PZ 1000KD20 | NaHJ 600PZT | - | - | VNaHJ 600 | - |
| Aura | SE 600 W | E40 | 6.20 | Z 1000... | NaHJ 600 | PZ 1000KD20 | NaHJ 600PZT | - | - | VNaHJ 600 | - |
| GE | LU...PSL | E40 | 6.00 | Z 750... | NaH 600 | PZ 1000KD20 | NaH 600PZT | - | - | VNaH 600 | - |
| GE | LU... XO | E40 | 6.00 | Z 750... | NaH 600 | PZ 1000KD20 | NaH 600PZT | - | - | VNaH 600 | - |
| GE | LU 400V/600W PSL | E40 | 3.60 | Z 1000/400V | NaH 600/400V | PZ 1000/400V A5 | NaH 600PZT/400V | - | - | - | - |
| Narva | NA | E40 | 6.20 | Z 750... | NaH 600 | PZ 1000KD20 | NaH 600PZT | - | - | VNaH 600 | - |
| Narva | NA...S | E40 | 6.20 | Z 750... | NaH 600 | PZ 1000KD20 | NaH 600PZT | - | - | VNaH 600 | - |
| Osram | NAV-T....Super 4Y | E40 | 6.20 | Z 750... | NaH 600 | PZ 1000KD20 | NaH 600PZT | - | - | VNaH 600 | - |
| Osram | Plantastar 600 | E40 | 6.20 | Z 750... | NaH 600 | PZ 1000KD20 | NaH 600PZT | - | - | VNaH 600 | - |
| Philips | SON-T...Plus | E40 | 5.80 | Z 750... | NaH 600 | PZ 1000KD20 | NaH 600PZT | - | - | VNaH 600 | - |
| Philips | SON-T... Green Power | E40 | 6.30 | Z 750... | NaH 600 | PZ 1000KD20 | NaH 600PZT | - | - | VNaH 600 | - |
| Philips | SON-T 600W/400V Green Power | E40 | 3.62 | Z 1000/400V | NaH 600/400V | PZ 1000/400V A5 | NaH 600PZT/400V | - | - | - | - |
| Philips | SON-T 600W EL 400V Green Power* | E40 | $\begin{aligned} & \hline 2.93 \\ & -2.24 \\ & \hline \end{aligned}$ | - | - | - | - | - | - | - | - |
| Radium | RNP-T | E40 | 6.20 | Z 750... | NaH 600 | PZ 1000KD20 | NaH 600PZT | - | - | VNaH 600 | - |
| Sylvania | SHP-TS | E40 | 5.90 | Z 750... | NaH 600 | PZ 1000KD20 | NaH 600PZT | - | - | VNaH 600 | - |
| Sylvania | SHP-TS...Gro-Lux | E40 | 5.50 | Z 750... | NaH 600 | PZ 1000KD20 | NaH 600PZT | - | - | VNaH 600 | - |
| Lamp output 750 W |  |  |  |  |  |  |  |  |  |  |  |
| GE | LU...PSL | E40 | 7.00 | Z 750. | NaH 750 | PZ 1000KD20 | NaH 750/600PZT | - | - | - | - |
| GE | LU 400V/750W PSL | E40 | 4.40 | Z 1000/400V | NaH 750/400V | PZ 1000/400V A5 | NaHJ 750 PZT | - | - | - | - |


| Lamp output 1000 W |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aura | ST 1000 W | E40 | 10.60 | Z 1000... | NaHJ 1000 | PZ 1000KD20 | - | - | - | - | - |
| Aura | SE 1000 W | E40 | 10.30 | Z 1000... | NaHJ 1000 | PZ 1000KD20 | - | - | - | - | - |
| GE | LU...T | E40 | 10.60 | Z 1000... | NaH 1000, NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| GE | LU...D | E40 | 10.30 | Z 1000... | NaH 1000 , NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| GE | LU...TD | RX7s | 10.30 | Z 1000... | NaH 1000 NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| Iwasaki | NH | E40 | 10.30 | Z 1000... | NaH 1000 , NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| Iwasaki | NHT | E40 | 10.30 | Z 1000... | NaH 1000, NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| Narva | NA | E40 | 10.60 | Z 1000... | NaH 1000 , NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| Narva | NA...D | E40 | 10.60 | Z 1000... | NaH 1000 , NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| Narva | NAT-VEG 1000/400V | E40 | 5.70 | $\begin{aligned} & \text { Z 1000/400V, } \\ & \text { Z 2000/400V } \end{aligned}$ | - | PZ 1000/400V A5 | - | - | - | - | - |
| Osram | NAV-E | E40 | 10.30 | Z 1000... | NaH 1000 , NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| Osram | NAV-T | E40 | 10.30 | Z 1000 | NaH 1000, NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| Philips | SON...Pro | E40 | 10.30 | Z 1000... | NaH 1000, NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| Philips | SON-T...Pro | E40 | 10.60 | Z 1000... | NaH 1000, NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| Philips | SON-T 1000W EL 400V Green Power** | Wire | 4-3.17 | - | - | - | - | - | - | - | - |
| Radium | RNP-E | E40 | 10.30 | Z 1000... | NaH 1000 , NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| Radium | RNP-T | E40 | 10.30 | Z 1000... | NaH 1000 , NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| Sylvania | SHP-T | E40 | 10.60 | Z 1000... | NaH 1000, NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |
| Sylvania | SHP-T...SBY | E40 | 10.60 | Z 1000... | NaH 1000, NaHJD 1000 | PZ 1000KD20 | - | - | - | - | - |

* Voltage range $210-275 \mathrm{~V}$
* Voltage range 250-315 V


## Lamp Table for Discharge Lamps

Metal halide lamps (HI lamps)

| Manufacturer | Designation | Base | Lamp current | Superimposed ignition system |  | Pulse ignition system |  | Instant restrike ignition system |  | Control gear unit | EB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lamp output 70 W |  |  |  |  |  |  |  |  |  |  |  |
| BLV | HIE | E27 | 0.90 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| BLV | HIE-P | E27 | 0.90 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| BLV | HIT | G12 | 0.90 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| BLV | HIT-DE | RX7s | 0.90 | Z 250..., z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| GE | ARC | G12 | 0.95 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXC 70 |
| GE | ARC | Rx7s | 0.95 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | HZ 600K | NaHJ 70 | VNaHJ 70 | EHXc 70 |
| Iwasaki | M | E27 | 1.00 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Iwasaki | MT | E27 | 1.00 | Z 70... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| I wasaki | MT | G8.5 | 1.00 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Iwasaki | MT | G12 | 1.00 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Narva | NC... | E27; G12 | 0.90 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Narva | NC... | RX7s | 0.90 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | HZ 600K | NaHJ 70 | VNaHJ 70 | EHXc 70 |
| Osram | HQI-E | E27 | 0.95-1.00 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Osram | HQl-T | G12 | 1.00 | Z 250..., z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Osram | HQl-TS | RX7s | 1.00 | Z 250..., z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | HZ 600K | NaHJ 70 | VNaHJ 70 | EHXc 70 |
| Philips | MHN-TD | RX7s | 1.00 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | HZ 600K | NaHJ 70 | VNaHJ 70 | EHXC 70 |
| Philips | MHW-TD | RX7s | 1.00 | Z 250..., z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | HZ 600K | NaHJ 70 | VNaHJ 70 | EHXc 70 |
| Radium | HRI-E | E27 | 0.95 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXC 70 |
| Radium | HRI-T | G12 | 1.00 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Radium | HRI-TS | RX7s | 1.00 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | HZ 600K | NaHJ 70 | VNaHJ 70 | EHXc 70 |
| Sylvania | HSI-MP | E27 | 1.00 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXC 70 |
| Sylvania | HSI-T | G12 | 0.95 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXC 70 |
| Sylvania | HSI-TD | RX7s | 0.98 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | HZ 600K | NaHJ 70 | VNaHJ 70 | EHXc 70 |
| Venture | HIE | E27 | 0.90 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXC 70 |
| Venture | HIPE | E27 | 0.90 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Venture | HIT | E27 | 0.90 | Z 250..., z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Venture | HIT | G12 | 0.90 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXC 70 |
| Venture | MH-DE | RX7s | 1.00 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXC 70 |

## Lamp output 100 W

| BLV | HIE | E |
| :--- | :--- | :--- |
| BLV | HIE-P | E |
| Narva | NC $\ldots$ | E |
| Osram | HQI-E | E |
| Radium | HRI-E | E |
| Sylvania | HSI-MP | E |
| Venture | HIE | E |
| Venture | HIPE | Enture |
| HIT |  |  |


| E27 | 1.20 | Z 250..., Z 400... |
| :---: | :---: | :---: |
| E27 | 1.20 | Z 250..., Z 400... |
| E27; E40 | 1.10 | Z 250..., Z 400 |
| E27 | 1.10 | Z 250..., Z 400... |
| E27 | 1.10 | Z 250..., Z 400... |
| E27 | 1.15 | Z 250..., Z 400... |
| E27 | 1.10 | Z 250..., Z 400... |
| E27; E40 | 1.10 | Z 250..., Z 400... |
| E27; E40 | 1.10 | Z 250..., Z 400... |


|  | NaHJ 100 | PZ |
| :--- | :--- | :--- |
|  | NaHJ 100 | PZ |
|  | NaHJ 100 | NZ |
|  | NaHJ 100 |  |


| PZ 1000KD20 | N |
| :--- | :--- |
| PZ 1000KD20 | N |
| PZ 1000KD20 | N |
| PZ 1000KD20 | N |
| PZ 1000KD20 |  |


| NaHJ 100PZT | - | - | VI |
| :--- | :--- | :--- | :--- |
| NaHJ 100PZT | - | - | VI |
| NaHJ 100PZT | - | - | VN |
| NaHJ 100PZT | - | - | VN |
| NaHJ 100PZT | - | - | VI |
| NaHJ 100PZT | - | - | VN |
|  | NaHJ 100 PZT | - | - |
| NaHJ 100 PZT | - | - | VN |
| NaHJ 100PZT | - | - | VN |


| VNaHJ 100 | - |
| :--- | :--- |
| VNaHJ 100 | - |
| VNaH 100 | - |

## Lamp output 150 W

| BIV | HIE | E27 | 1.80 | Z 250..., Z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BLV | HIE-P | E27 | 1.80 | Z 250..., Z 400.. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| BLV | HIT | G12; E27; E40 | 1.80 | Z 250..., Z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| BIV | HIT-DE | RX7s-24 | 1.80 | Z 250..., Z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 1000K | NaHJ 150 | VNaHJ 150 | EHXC 150 |
| GE | ARC | G12 | 1.80 | Z 250..., Z 400 . | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| GE | ARC | RX7s-24 | 1.80 | Z 250..., Z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 1000K | NaHJ 150 | VNaHJ 150 | EHXC 150 |
| Iwasaki | M | E27 | 1.90 | Z 250..., Z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Iwasaki | MT | E27 | 1.90 | Z 250..., Z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Iwasaki | MT | G12 | 1.90 | Z 250..., Z 400.. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Iwasaki | MTD | RX7s | 1.90 | Z 250..., Z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 1000K | NaHJ 150 | VNaHJ 150 | EHXC 150 |
| Narva | NC... | E27; E40; G12 | 1.80 | Z 250..., Z 400.. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Narva | NC. | RX7s | 1.80 | Z 250..., Z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 1000K | NaHJ 150 | VNaHJ 150 | EHXC 150 |
| Osram | HQ\|E | E27 | 1.80 | Z 250..., Z 400.. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Osram | HQ-R | connector | 1.80 | Z 250..., Z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Osram | HQ1-T | G12 | 1.80 | Z 250..., Z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Osram | HQl-TS | RX7s-24 | 1.80 | Z 250..., Z 400.. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 1000K | NaHJ 150 | VNaHJ 150 | EHXC 150 |
| Philips | MHN-TD | RX7s | 1.80 | Z 250..., Z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 1000K | NaHJ 150 | VNaHJ 150 | EHXC 150 |
| Philips | MHW-TD | RX7s | 1.80 | Z 250..., $\mathrm{Z} 400 \ldots$ | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 1000K | NaHJ 150 | VNaHJ 150 | EHXC 150 |
| Radium | HRIE | E27 | 1.80 | Z 250..., Z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Radium | HRI-T | G12 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Radium | HRI-TS | RX7s | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 1000K | NaHJ 150 | VNaHJ 150 | EHXC 150 |

## Lamp Table for Discharge Lamps

Metal halide lamps (HI lamps)

| Manufacturer | Designation | Base | Lamp current | Superimposed ignition system |  | Pulse ignition system |  | Instant restrike ignition system |  | Control gear unit | EB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lamp output 150 W |  |  |  |  |  |  |  |  |  |  |  |
| Sylvania | HSI-MP | E27 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXc 150 |
| Sylvania | HSI-T | G12 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXc 150 |
| Sylvania | HSI-TD | RX7s | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 1000K | NaHJ 150 | VNaHJ 150 | EHXc 150 |
| Venture | HIE | E27 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Venture | HIPE | E27; E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | $E H X C 150$ |
| Venture | HIT | E27; E40 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXc 150 |
| Venture | HIT | G12 | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXc 150 |
| Venture | MH-DE | RX7s | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150 PZT | HZ 1000K | NaHJ 150 | VNaHJ 150 | EHXC 150 |

## Lamp output 250 W

| BLV | HIE | E40 | 3.00 | Z 250..., Z 400.. |
| :---: | :---: | :---: | :---: | :---: |
| BLV | HIT | E40 | 3.00 | Z 250..., Z 400... |
| BLV | HIT-DE | Fc2 | 3.00 | Z 250..., Z 400... |
| GE | ARC250/T | E40 | 2.75 | Z 250..., Z 400... |
| GE | ARC250/TD | Fc2 | 3.00 | Z 250..., Z 400... |
| Narva | NC... | E40 | 2.15 | Z 250..., Z 400... |
| Narva | NC...P | E40 | 2.15 | - |
| Osram | HQI-E | E40 | 3.00 | Z 250..., Z 400... |
| Osram | HQl-E/P | E40 | 3.00 | Z 250..., Z 400... |
| Osram | HQl-T | E40 | 3.00 | Z 250..., Z 400... |
| Osram | HQI-TS | Fc2 | 3.00 | Z 250..., Z 400. |
| Philips | HPI Plus | E40 | 2.20 | Z 250..., Z 400... |
| Philips | HPIT | E40 | 2.15 | Z 250..., Z 400... |
| Philips | MHN-TD | Fc2 | 3.00 | Z 250..., Z 400... |
| Radium | HRIE | E40 | 3.00 | Z 250..., Z 400... |
| Radium | HRI-T | E40 | 3.00 | Z 250..., Z 400... |
| Radium | HRI-TS | Fc2 | 3.00 | Z 250..., Z 400 . |
| Sylvania | HSIHX | E40 | 2.10 | - |
| Sylvania | HSI-T | E40 | 3.00 | Z 250..., Z 400... |
| Sylvania | HSI-TD | Fc2 | 3.00 | Z 250..., Z 400... |
| Sylvania | HSI-THX | E40 | 2.10 | - |
| Sylvania | HSI-TSX | E40 | 2.90 | Z 250..., Z 400... |
| Sylvania | HSI-SX | E40 | 2.90 | Z 250..., Z 400... |
| Venture | HIE | E40 | 3.10 | Z 250..., z 400. |
| Venture | HIPE | E40 | 3.10 | Z 250..., Z 400... |
| Venture | HIT | E40 | 3.10 | Z 250..., Z 400... |
| Venture | HIT...EURO | E40 | 2.10 | - |
| Venture | MH-DE | Fc2 | 3.10 | Z 250..., Z 400... |


| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHH 250 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | HZ 1000K | NaHJ 250 | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | HZ 1000K | NaHJ 250 | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| - | PZI 1000/1 | Q 250 | - | - | - | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | HZ 1000K | NaHJ 250 | VNaHJ 250 | - |
| - | PZI 1000/1 | Q 250 | - | - | - | - |
| - | PZI 1000/1 | Q 250 | - | - | - | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | HZ 1000K | NaHJ 250 | VNaHJ 250 | - |
| - | PZI 1000/1 | Q 250 | - | - | - | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | HZ 1000K | NaHJ 250 | VNaHJ 250 | - |
| - | PZI 1000/1 | Q 250 | - | - | - | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| - | PZI 1000/1 | Q 250 | - | - | - | - |
| NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | HZ 1000K | NaHJ 250 | VNaHJ 250 | - |


| Lamp output 400 W |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BLV | HIE | E40 | 4.00 | Z 400..., Z 1000. | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| BLV | HIT | E40 | 4.00 | Z 400..., z 1000... | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| GE | ARC400/T | E40 | 4.35 | z 400..., z 1000... | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Narva | NC.. | E40 | 3.25 | Z 400..., Z 1000. | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Narva | NC...-P | E40 | 3.25 | - | - | PZI 1000/1 | Q 400 | - | - | - | - |
| Osram | HQ1-E | E40 | 3.50 | Z 400..., Z 1000. | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Osram | HQ-E/P | E40 | 3.50 | Z 400..., z 1000... | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Osram | HQ-T | E40 | 3.60 | Z 400..., Z 1000. | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Osram | HQl-TS | Fc2 | 3.60 | Z 400..., z 1000... | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | HZ 1000K | NaHJ 400 | VNaHJ 400 | - |
| Philips | HPl-T | E40 | 3.40 | - | - | PZI 1000/1 | Q 400 | - | - | - | - |
| Philips | MH-T | E40 | 3.40 | Z 400..., z 1000... | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Radium | HR1-BT | E40 | 4.00 | Z 400..., z 1000... | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Radium | HRIE | E40 | 4.60 | Z 400..., Z 1000. | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Radium | HRI-T | E40 | 4.60 | Z 400.... Z 1000. | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Radium | HRITS | Fc2 | 4.10 | Z 400..., Z 1000. | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | HZ 1000K | NaHJ 400 | VNaHJ 400 | - |
| Sylvania | HSIHX | E40 | 3.40 | - | - | PZI 1000/1 | Q 400 | - | - | - | - |
| Sylvania | HSI-T | E40 | 4.00 | Z 400..., Z 1000. | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Sylvania | HSI-THX | E40 | 3.40 | - | - | PZI 1000/1 | Q 400 | - | - | - | - |
| Sylvania | HSI-TSX | E40 | 4.40 | Z 400..., Z 1000. | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Sylvania | HSI-SX | E40 | 4.40 | Z 400..., z 1000... | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Venture | HIE | E40 | 3.20 | z 400..., z 1000... | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Venture | HIPE | E40 | 3.20 | Z 400..., Z 1000.. | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |

## Lamp Table for Discharge Lamps

## Metal halide lamps (HI lamps)

| Manufacturer | Designation | Base | Lamp current | Superimposed ignition Ignitor | system <br> Ballast | Pulse ignition sys lgnitor | em Ballast | Instant restrike Ignitor | ignition system Ballast | Control gear unit | EB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lamp output 400 W |  |  |  |  |  |  |  |  |  |  |  |
| Venture | HIT | E40 | 3.20 | Z 400..., z 1000... | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Venture | HIT ...EURO | E40 | 3.20 | - | - | PZI 1000/1 | Q 400 | - | - | - | - |
| Lamp output 600 W |  |  |  |  |  |  |  |  |  |  |  |
| Osram | HQI-TM | G22 | 6.10 | Z1000 | NaH 600 | PZ 1000KD20 | NaH 600PZT | - | - | VNaH 600 | - |
| Radium | HRITM | G22 | 6.10 | Z1000 | NaH 600 | PZ 1000KD20 | NaH 600 PZT | - | - | VNaH 600 | - |
| Lamp output 1000 W |  |  |  |  |  |  |  |  |  |  |  |
| BLV | HIT | E40 | 9.50 | Z 1000..., Z 2000 | NaHJ 1000 | PZ 1000KD20 | - | - | - | - | - |
| GE | SPL 1000 | E40 | 9.50 | Z 1000..., z 2000 | NaHJ 1000 | PZ 1000KD20 | - | - | - | - | - |
| Narva | NC... | E40 | 8.25 | Z 1000..., z 2000 | NaHJ 1000 | PZ 1000KD20 | - | - | - | - | - |
| Narva | NC...-P | E40 | 8.25 | - | - | PZI 1000/1 | Q 1000 | - | - | - | - |
| Narva | NCT.../400V | E40 | 4.80 | $\begin{aligned} & \text { Z 1000/400V; } \\ & \text { Z 2000/400V } \end{aligned}$ | NaHJ 1000 | - | - | - | - | - | - |
| Osram | HQl-TM | G22 | 9,50 | Z 1000 | NaHJ 1000 | PZ 1000KD20 |  |  |  |  |  |
| Osram | HQI-E | E40 | 9.50 | Z 1000..., z 2000 | NaHJ 1000 | PZ 1000KD20 | - | - | - | - | - |
| Osram | HQl-T | E40 | 9.50 | Z 1000..., z 2000 | NaHJ 1000 | PZ 1000KD20 | - | - | - | - | - |
| Osram | HQI-TS | cables | 9.60 | Z 1000..., Z 2000 | NaHJ 1000 | PZ 1000KD20 | - | HZ 1000K | NaHJ 1000 | - | - |
| Philips | HPI-T | E40 | 8.25 | - | - | PZI 1000/1 | Q 1000 | - | - | - | - |
| Philips | MHN-LA | cables | 9.30 | Z 1000..., Z 2000 | NaHJ 1000 | PZ 1000KD20 | - | HZ 1000K | NaHJ 1000 | - | - |
| Radium | HRI-T | E40 | 9.50 | Z 1000..., z 2000 | NaHJ 1000 | PZ 1000KD20 | - | - | - | - | - |
| Radium | HRITM | G22 | 9.50 | Z 1000 | NaHJ 1000 | PZ 1000KD20 |  |  |  |  |  |
| Radium | HRI-TS | cables | 9.60 | Z 1000..., z 2000 | NaHJ 1000 | PZ 1000KD20 | - | HZ 1000K | NaHJ 1000 | - | - |
| Sylvania | HSI-THX | E40 | 8.25 | - | - | PZI 1000/1 | Q 1000 | - | - | - | - |
| Venture | HIT | E40 | 9.15 | Z 1000..., Z 2000 | NaHJ 1000 | PZ 1000KD20 | - | - | - | - | - |
| Venture | MBIL | RX7s | 4.40 | Z 2000/400V | - | - | - | $\begin{aligned} & \mathrm{HZ} 2000 \mathrm{~K} / \\ & 400 \mathrm{~V} \end{aligned}$ | - | - | - |

## Lamp output 2000 W

| GE | SPL 2000/T | E40 | 10.30 | Z 2000/400V | JD 2000 | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Osram | HQI-T/D | E40 | 10.30 | Z 2000/400V | JD 2000 | - | - | - | - | - | - |
| Osram | HQ1-T... /380V | E40 | 8.80 | - | - | - | Q 2000 | - | - | - | - |
| Osram | HQ1-TS | cables | 11.30 | Z 2000/400V | JD 2000 | - | - | $\begin{aligned} & \mathrm{HZ} 2000 \mathrm{~K} / \\ & 400 \mathrm{~V} \\ & \hline \end{aligned}$ | JD 2000 | - | - |
| Osram | HQ-TS | cables | 12.2 | Z 2000/400V | $\begin{aligned} & \text { JD 2000II/ } \\ & 12.2 \end{aligned}$ | - | - | - | - | - | - |
| Philips | HPI-T 220V | E40 | 16.50 | - | - | PZI 1000/1 | JD 2000 I | - | - | - | - |
| Philips | HPI-T 380V | E40 | 9.10 | - |  | - | Q 2000 | - | - | - | - |
| Philips | MHN-LA | cables | 9.6-10.3 | Z 2000/400V | JD 2000 | - | - | $\begin{aligned} & \mathrm{HZ} 2000 \mathrm{~K} / \\ & 400 \mathrm{~V} \end{aligned}$ | JD 2000 | - | - |
| Philips | MHN-SA | X830R | 11.30 | Z 2000/400V | JD 2000 | - | - | $\begin{aligned} & \mathrm{HZ} 2000 \mathrm{~K} / \\ & 400 \mathrm{~V} \end{aligned}$ | JD 2000 | - | - |
| Philips | MHN-SB 400V | cables | 11.30 | Z 2000/400V | JD 2000 | - | - | $\begin{aligned} & \mathrm{HZ} 2000 \mathrm{~K} / \\ & 400 \mathrm{~V} \end{aligned}$ | - | - | - |
| Radium | HRI-T 230V | E40 | $\begin{aligned} & 16.50 \\ & (2 \times 8.25) \\ & \hline \end{aligned}$ | - | - | PZI 1000/1 | JD 2000 I | - | - | - | - |
| Radium | HRIT/D | E40 | 10.30 | Z 2000/400V | JD 2000 |  |  |  |  |  |  |
| Radium | HRITS | E40 | 10.30 | Z 2000/400V | JD 2000 | - | - | - | - | - | - |
| Radium | HRITS | cables | 11.30 | Z 2000/400V | JD 2000 | - | - | $\begin{aligned} & \mathrm{HZ} 2000 \mathrm{~K} / \\ & 400 \mathrm{~V} * \end{aligned}$ | JD 2000 | - | - |
| Sylvania | HSI-T | E40 | 9.00 | Z 2000/400V | JD 2000 | - | - | - | - | - | - |
| Sylvania | HSITD | cables | 11.30 | Z 2000/400V | JD 2000 | - | - | $\begin{aligned} & \mathrm{HZ} 2000 \mathrm{~K} / \\ & 400 \end{aligned}$ | JD 2000 | - | - |
| Venture | MH | cables | 10.30 | Z 2000 | JD 2000 | - | - | - | - | - | - |
| Venture | MBIL | RX7s | 10.30 | Z 2000 | JD 2000 | - | - | - | - | - | - |

## Lamp output 3500 W

| Radium | HRI-T | E40 | 18.00 | Z 3500/400V | JD 3500 | - | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Radium | HRITS | cables | 18.00 | Z 3500/400V | JD 3500 | - | - | - | - | - | - |

[^37]
## Lamp Table for Discharge Lamps

## Ceramic discharge tube lamps (C-HI)

| Manu- <br> facturer | Designation | Base | Lamp <br> current | Superimposed ignition system |  | Pulse ignition system |  | Instant restrike ignition system |  | Control gear unit | EB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | lgnitor* | Ballast | Ignitor | Ballast | Ignitor | Ballast |  |  |
| Lamp output 20 W |  |  |  |  |  |  |  |  |  |  |  |
| GE | CMH2OMR16 | GX10 | 0.21 | - | - | - | - | - | - | - | - |
| GE | CMH2OPAR | E27 | 0.23 | - | - | - | - | - | - | - | - |
| GE | CMH2OT | G12 | 0.23 | - | - | - | - | - | - | - | - |
| GE | CMH2OT | GU6. 5 | 0.21 | - | - | - | - | - | - | - | - |
| GE | CMH2OTC | G8.5 | 0.23 | - | - | - | - | - | - | - | - |
| GE | CMH2OTC | G12 | 0.23 | - | - | - | - | - | - | - | - |
| Osram | HCIPAR | E27 | 0.22 | - | - | - | - | - | - | - | - |
| Osram | HCLR1 11 | GX8.5 | 0.22 | - | - | - | - | - | - | - | - |
| Osram | HCl-TF | GU6. 5 | 0.22 | - | - | - | - | - | - | - | - |
| Osram | HCITC | G8.5 | 0.22 | - | - | - | - | - | - | - | - |
| Philips | CDM-TM | PGI5 | 0.22 | - | - | - | - | - | - | - | - |
| Philips | CDM-R | GX10 | 0.22 | - | - | - | - | - | - | - | - |
| Radium | RCC-TC | G8.5 | 0.22 | - | - | - | - | - | - | - | - |

## Lamp output 35 W

| Aura | T 35 W | E27 | 0.45 | Z 250..., Z 400... | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BLV | C-HIT | G12 | 0.50 | Z 250..., Z 400... | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHX 35 |
| GE | CMH35PAR | E27 | 0.50 | Z 250..., Z 400... | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHXc 35 |
| GE | CMH35T | G12 | 0.50 | Z 250..., Z 400. | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHX 35 |
| GE | CMH35TC | G8.5 | 0.50 | Z 250..., Z 400 . | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHXc 35 |
| Osram | HCIE/P | E27 | 0.50 | Z 250..., Z 400. | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHXc 35 |
| Osram | HCIPAR | E27 | 0.50 | Z 250..., Z 400... | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHX 35 |
| Osram | HCIR1 11 | GX8.5 | 0.50 | Z 250..., Z 400. | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHXc 35 |
| Osram | HCl- | G12 | 0.50 | Z 250..., Z 400... | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHXc 35 |
| Osram | HCITC | G8.5 | 0.50 | Z 250..., Z 400... | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHX 35 |
| Osram | HCl-TF | GU6. 5 | 0.50 | Z 250..., Z 400... | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHX 35 |
| Panasonic | CPS 35 W | GU8.5 | 0.44 | - | - | - | - | - | - | - | EHXc 35 |
| Philips | CDM-R | E27 | 0.53 | Z 250..., Z 400. | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHXc 35 |
| Philips | CDM-R111 | GX8.5 | 0.53 | Z 250..., Z 400. | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHX 35 |
| Philips | CDM-T | G12 | 0.53 | Z 250..., Z 400 . | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHX 35 |
| Philips | CDM-TC | G8.5 | 0.53 | Z 250..., Z 400... | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHXc 35 |
| Philips | CDM-R | GX10 | 0,53 | Z 250..., Z 400. | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | - | EHXC 35 G |
| Radium | RCC-PAR | E27 | 0.50 | Z 250..., Z 400... | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHXc 35 |
| Radium | RCC-T | G12 | 0.50 | Z 250..., Z 400. | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHXc 35 |
| Radium | RCC-TC | G8.5 | 0.50 | Z 250..., Z 400... | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHX 35 |
| Sylvania | CMIT | G12 | 0.53 | Z 250..., Z 400... | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHXc 35 |
| Sylvania | CML-TC | G8.5 | 0.53 | Z 250..., Z 400. | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHXc 35 |
| Venture | CMH35/T | G12 | 0.50 | Z 250..., Z 400. | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHX 35 |
| Venture | CMH35/TC | G8.5 | 0.50 | Z 250..., Z 400 . | NaHJ 35 | PZ 1000KD20 | NaHJ 35PZT | - | - | VNaHJ 35 | EHX 35 |


| Lamp output 50 W |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aura | T 50 W | E27 | 0.60 | Z250 | Z400. | NaH 50 | PZ1000KD20 | NAH50PZT | - | - | VNaH 50 | - |
| Philips | CDM-TC Elite | G8.5 | 0,59 | Z 70 |  | NaH 50 | - | - | - | - | VNaH 50 | - |
| Philips | CDM-T Elite | G12 | 0,57 | Z 70 |  | NaH 50 | - | - | - | - | VNaH 50 | - |

## Lamp output 70 W

| Aura | T 70 W | E27 | 0.80 | Z 250..., Z 400. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BLV | C-HIT | G12 | 0.98 | z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |
| BIV | C-HIT-DE | RX7s | 0.90 | Z 250..., Z 400. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |
| GE | CMH70E | E27 | 0.98 | Z 250..., Z 400. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |
| GE | CMH70PAR | E27 | 0.98 | Z 250..., Z 400. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |
| GE | CMH70T | G12 | 0.98 | Z 250..., Z 400. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |
| GE | CMH70TC | G8.5 | 0.98 | Z 250..., Z 400. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |
| GE | CMH70TD | Rx7s | 0.98 | Z 250..., Z 400 . | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | V NaH 70 | EHXc 70 |
| GE | CMH70TT | E27 | 0.98 | Z 70. | NaH 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |
| Osram | HCIE/P | E27 | 0.98 | Z 250..., Z 400. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |
| Osram | HCIPAR | E27 | 0.97 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |
| Osram | HCL-R111 | GX8.5 | 0.98 | Z 250..., Z 400. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |
| Osram | HCl- | G12 | 0.96 | Z 250..., Z 400. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |
| Osram | HCl-T/P | E27 | 0.98 | Z 250..., Z 400. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |
| Osram | HCl-TC | G8.5 | 0.96 | Z 250..., Z 400. | NaH 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |
| Osram | HCI-TS | RX7s | 0.95 | Z 250..., Z 400. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | HZ 600K | NaHJ 70 | VNaHJ 70 | EHXc 70 |
| Osram | HCl-TT | E27 | 0.92 | Z 70. | NaHJ 70 | PZ 1000KD20 | NaHJ 70PZT | - | - | VNaHJ 70 | EHXc 70 |

## Lamp Table for Discharge Lamps

## Ceramic discharge tube lamps (C-HI)

| Manufacturer | Designation | Base | Lamp current | Superimposed ignition system |  | Pulse ignition system |  | Instant restrike ignition sysrem |  | Control gear unit | EB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Ignitor* | Ballast | Ignitor | Ballast | Ignitor | Ballast |  |  |
| Lamp output 70 W |  |  |  |  |  |  |  |  |  |  |  |
| Panasonic | CPS 70 W | GU8.5 | 0.86 | - | - | - | - | - | - | - | EHXc 70 |
| Philips | CDO-ET | E27 | 0.98 | Z 70... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Philips | CDO-TT | E27 | 1.00 | Z 70... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | - |
| Philips | CDM-R | E27 | 0.97 | Z 250..., z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Philips | CDM-R111 | GX8.5 | 0.97 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 70 PZT | - | - | VNaHJ 70 | EHXc 70 |
| Philips | CDM-T | G12 | 0.98 | Z 250..., z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaH 70 | EHXc 70 |
| Philips | CDM-TC | G8.5 | 0.98 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaH 70 | EHXc 70 |
| Philips | CDM-TD | RX7s | 0.97 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | HZ 600K | NaHJ 70 | VNaHJ 70 | EHXc 70 |
| Philips | CDM-TP | PG1 2-2 | 0.98 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Radium | RCC-PAR | E27 | 0.98 | Z 250..., z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 70 PZT | - | - | VNaH 70 | EHXc 70 |
| Radium | RCC-T | G12 | 0.96 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Radium | RCC-TC | G8.5 | 0.96 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaH 70 | EHXc 70 |
| Radium | RCC-TS | RX7s | 0.98 | Z 250..., z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | HZ 600K | NaHJ 70 | VNaHJ 70 | EHXc 70 |
| Sylvania | CMI-T | G12 | 0.98 | Z 250..., z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Sylvania | CMI-TC | G8.5 | 0.98 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Sylvania | CMI-TD | RX7s | 0.98 | Z 250..., z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 70 PZT | - | - | VNaH 70 | EHXc 70 |
| Venture | CMH70/T | G12 | 0.98 | Z 250..., z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 70 PZT | - | - | VNaH 70 | EHXc 70 |
| Venture | CMH70/TC | G8.5 | 0.98 | Z 250..., Z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Venture | CMH70/TD | RX7s | 0.98 | Z 250..., z 400... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |
| Venture | CMH70/T | E27 | 0.98 | Z 70... | NaHJ 70 | PZ 1000KD20 | NaHJ 7OPZT | - | - | VNaHJ 70 | EHXc 70 |

## Lamp output 100 W

| Aura | T 100 W | E40 | 1.30 | Z 250..., Z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GE | CMH1 OOPAR | E26 | 1.10 | Z 250..., Z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |
| GE | LUCALOX XO | E40 | 1.11 | Z 250... z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |
| Osram | HCl-E/P | E27 | 1.20 | Z 250... Z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |
| Osram | HCl-T/P | E27 | 1.20 | Z 250..., z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100 PZT | - | - | VNaHJ 100 | - |
| Osram | $\mathrm{HCl}-\mathrm{T}$ | G12 | 1.10 | Z 250..., z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100 PZT | - | - | VNaHJ 100 | - |
| Philips | CDO-ET | E40 | 1.20 | Z 250... z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100 PZT | - | - | VNaHJ 100 | - |
| Philips | CDO-TT | E40 | 1.20 | z 250... z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |
| Philips | CDM-T Elite | G12 | 1.14 | Z 250... Z 400... | NaHJ 100 | PZ 1000KD20 | NaHJ 100PZT | - | - | VNaHJ 100 | - |

## Lamp output 150 W

| Aura | T150 W | E40 | 1.70 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BLV | C-HIT | G12 | 1.85 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXc 150 |
| BLV | C-HIT-DE | RX7s-24 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| GE | CMH150T | G12 | 1.85 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXc 150 |
| GE | CMH1 50TD | RX7s | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Osram | $\mathrm{HCl}-\mathrm{E} / \mathrm{P}$ | E27 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Osram | $\mathrm{HCl}-\mathrm{T}$ | G12 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Osram | HCl-T/P | E27 | 1.80 | Z 250..., Z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Osram | $\mathrm{HCl}-\mathrm{TS}$ | RX7s-24 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 1000K | NaHJ 150 | VNaHJ 150 | - |
| Osram | $\mathrm{HCl}-\mathrm{T}$ | E40 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXc 150 |
| Philips | CDO-ET | E40 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Philips | CDO-TT | E40 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXc 150 |
| Philips | CDM-T | G12 | 1.80-1.90 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXC 150 |
| Philips | CDM-TD | RX7s | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 1000K | NaHJ 150 | VNaHJ 150 | EHXC 150 |
| Philips | CDM-TP | PGX 1 2-2 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXc 150 |
| Radium | RCC-T | G12 | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | HZ 1000K | NaHJ 150 | VNaHJ 150 | EHXc 150 |
| Radium | RCC-TS | RX7s | 1.80 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXc 150 |
| Sylvania | CMI-T | G12 | 1.82 | Z 250..., z 400. | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXc 150 |
| Sylvania | CMI-TD | RX7s-24 | 1.82 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | - |
| Venture | CMH150/T | G12 | 1.85 | Z 250..., z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150PZT | - | - | VNaHJ 150 | EHXc 150 |
| Venture | CMH150/TD | RX7s | 1.80 | Z 250..., Z 400... | NaHJ 150 | PZ 1000KD20 | NaHJ 150 PZT | - | - | VNaHJ 150 | EHXC 150 |

## Lamp output 250 W

| Aura | T 250 W | E40 | 3.00 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GE | CMH250E | E40 | 2.70 | Z 250..., z 400.. | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| GE | CMH250P | E40 | 2.70 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| GE | CMH-TT | E40 | 2.90 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| Osram | HCl-E | E40 | 2.90 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| Osram | HCl-TC | E40 | 2.90 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| Osram | HCl-TM | G22 | 2.90 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | HZ 1000K | NaHJ 250 | V NaHJ 250 | - |
| Osram | $\mathrm{HCl}-\mathrm{TS}$ | E40; Fc2 | 3.00 | Z 250..., Z 400.. | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | HZ 1000K | NaHJ 250 | VNaHJ 250 | - |

## Lamp Table for Discharge Lamps

## Ceramic discharge tube lamps (C-HI)

| Manufacturer | Designation | Base | Lamp current | Superimposed ignition system |  | Pulse ignition system |  | Instant restrike ignition sysrem |  | Control gear unit | EB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | lgnitor* | Ballast | Ignitor | Ballast | Ignitor | Ballast |  |  |
| Lamp output 250 W |  |  |  |  |  |  |  |  |  |  |  |
| Philips | CDO-TT | E40 | 3.00 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| Philips | CDM-T | G12 | 3.00 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| Radium | RCC-E | E40 | 2.90 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| Radium | RCC-T | E40 | 2.80 | Z 250..., z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | - | - | VNaHJ 250 | - |
| Radium | RCC-TM | G22 | 2.90 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | HZ 1000K | NaHJ 250 | VNaHJ 250 | - |
| Radium | RCC-TS | Fc2 | 3.00 | Z 250..., Z 400... | NaHJ 250 | PZ 1000KD20 | NaHJ 250PZT | HZ 1000K | NaHJ 250 | VNaHJ 250 | - |
| Lamp output 400 W |  |  |  |  |  |  |  |  |  |  |  |
| Aura | T 400 W | E40 | 4.40 | Z 400... | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| GE | CMHT | E40 | 4.60 | Z 400M..., Z 400... | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |
| Osram | HCl-TM | G22 | 4.45 | Z 400M..., Z 400... | NaHJ 400 | PZ 1000KD20 | NaHJ 400PZT | - | - | VNaHJ 400 | - |

[^38]
## Lamp Table for Discharge Lamps

## Mercury vapour lamps (HM lamps)

| Manufacturer | Designation | Base | Current | Operating devices <br> Ballasts (ignitor not required) | Capacitor at 50 Hz |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lamp output 50 W |  |  |  |  |  |
| GE | H 50 | E27, B22d | 0.62 | Q 50, Q 80/50 | $7 \mu \mathrm{~F}$ |
| Iwasaki | HF 50 PD | E27 | 0.62 | Q 50, Q 80/50 | $7 \mu \mathrm{~F}$ |
| Narva | NF 50 | E27 | 0.62 | Q 50, Q 80/50 | $7 \mu \mathrm{~F}$ |
| Osram | HQL 50 | E27 | 0.62 | Q 50, Q 80/50 | $7 \mu \mathrm{~F}$ |
| Philips | HPL 50 | E27 | 0.62 | Q 50, Q 80/50 | $7 \mu \mathrm{~F}$ |
| Radium | HRL 50 | E27 | 0.62 | Q 50, Q 80/50 | $7 \mu \mathrm{~F}$ |
| Sylvania | HSL 50 | E27 | 0.62 | Q 50, Q 80/50 | $7 \mu \mathrm{~F}$ |
| Lamp output 80 W |  |  |  |  |  |
| GE | H 80 | E27, B22d-3* | 0.80 | Q 80, Q 80/50, Q 125/80 | $8 \mu \mathrm{~F}$ |
| Iwasaki | HF 80 PD | E27 | 0.80 | Q 80, Q 80/50, Q 125/80 | $8 \mu \mathrm{~F}$ |
| Narva | NF 80 | E27 | 0.80 | Q 80, Q 80/50, Q 125/80 | $8 \mu \mathrm{~F}$ |
| Osram | HQL 80 | E27 | 0.80 | Q 80, Q 80/50, Q 125/80 | $8 \mu \mathrm{~F}$ |
| Philips | HPL 80 | E27 | 0.80 | Q 80, Q 80/50, Q 125/80 | $8 \mu \mathrm{~F}$ |
| Radium | HRL 80 | E27 | 0.80 | Q 80, Q 80/50, Q 125/80 | $8 \mu \mathrm{~F}$ |
| Sylvania | HSL 80 | E27 | 0.80 | Q 80, Q 80/50, Q 125/80 | $8 \mu \mathrm{~F}$ |
| Lamp output 125 W |  |  |  |  |  |
| GE | H 125 | E27, B22d-3* | 1.15 | Q 125, Q 125/80 | $10 \mu \mathrm{~F}$ |
| Iwasaki | HF 125 PD | E27 | 1.15 | Q 125, Q 125/80 | $10 \mu \mathrm{~F}$ |
| Narva | NF 125 | E27 | 1.15 | Q 125, Q 125/80 | $10 \mu \mathrm{~F}$ |
| Osram | HQL 125 | E27, E40 | 1.15 | Q 125, Q 125/80 | $10 \mu \mathrm{~F}$ |
| Philips | HPL 125 | E27 | 1.15 | Q 125, Q 125/80 | $10 \mu \mathrm{~F}$ |
| Radium | HRL 125 | E27 | 1.15 | Q 125, Q 125/80 | $10 \mu \mathrm{~F}$ |
| Sylvania | HSL 125 | E27, B22d-3* | 1.15 | Q 125, Q 125/80 | $10 \mu \mathrm{~F}$ |
| Lamp output 250 W |  |  |  |  |  |

## Lamp output 250 W

| GE |  |
| :--- | :--- |
| Iwasaki |  |
| Narva |  |
| Osram |  |
| Philips |  |
| Radium |  |
| Sylvania |  |
| Lamp output 400 W |  |


| Lamp output 400 W |  |
| :--- | :---: |
| GE |  |
| Iwasaki |  |
| Narva |  |
| Osram |  |
| Philips |  |
| Radium |  |
| Sylvania |  |


|  | H 400 | E40 | 3.25 |
| :--- | :--- | :--- | :--- |
|  | HF 400 PD | E40 | 3.25 |
| NF 400 | E40 | 3.25 | Q |
|  | HQL 400 | E40 | 3.25 |
| HPL 400 | E40 | 3.25 | Q |
| HRL 400 | E40 | 3.25 | Q |
|  | HSL 400 | E40 | 3.25 |


| Q 400, U-Q 400/250 | $25 \mu \mathrm{~F}$ |
| :--- | :--- |
| Q 400, U-Q 400/250 | $25 \mu \mathrm{~F}$ |
| Q 400, U-Q 400/250 | $25 \mu \mathrm{~F}$ |
| Q 400, U-Q 400/250 | $25 \mu \mathrm{~F}$ |
| Q 400, U-Q 400/250 | $25 \mu \mathrm{~F}$ |
| Q 400, U-Q 400/250 | $25 \mu \mathrm{~F}$ |
| Q 400, U-Q 400/250 | $25 \mu \mathrm{~F}$ |


|  | Q 250, U-Q 250/150 | $18 \mu F$ |
| :--- | :--- | :--- |
| Q 250, U-Q 250/150 | $18 \mu F$ |  |
| Q 250, U-Q 250/150 | $18 \mu F$ |  |
| Q 250, U-Q 250/150 | $18 \mu F$ |  |
| Q 250, U-Q 250/150 | $18 \mu F$ |  |
| Q 250, U-Q 250/150 | $18 \mu F$ |  |
| Q 250, U-Q 250/150 | $18 \mu F$ |  |

Lamp output 125 W

| H 250 | E40 | 2.15 |
| :--- | :--- | :--- |
| HF 250 PD | E40 | 2.15 |
| NF 250 | E40 | 2.15 |
| HQL 250 | E40 | 2.15 |
| HPL 250 | E40 | 2.15 |
| HRL 250 | E40 | 2.15 |
| HSL 250 | E40 | 2.15 |

## Lamp output 700 W

| GE |  |
| :--- | :--- |
| Iwasaki |  |
| Narva |  |
| Osram |  |
| Philips |  |
| Radium |  |
| Sylvania |  |


| H 700 | E40 | 5.45 | Q 700 |
| :---: | :---: | :---: | :---: |
| HF 700 PD | E40 | 5.40 | Q 700 |
| NF 700 | E40 | 5.40 | Q 700 |
| HQL 700 | E40 | 5.40 | Q 700 |
| HPL 700 | E40 | 5.40 | Q 700 |
| HRL 700 | E40 | 5.40 | Q 700 |
| HSL 700 | E40 | 5.40 | Q 700 |


| $40 \mu F$ |
| :--- |
| $40 \mu F$ |

## Lamp output 1000 W

| GE | H 1000 | E40 | 7.50 | Q 1000 | $60 \mu \mathrm{~F}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Iwasaki | HF 1000 PD | E40 | 7.50 | Q 1000 | $60 \mu \mathrm{~F}$ |
| Narva | NF 1000 | E40 | 7.50 | Q 1000 | $60 \mu \mathrm{~F}$ |
| Osram | HQL 1000 | E40 | 7.50 | Q 1000 | $60 \mu \mathrm{~F}$ |
| Philips | HPL 1000 | E40 | 7.50 | Q 1000 | $60 \mu \mathrm{~F}$ |
| Radium | HRL 1000 | 7.50 | Q 1000 | $60 \mu \mathrm{~F}$ |  |
| Sylvania | HSL 1000 | 7.50 | Q 1000 | $60 \mu \mathrm{~F}$ |  |
| The VS range does not include a lampholder for base B22d-3 |  |  |  |  |  |

## Technical Details - Components for Discharge Lamps

## Energy efficiency classification

The commission's regulation (EC) No. 245/2009 dated 18 March 2009 implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to defining ecodesign requirements for fluorescent lamps without integrated ballast, high-pressure discharge lamps and for ballasts and luminaires needed for their operation, and repealing Directive 2000/55/EC of the European Parliament and of the Council (official title), has created a legal framework in the EU that defines fundamental requirements for operating efficient lighting technology products.

Although the Regulation predominantly applies to general lighting, it is also product-orientated and thus independent of any specific application. The efficiency and performance requirements (specifications governing performance features) apply to fluorescent lamps without integrated ballast, high-pressure discharge lamps as well as ballasts and luminaires needed to operate these lamps. A brief overview of the requirements governing high-pressure discharge lamps is provided in the following table lexcerpt from the CELMA guide).

| Stage | Requirements governing |  |
| :---: | :---: | :---: |
| $13.04 .2010$ | Ballasts | - No special requirements. |
| Interim Stage 13.09.2010 | Luminaires | - After 18 months: technical information must be made available, both online and in luminaire documentation (for luminaires > 2,000 Lumens) |
| $\begin{aligned} & \mathbf{2} \\ & 13.04 .2012 \end{aligned}$ | Ballasts | - Introduction of minimum energy-efficiency index values for HID ballasts and their labelling: <br> - HID ballasts to be labelled: EEI=A3 |
|  | Luminaires | - Luminaire designs must permit the integration of 3rd-stage ballasts. Exception: luminaires > IP4X |
| $\begin{aligned} & \text { at the latest by } \\ & \mathbf{1 3 . 0 4 . 2 0 1 4} \end{aligned}$ | Revision of the regulation <br> Technological progress as well as the sum of the experience gained during the implementation of the Regulatio be taken into oconsideration during the revision process. |  |
| $\begin{aligned} & \mathbf{3} \\ & 13.04 .2017 \end{aligned}$ | Ballasts | - Minimum energy-efficiency index values will be raised: $P<30 W-\eta \geq 78 \%$ $30<P<75 W-n \geq 85 \%$ $75<P<105 W-\eta \geq 87 \%$ <br> $105<P<405 W-\eta \geq 90 \%$ <br> $P>405 W-\eta \geq 92 \%$ <br> - HID ballasts to be labelled: A2 |
|  | Luminaires | - All luminaire designs must permit the integration of 3rd-stage ballasts. |

Directive EU 245/2009 stipulates limit values governing the energy consumption of lamps, luminaires and control gear, regardless of the technology, and applies to both electromagnetic and electronic control gear. Since the directive will apply in all EU member states with effect from 13th April 2017, it will only be possible to put products into circulation on this market onwards of this date if they comply with the energy efficiency values of stage three of directive EU 245/2009.

However, outside of the EU it will continue to be possible to market products of all energy classes, as before, in compliance with local laws and directives.

Warehouse stock held by traders may continue to be marketed without restrictions - even within the EU - after 13th April 2017.

Requirements for replacements constitute a special case with regard to the new directive. If the device in question is to be used for replacement purposes only, the device - even with poorer energy efficiency values than stipulated in the directive and without a CE mark - may be used to replace a defective unit in an existing luminaire.

The approbation of a luminaire will not be invalidated by replacing a defective control gear unit with an equivalent replacement control gear unit.

## WARMSTART, DIMMABLE AND INSTANT START

## NWIW WIUII


Electronic ballasts for compact fluorescent lamps ..... 122-135
ELXc - Warm start - Linear casing shape ..... 122
ELXd - Dimmable - Linear casing shape ..... 123-124
ELXc - Warm start - Compact casing shape ..... 125-130
ECO Effectline ..... 131
ELXd - Dimmable - Compact casing shape ..... 132-135
Electronic ballasts for tubular fluorescent lamps ..... 136-143
ELXC - Warm start - Linear casing shape ..... 136-140
Effectline and Effectline II ..... 138
New T5 Effectline ..... 139
ECO Effectline ..... 140
ELXd - Dimmable - Linear casing shape ..... 141-143
Accessories for dimmable electronic built-in ballasts ..... 144

Accessories for dimmable electronic built-in ballasts
Technical details for fluorescent lamps ..... 208-235
General technical details
General technical details ..... 348-356 ..... 348-356
Glossary
Glossary ..... 357-359 ..... 357-359-

## ELXc - Warm Start for TC-F, TC-L Lamps

Electronic built-in ballasts
Casing: metal
Power factor: > 0.96
DC voltage
for operation: 176-264 V
for ignition: 198-264 V
(ELXc 180.866, 280.538: DC voltage
cannot be reduced to 176 V )
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5
RFI-suppressed
For luminaires of protection class I

## M10/M1 1



Degree of protection: IP20
For lighting systems with
high switching frequency (> 5/day)
EOL shut down approved acc. to EN 61347 Test 2


| Lamp |  |  |  |  |  |  |  |  |  |  | 1-10 VDALI/PUSH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| Output <br> W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$ | Energy efficiency | Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$ | Casing | Output <br> W | Luminous factor \% |
| 18 | TC-F/-L | 2G10/2G11 | $1 \times 16.0$ | ELXc 140.862 | 188140 | 220-240 | A2 | -15 to 55 | max. 70 | M10 | 19.0 | 109.0 |
| $2 \times 18$ | TC-F/-L | 2G10/2G11 | $2 \times 16.0$ | ELXc 240.863 | 188616 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M10 | 35.0 | 105.3 |
| 24 | TC-F/-L | 2G10/2G11 | $1 \times 22.0$ | ELXc 140.862 | 188140 | 220-240 | A2 | -15 to 55 | max. 70 | M10 | 27.0 | 109.0 |
| 2×24 | TC-F/-L | 2G10/2G11 | $2 \times 22.0$ | ELXc 240.863 | 188616 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M10 | 51.0 | 106.8 |
| 36 | TC-F/-L | 2G10/2G11 | $1 \times 32.0$ | ELXc 140.862 | 188140 | 220-240 | A2 | -15 to 55 | max. 70 | M10 | 35.0 | 101.0 |
| 2×36 | TC-F/-L | 2G10/2G11 | $2 \times 32.0$ | ELXc 240.863 | 188616 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M10 | 71.0 | 98.7 |
| 40 | TC-L | 2G11 | $1 \times 40.0$ | ELXc 140.862 | 188140 | 220-240 | A2 | -15 to 55 | max. 70 | M1O | 46.0 | 104.0 |
| 2×40 | TC-L | 2G11 | $2 \times 40.0$ | ELXc 240.863 | 188616 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M10 | 89.0 | 103.6 |
| 55 | TC-L | 2G11 | $1 \times 55.0$ | ELXc 180.866 | 188144 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M10 | 62.0 | 107.3 |
| $2 \times 55$ | TC-L | 2G11 | $2 \times 50.0$ | ELXC 254.865 | 188618 | 220-240 | A2 BAT | -15 to 50 | max. 70 | M10 | 112.0 | 92.9 |
|  |  |  | $2 \times 55.0$ | ELXc 280.538 | 188619 | 220-240 | A2 BAT | -15 to 50 | max. 70 | M11 | 120.0 | 100.0 |
| 80 | TC-L | 2G11 | $1 \times 80.0$ | ELXc 180.866 | 188144 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M10 | 87.0 | 97.6 |
| 2x80 | TC-L | 2G11 | $2 \times 80.0$ | ELXc 280.538 | 188619 | 220-240 | A2 BAT | -15 to 50 | max. 70 | M11 | 175.0 | 100.0 |

[^39]
## ELXd - Dimmable for TC-F, TC-L Lamps

Electronic built-in ballasts
Casing: metal

## Dimming range:

approx. 1-100\% of lamp power
Power factor: $\geq 0.95$ at $100 \%$ operation
DC voltage
for operation: 154-276 V (M22, M23, M24)
for operation: 176-264 V (M9)
for ignition: 198-264 V
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads HO5V-U 0.5
RFI-suppressed
For luminaires of protection class I
Degree of protection: IP20
Fixing holes for screws M4
for lateral or base mounting
For lighting systems with
high switching frequency (> 5/day)
EOL shut down approved acc. to EN 61347 Test 2

M9


M23


M22/M24



## Electronic Ballasts for TC and T Lamps

## ELXd - Dimmable 1-10 V for TC-F, TC-L lamps

Control voltage: DC 1-10 V
acc. to EN 60929 with earth leakage current 0.5 mA
(protected if connected to mains voltage)
For use with open- or closed-loop control units


| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$ | Energie efficiency | Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$ | Casing | Output <br> W | Luminous factor \% |
| 18 | TC-F/-L | 2G10/2G11 | $1 \times 16.0$ | ELXd 118.718 | 188873 | 220-240 | EEI=A1 | 10 to 50 | max. 70 | M9 | 18.0 | 94.0 |
| 2×18 | TC-F/-L | 2G10/2G11 | $2 \times 16.0$ | ELXd 218.719 | 188874 | 220-240 | EEI=A1 | 10 to 50 | max. 70 | M9 | 36.0 | 90.6 |
| 24 | TC-F/-L | 2G10/2G11 | $1 \times 22.0$ | ELXd 118.718 | 188873 | 220-240 | EEI=A1 | 10 to 50 | max. 70 | M9 | 27.0 | 96.6 |
|  |  |  | $1 \times 23.0$ | ElXd 124.607 | 188336 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 26.0 | 100.0 |
| 2×24 | TC-F/-L | 2G10/2G11 | $2 \times 22.0$ | ELXd 218.719 | 188874 | 220-240 | EEI=A1 | 10 to 50 | max. 70 | M9 | 52.0 | 100.8 |
|  |  |  | $2 \times 23.0$ | ElXd 224.608 | 188337 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 49.0 | 100.0 |
| $3 \times 24$ | TC-F/-L | 2G10/2G11 | $3 \times 24.0$ | ELXd 324.623 | 188597 | 220-240 | Al BAT | 10 to 50 | max. 75 | M23 | 73.4 | 100.0 |
| 4×24 | TC-F/-L | 2G10/2G11 | $4 \times 24.0$ | ElXd 424.624 | 188598 | 220-240 | Al BAT | 10 to 50 | max. 75 | M23 | 97.6 | 100.0 |
| 36 | TC-F/-L | 2G10/2G11 | $1 \times 32.0$ | ELXd 136.720 | 188875 | 220-240 | Al BAT | 10 to 50 | max. 70 | M9 | 37.3 | 93.5 |
| 2×36 | TC-F/-L | 2G10/2G11 | $2 \times 32.0$ | ELXd 236.721 | 188876 | 220-240 | EEI=A1 | 10 to 50 | max. 70 | M9 | 72.0 | 92.6 |
| 40 | TC-L | 2G11 | $1 \times 38.0$ | ElXd 139.609 | 188338 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 42.0 | 100.0 |
| 2×40 | TC-L | 2G11 | $2 \times 38.0$ | ElXd 239.610 | 188339 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 82.0 | 100.0 |
| 55 | TC-L | 2G11 | $1 \times 51.0$ | ElXd 158.722 | 188877 | 220-240 | EEI=A1 | 10 to 50 | max. 70 | M9 | 56.0 | 92.5 |
|  |  |  | $1 \times 54.0$ | ELXd 154.611 | 188340 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 59.0 | 100.0 |
| 2×55 | TC-L | 2G11 | $2 \times 54.0$ | ElXd 254.612 | 188341 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 115.0 | 100.0 |
| 80 | TC-L | 2G11 | $1 \times 80.0$ | ELXd 180.613 | 188342 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 88.0 | 100.0 |

Circuit diagrams see pages 220-223

## ELXd - Dimmable with push key or DALI for TC-F, TC-L lamps

Complete implementation of the DALI-standard:
addressable, memory store for scenes and groups,
revertive information communication, physical and
RND-selection, standardized lamp characteristic
Low-power design ensures very low standby
power consumption
standby power consumption: $\leq 0.2 \mathrm{~W}$


| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$ | Energie efficiency | Ambient <br> temperature <br> ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing <br> temperature <br> tc $\left({ }^{\circ} \mathrm{C}\right)$ | Casing | Output <br> W | Luminous factor \% |
| 24 | TC-F/-L | 2G10/2G11 | $1 \times 23.0$ | ElXd 124.600 | 188329 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 26.0 | 100.0 |
| 2×24 | TC-F/-L | 2G10/2G11 | $2 \times 23.0$ | ElXd 224.601 | 188330 | 220-240 | AI BAT | 10 to 50 | max. 75 | M24 | 49.0 | 100.0 |
| $3 \times 24$ | TC-F/-L | 2G10/2G11 | $3 \times 23.0$ | ElXd 324.626 | 188600 | 220-240 | Al BAT | 10 to 50 | max. 75 | M23 | 73.4 | 100.0 |
| 4×24 | TC-F/-L | 2G10/2G11 | $4 \times 23.0$ | ElXd 424.628 | 188602 | 220-240 | Al BAT | 10 to 50 | max. 75 | M23 | 97.6 | 100.0 |
| 40 | TC-L | 2G11 | $1 \times 38.0$ | ElXd 139.602 | 188331 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 42.0 | 100.0 |
| 2x40 | TC-L | 2G11 | $2 \times 38.0$ | ElXd 239.621 | 188350 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 82.0 | 100.0 |
| 55 | TC-L | 2G11 | $1 \times 54.0$ | ElXd 154.603 | 188332 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 59.0 | 100.0 |
| 2×55 | TC-L | 2G11 | $2 \times 54.0$ | ElXd 254.604 | 188333 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 115.0 | 100.0 |
| 80 | TC-L | 2G11 | $1 \times 80.0$ | ElXd 180.605 | 188334 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 88.0 | 100.0 |

[^40]
## ELXc - Warm Start for Compact Fluorescent Lamps

Electronic ballasts
Casing: heat-resistant polyamide (K2, K3) or heat-resistant polycarbonate (K2.1)
DC voltage
for operation: 176-264 V
for ignition: 198-264 V
(ELXc 242.837: DC voltage cannot
be reduced to 176 V )

Power factor: > 0.96 (K2.1: 0.98)
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$ RFI-suppressed
Constant power consumption
For luminaires of protection class I
Degree of protection: IP20
Fixing brackets for screws M4
for lateral or base mounting

## Electronic built-in ballasts

For lighting systems with
high switching frequency (> 5/day)
EOL shut down approved acc. to
EN 61347 Test 2


## ELXc - Warm Start for Compact Fluorescent Lamps



## Independent electronic ballasts

## K2 with cord grip



K3 with cord grip


## K2.1 with cord grip



## Electronic Ballasts for TC and T Lamps



## ELXc - Warm start for compact fluorescent lamps

Built-in ballasts

ELXc 213.870, 218.871, 142.872
242.837, 155.378 have a second earth terminal
to ground the luminaires for example

| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$ | Energie efficiency | Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing <br> temperature <br> tc $\left({ }^{\circ} \mathrm{C}\right)$ | Casing | Output <br> W | Luminous factor \% |
| 9 | TC-SEL | 2G7 | $1 \times 8.0$ | ELXc 213.870 | 188698 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 10.7 | 102.9 |
| 2x9 | TC-SEL | 2G7 | $2 \times 8.0$ | ELXc 213.870 | 188698 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 19.4 | 102.9 |
| 10 | TC-DEL | G24q-1 | $1 \times 9.5$ | ELXc 213.870 | 188698 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 10.9 | 99.2 |
| 2×10 | TC-DEL | G24q-1 | $2 \times 9.5$ | ELXc 213.870 | 188698 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 20.5 | 98.8 |
| 11 | TC-SEL | 2G7 | $1 \times 11.0$ | ELXc 213.870 | 188698 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 14.7 | 110.1 |
| $2 \times 11$ | TC-SEL | 2G7 | $2 \times 11.0$ | ELXc 213.870 | 188698 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 27.9 | 116.1 |
| 13 | TC-DEL/-TEL | G24q-1/GX24q-1 | $1 \times 12.5$ | ELXc 213.870 | 188698 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 15.0 | 102.9 |
| 2×13 | TC-DEL/-TEL | G24q-1/GX24q-1 | $2 \times 12.5$ | ELXc 213.870 | 188698 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 28.1 | 110.9 |
| 18 | TC-DEL/-TEL | G24q-2/GX24q-2 | $1 \times 16.5$ | ELXc 218.871 | 188699 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 21.0 | 104.8 |
|  | TC-F/-L | 2G10/2G11 | $1 \times 16.0$ | ELXc 142.872 | 188700 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 18.0 | 102.0 |
| $2 \times 18$ | TC-DEL/-TEL | G24q-2/GX24q-2 | $2 \times 16.5$ | ELXc 218.871 | 188699 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 38.0 | 100.7 |
|  | TC-F/-L | 2G10/2G11 | $2 \times 16.0$ | ELXc 242.837 | 188643 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K3 | 35.0 | 104.3 |
|  |  |  |  | ELXc 142.872 | 188700 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 34.0 | 98.0 |
| 22 | T-R5 | 2GX13 | $1 \times 22.0$ | ELXc 142.872 | 188700 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 26.0 | 103.0 |
|  |  |  |  | ELXc 128.869 | 188589 | 220-240 | A2 BAT | -20 to 50 | max. 70 | K2 | 25.0 | 96.7 |
| 22+40 | T-R5 | 2GX13 | $1 \times 22+40$ | ELXc 242.837 | 188643 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K3 | 68.0 | 100.0 |
| 2×22 | T-R5 | 2GX13 | $2 \times 22.0$ | ELXc 242.837 | 188643 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K3 | 48.5 | 105.8 |
| 24 | TC-F/-L | 2G10/2G11 | $1 \times 22.0$ | ELXc 142.872 | 188700 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 27.0 | 105.0 |
|  |  |  | 1 $\times 22.5$ | ELXc 128.869 | 188589 | 220-240 | A2 | -20 to 50 | max. 70 | K2 | 25.0 | 95.8 |
| $2 \times 24$ | TC-F/-L | 2G10/2G11 | $2 \times 22.0$ | ELXc 242.837 | 188643 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K3 | 48.5 | 106.2 |
|  |  |  |  | ELXc 142.872 | 188700 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 47.0 | 102.0 |
| 26 | TC-DEL/-TEL | G24q-3/GX24q-3 | $1 \times 24.0$ | ELXc 142.872 | 188700 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 26.0 | 104.0 |
| $2 \times 26$ | TC-DEL/-TEL | G24q-3/GX24q-3 | $2 \times 24.0$ | ELXc 242.837 ELXc 142.872 | $\begin{aligned} & 188643 \\ & 188700 \end{aligned}$ | 220-240 | $\begin{aligned} & \text { A2 BAT } \\ & \text { A2 BAT } \end{aligned}$ | $\begin{aligned} & -20 \text { to } 50 \\ & -20 \text { to } 50 \end{aligned}$ | $\begin{aligned} & \max .65 \\ & \max .65 \end{aligned}$ | $\begin{aligned} & \text { K3 } \\ & \text { K2 } \end{aligned}$ | $\begin{aligned} & 53.0 \\ & 53.0 \end{aligned}$ | $\begin{aligned} & 106.1 \\ & 105.0 \end{aligned}$ |

Circuit diagrams see pages 220-223

## Electronic Ballasts for TC and T Lamps



ELXc - Warm start for compact fluorescent lamps

## Built-in ballasts

ELXc 213.870, 218.871, 142.872
$242.837,155.378$ have a second earth terminal
to ground the luminaires for example


| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$ | Energie efficiency | Ambient <br> temperature <br> ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$ | Casing | Output <br> W | Luminous factor \% |
| 28 | TC-DD | GR10q | $1 \times 26.0$ | ELXc 128.869 | 188589 | 220-240 | A2 BAT | -20 to 50 | max. 70 | K2 | 32.0 | 98.1 |
| 32 | TC-TEL | GX24q-3 | $1 \times 32.0$ | ELXc 142.872 | 188700 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 33.0 | 102.0 |
| 2x32 | TC-TEL | GX24q-3 | $2 \times 32.0$ | ELXc 242.837 | 188643 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K3 | 70.5 | 104.8 |
| 36 | TC-F/-L | 2G10/2G11 | $1 \times 32.0$ | ELXc 142.872 | 188700 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 34.0 | 105.0 |
| 2×36 | TC-F/-L | 2G10/2G11 | $2 \times 32.0$ | ELXc 242.837 | 188643 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K3 | 70.5 | 101.8 |
| 38 | TC-DD | GR10q | $1 \times 36.0$ | ELXc 142.872 | 188700 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 38.0 | 95.0 |
| 2×38 | TC-DD | GR10q | $2 \times 36.0$ | ELXc 242.837 | 188643 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K3 | 79.2 | 101.3 |
| 40 | TC-L | 2G11 | $1 \times 40.0$ | ELXc 142.872 | 188700 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 43.0 | 99.0 |
|  | T-R5 | 2GX13 | $1 \times 40.0$ | ELXc 142.872 | 188700 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 41.0 | 96.0 |
| $2 \times 40$ | TC-L | 2G11 | $2 \times 40.0$ | ELXc 242.837 | 188643 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K3 | 88.0 | 101.3 |
|  | T-R5 | 2GX13 | $2 \times 40.0$ | ELXc 242.837 | 188643 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K3 | 88.0 | 101.1 |
| 42 | TC-TEL | GX24q-4 | $1 \times 42.0$ | ELXc 142.872 | 188700 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 45.0 | 99.0 |
| 2×42 | TC-TEL | GX24q-4 | $2 \times 43.0$ | ELXc 242.837 | 188643 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K3 | 94.5 | 100.6 |
| 55 | TC-L | 2G11 | $1 \times 55.6$ | ELXc 155.378 | 188680 | 220-240 | A2 BAT | -20 to 50 | max. 70 | K3 | 60.0 | 102.4 |
|  | T-R5 | 2GX13 | $1 \times 55.6$ | ELXc 155.378 | 188680 | 220-240 | A2 BAT | -20 to 50 | max. 70 | K3 | 60.0 | 101.2 |
| 60 | T-R5 | 2GX13 | $1 \times 60.6$ | ElXc 155.378 | 188680 | 220-240 | A2 | -20 to 50 | max. 70 | K3 | 66.0 | 109.5 |
| 80 | TC-L | 2G11 | $1 \times 80.5$ | ELXc 155.378 | 188680 | 220-240 | A2 BAT | -20 to 50 | max. 70 | K3 | 88.0 | 101.3 |

[^41]

## ELXc - Warm start for compact fluorescent lamps <br> Independent ballasts

ELXc 213.870, 218.871, 142.872
155.378 have a second earth terminal
to ground the luminaires


| Lamp |  |  |  | Electronic ballas |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$ | Energy efficiency | Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing temperature tc $\left.1^{\circ} \mathrm{C}\right)$ | Casing | Output <br> W | Luminous factor \% |
| 9 | TC-SEL | 2G7 | $1 \times 8.0$ | ELXc 213.870 | 188712 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 10.7 | 102.9 |
| 2×9 | TC-SEL | 2G7 | $2 \times 8.0$ | ELXc 213.870 | 188712 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 19.4 | 102.9 |
| 10 | TC-DEL | G24q-1 | $1 \times 9.5$ | ELXc 213.870 | 188712 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 10.9 | 99.2 |
| 2×10 | TC-DEL | G24q-1 | $2 \times 9.5$ | ELXc 213.870 | 188712 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 20.5 | 98.8 |
| 11 | TC-SEL | 2G7 | $1 \times 11.0$ | ELXc 213.870 | 188712 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 14.7 | 110.1 |
| $2 \times 11$ | TC-SEL | 2G7 | $2 \times 11.0$ | ELXc 213.870 | 188712 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 27.9 | 116.1 |
| 13 | TC-DEL/-TEL | G24q-1/GX24q-1 | $1 \times 12.5$ | ELXc 213.870 | 188712 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 15.0 | 102.9 |
| $2 \times 13$ | TC-DEL/-TEL | G24 ${ }^{-1 / G \times 24 q^{-1}}$ | $2 \times 12.5$ | ELXc 213.870 | 188712 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 28.1 | 110.9 |
| 18 | TC-DEL/-TEL | G24q-2/GX24q-2 | $1 \times 16.5$ | ELXc 218.871 | 188713 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 21.0 | 104.8 |
|  | TC-F/-L | 2G10/2G11 | $1 \times 16.0$ | ELXc 142.872 | 188714 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 18.0 | 102.0 |
| $2 \times 18$ | TC-DEL/-TEL | G24q-2/GX24q-2 | $2 \times 16.5$ | ELXc 218.871 | 188713 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 38.0 | 100.7 |
|  | TC-F/-L | 2G10/2G11 | $2 \times 16.0$ | ELXc 142.872 | 188714 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 34.0 | 98.0 |
| 22 | T-R5 | 2GX13 | $1 \times 22.0$ | ELXc 142.872 | 188714 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 26.0 | 103.0 |
|  |  |  |  | ELXc 128.869 | 188590 | 220-240 | A2 BAT | -20 to 50 | max. 70 | K2 | 25.0 | 96.7 |
| 24 | TC-F/-L | 2G10/2G11 | $1 \times 22.0$ | ELXc 142.872 | 188714 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 27.0 | 105.0 |
|  | TC-F/-L | 2G10/2G11 | $1 \times 22.5$ | ELXc 128.869 | 188590 | 220-240 | A2 | -20 to 50 | max. 70 | K2 | 25.0 | 95.8 |
| 2×24 | TC-F/-L | 2G10/2G11 | $2 \times 22.0$ | ELXc 142.872 | 188714 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 47.0 | 102.0 |
| 26 | TC-DEL/-TEL | G24q-3/GX24q-3 | $1 \times 24.0$ | ELXc 142.872 | 188714 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 26.0 | 104.0 |
|  |  |  |  | ELXc 226.878 | 183040 | 220-240 | A2 BAT | -20 to 55 | max. 65 | K2.1 | 28.0 | 104.0 |
|  |  |  |  | ELXc 226.878 | 183108* | 220-240 | A2 BAT | -20 to 55 | max. 65 | K2.1 | 28.0 | 104.0 |
| $2 \times 26$ | TC-DEL/-TEL | G24q-3/GX24q-3 | $2 \times 24.0$ | ELXc 226.878 | 183040 | 220-240 | A2 BAT | -20 to 55 | max. 65 | K2.1 | 50.0 | 101.0 |
|  |  |  |  | ELXc 226.878 | 183108* | 220-240 | A2 BAT | -20 to 55 | max. 65 | K2.1 | 50.0 | 101.0 |
|  |  |  |  | ELXc 142.872 | 188714 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 53.0 | 105.0 |

Circuit diagrams see pages 220-223

* Without cover cap on cord grip $=$ built-in version


## Electronic Ballasts for TC and T Lamps



ELXc - Compact warm start for compact fluorescent lamps - Independent ballasts
ELXc 213.870, 218.871, 142.872,
155.378 have a second earth terminal
to ground the luminaires for example

| Lamp |  |  |  | Electronic ballast |  |  |  | T5 OTC   <br> T8 BUILT-IN 1-10 $\mathbf{V}$ <br> OINDEPENDENT DALI/PUSH  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Ambient temperature $\mathrm{ta}_{\mathrm{a}}{ }^{\circ} \mathrm{C}$ ) | Casing <br> temperature $\mathrm{tc}\left({ }^{\circ} \mathrm{C}\right)$ | Casing | System |  |
| Output <br> W | Type | Base | Power consumption W |  |  |  | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$ | Energy efficiency | Output <br> W | Luminous factor \% |
| 28 | TC-DD | GR10q | $1 \times 26.0$ | ElXc 128.869 | 188590 | 220-240 | A2 BAT | -20 to 50 | max. 70 | K2 | 32.0 | 98.1 |
| 32 | TC-TEL | GX24q-3 | $1 \times 32.0$ | ElXc 142.872 | 188714 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 33.0 | 102.0 |
| 36 | TC-F/-L | 2G10/2G11 | $1 \times 32.0$ | ElXc 142.872 | 188714 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 34.0 | 105.0 |
| 38 | TC-DD | GR10q | $1 \times 36.0$ | EIXc 142.872 | 188714 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 38.0 | 95.0 |
| 40 | TC-L | 2G11 | 1 $\times 40.0$ | ELXc 142.872 | 188714 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 43.0 | 99.0 |
|  | T-R5 | 2GX13 | $1 \times 40.0$ | ELXc 142.872 | 188714 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 41.0 | 96.0 |
| 42 | TC-TEL | GX24q-4 | $1 \times 42.0$ | ELXc 142.872 | 188714 | 220-240 | A2 BAT | -20 to 50 | max. 65 | K2 | 45.0 | 99.0 |
| 55 | TC-L | 2G11 | $1 \times 55.6$ | ELXc 155.378 | 188681 | 220-240 | A2 BAT | -20 to 50 | max. 70 | K3 | 60.0 | 102.4 |
|  | T-R5 | 2GX13 | $1 \times 55.6$ | ELXc 155.378 | 188681 | 220-240 | A2 BAT | -20 to 50 | max. 70 | K3 | 60.0 | 101.2 |
| 60 | T-R5 | 2GX13 | $1 \times 60.6$ | ELXc 155.378 | 188681 | 220-240 | A2 | -20 to 50 | max. 70 | K3 | 66.0 | 109.5 |
| 80 | TC-L | 2G11 | $1 \times 80.5$ | ELXc 155.378 | 188681 | 220-240 | A2 BAT | -20 to 50 | max. 70 | K3 | 88.0 | 101.3 |

Circuit diagrams see pages 220-223

## ELXc - ECO EffectLine Warm Start for Compact Fluorescent Lamps

Electronic ballasts
Casing: PC, white
Mains voltage: $198-264 \mathrm{~V}$
Push-in terminals: $0.5-1.5 \mathrm{~mm}^{2}$
K1.1
RFI-suppressed
For luminaires of protection class I
Degree of protection: IP20
For lighting systems with
high switching frequency (>5/day)


EOL shut down approved acc. to EN 61347 Test 1


ELXc - Warm start for compact fluorescent lamps

- Built-in ballasts

| T5 | TC | BUILT-IN |
| :--- | :--- | :--- |
| T8 | I-10 $\mathbf{V}$ |  |
| INDEPENDENT | DALI/PUSH |  |


| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \\ & \hline \end{aligned}$ | Energy efficiency | Power factor | Ambient temperature $\operatorname{ta}\left({ }^{\circ} \mathrm{C}\right)$ | Casing temperature $\text { tc }\left({ }^{\circ} \mathrm{C}\right)$ | Output <br> W | Luminous <br> factor <br> \% |
| 18 | TC-DEL/TEL | G24q-2/GX24q-2 | $1 \times 16.5$ | ELXc 118.879 | 183134 | 220-240 | A2 | > 0.95 | -10 to 50 | max. 70 | 19.5 | 100 |
| 2×18 | TC-DEL/-TEL | G24q-2/GX24q-2 | $2 \times 16.5$ | ELXc 218.881 | 183136 | 220-240 | A2 | $>0.95$ | -15 to 50 | max. 75 | 38.0 | 100 |
| 26 | TC-DEL/-TEL | G24q-3/GX24q-3 | $1 \times 24.0$ | ELXc 126.880 | 183135 | 220-240 | A2 | > 0.95 | -10 to 50 | max. 75 | 28.0 | 100 |
| 2×26 | TC-DEL/-TEL | G24q-3/GX24q-3 | $2 \times 24.0$ | ELXc 226.882 | 183137 | 220-240 | A2 | > 0.95 | -15 to 50 | max. 80 | 53.5 | 100 |

Circuit diagrams see pages 220-223

## ELXd - Dimmable for TC-DEL, TC-TEL Lamps

Electronic ballasts
Casing: heat-resistant polycarbonate

## Dimming range:

approx. 3-100\% of lamp power
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$
RFI-suppressed

Degree of protection: IP20
For luminaires of protection class I
Fixing brackets for screws M4
for lateral or base mounting
For lighting systems with
high switching frequency (> 5/day

EOL shut down approved acc. to EN 61347 Test 2


## Electronic built-in ballasts



## ELXd - Dimmable for TC-DEL, TC-TEL Lamps



## Independent electronic ballasts

K2 with cord grip


K3 with cord grip

K4 with cord grip




## Electronic Ballasts for TC and T Lamps

## ELXd - Dimmable 1-10 V for TC-DEL, TC-TEL lamps

Electronic built-in ballasts
Casing: K3, K4
Control voltage: DC 1-10 V acc. to
EN 60929 with earth leakage current 0.5 mA
(protected if connected to mains voltage)
For use with open- or closed-loop control units
Power factor: 0.98 at $100 \%$ operation

DC voltage
for operation: 176-264 V
for ignition: 198-264 V


| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$ | Energy efficiency | Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing <br> temperature <br> tc $\left({ }^{\circ} \mathrm{C}\right)$ | Casing | Output <br> W | Luminous factor \% |
| 18 | TC-DEL/TEL | G24q-2/GX24q-2 | $1 \times 16.5$ | ElXd 118.802 | 188564 | 220-240 | Al BAT | 5 to 55 | max. 70 | K3 | 21.0 | 100.0 |
| 2×18 | TC-DEL/-TEL | G24q-2/GX24q-2 | $2 \times 16.5$ | ElXd 218.803 | 188549 | 220-240 | Al BAT | 5 to 55 | max. 70 | K4 | 38.0 | 100.0 |
| 26 | TC-DEL/TEL | G24q-3/GX24q-3 | $1 \times 24.0$ | ElXd 142.806 | 188565 | 220-240 | Al BAT | 10 to 50 | max. 70 | K3 | 27.0 | 100.0 |
| $2 \times 26$ | TC-DEL/-TEL | G24q-3/GX24q-3 | $2 \times 24.0$ | ElXd 242.807 | 188550 | 220-240 | Al BAT | 10 to 50 | max. 70 | K4 | 53.0 | 100.0 |
|  |  |  |  | ElXd 226.801 | 188431 | 220-240 | A1 BAT | 10 to 50 | max. 70 | K3 | 54.0 | 100.0 |
| 32 | TC-TEL | GX24q-3 | $1 \times 32.0$ | ElXd 142.806 | 188565 | 220-240 | Al BAT | 10 to 50 | max. 70 | K3 | 36.0 | 100.0 |
| 2×32 | TC-TEL | GX24q-3 | $2 \times 32.0$ | ElXd 242.807 | 188550 | 220-240 | Al BAT | 10 to 50 | max. 70 | K4 | 71.0 | 100.0 |
| 42 | TC-TEL | GX24q-4 | $1 \times 43.0$ | ElXd 142.806 | 188565 | 220-240 | Al BAT | 10 to 50 | max. 70 | K3 | 46.0 | 100.0 |
| 2×42 | TC-TEL | GX24q-4 | $2 \times 43.0$ | ElXd 242.807 | 188550 | 220-240 | Al BAT | 10 to 50 | max. 70 | K4 | 92.0 | 100.0 |

Circuit diagrams see pages 220-223

## ELXd - Dimmable 1-10 V for TC-DEL, TC-TEL lamps

Independent electronic ballasts
Casing with cord grip: K3, K4
Control voltage: DC 1-10 V acc. to
EN 60929 with earth leakage current 0.5 mA
(protected if connected to mains voltage)
For use with open- or closed-loop control units
Power factor: 0.98 at $100 \%$ operation

DC voltage
for operation: 176-264 V
for ignition: 198-264 V

| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$ | Energy efficiency | Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$ | Casing | Output <br> W | $\begin{aligned} & \text { Luminous } \\ & \text { factor } \\ & \% \end{aligned}$ |
| 18 | TC-DEL/-TEL | G24q-2/GX24q-2 | $1 \times 16.5$ | ElXd 118.802 | 188694 | 220-240 | Al BAT | 5 to 55 | max. 70 | K3 | 21.0 | 100.0 |
| 2×18 | TC-DEL/-TEL | G24q-2/GX24q-2 | $2 \times 16.5$ | ElXd 218.803 | 188696 | 220-240 | Al BAT | 5 to 55 | max. 70 | K4 | 38.0 | 100.0 |
| 26 | TC-DEL/-TEL | G24q-3/GX24q-3 | $1 \times 24.0$ | ELXd 142.806 | 188695 | 220-240 | Al BAT | 10 to 50 | max. 70 | K3 | 27.0 | 100.0 |
| $2 \times 26$ | TC-DEL/-TEL | G24q-3/GX24q-3 | $2 \times 24.0$ | ElXd 242.807 | 188697 | 220-240 | Al BAT | 10 to 50 | max. 70 | K4 | 53.0 | 100.0 |
|  |  |  |  | ElXd 226.801 | 188490 | 220-240 | Al BAT | 10 to 50 | max. 70 | K3 | 54.0 | 100.0 |
| 32 | TC-TEL | GX24q-3 | 1 $\times 32.0$ | ElXd 142.806 | 188695 | 220-240 | Al BAT | 10 to 50 | max. 70 | K3 | 36.0 | 100.0 |
| 2×32 | TC-TEL | GX24q-3 | $2 \times 32.0$ | ELXX 242.807 | 188697 | 220-240 | Al BAT | 10 to 50 | max. 70 | K4 | 71.0 | 100.0 |
| 42 | TC-TEL | GX24q-4 | $1 \times 43.0$ | ELXX 142.806 | 188695 | 220-240 | Al BAT | 10 to 50 | max. 70 | K3 | 46.0 | 100.0 |
| 2×42 | TC-TEL | GX24q-4 | $2 \times 43.0$ | ELXd 242.807 | 188697 | 220-240 | Al BAT | 10 to 50 | max. 70 | K4 | 92.0 | 100.0 |

[^42]
## Electronic Ballasts for TC and T Lamps

## ELXd - Dimmable with push key or DALI for TC-DEL, TC-TEL lamps

Electronic ballasts
PUSH: dimmable with usual push key and sensor
DALI: poles are not polarity sensitive
(protected if connected to mains voltage) for use with DALI compatible control units
Automatic restart after lamp has been changed
Power factor: > 0.95 at $100 \%$ operation
DC voltage
for operation: 176-264 V
for ignition: 198-264 V
Standby power consumption: $\leq 0.5 \mathrm{~W}$

Complete implementation of the DALI-standard:
addressable, memory store for scenes and groups, revertive information communication, physical and RND-selection, standardized lamp characteristic
Low-power design ensures very low standby

## power consumption

Compatible with IEC 62386


| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$ | Energy efficiency | Ambient temperature $t_{a}\left({ }^{\circ} \mathrm{C}\right)$ | Casing temperature $\operatorname{tc}\left({ }^{\circ} \mathrm{C}\right)$ | Casing | Output <br> W | $\qquad$ |
| $2 \times 18$ | TC-DEL/-TEL | G24q-2/GX24q-2 | $2 \times 18.0$ | ELXd 218.707 | 188954 | 220-240 | Al BAT | 10 to 50 | max. 70 | K3 | 40.0 | 100.1 |
| 26 | TC-DEL/-TEL | G24q-3/GX24q-3 | $1 \times 25.0$ | ELXd 142.709 | 188923 | 220-240 | Al BAT | 10 to 50 | max. 65 | K2 | 27.5 | 106.8 |
| 2×26 | TC-DEL/-TEL | G24q-3/GX24q-3 | $2 \times 24.0$ | ELXd 242.711 | 188974 | 220-240 | Al BAT | 10 to 50 | max. 70 | K3 | 56.0 | 97.9 |
| 32 | TC-TEL | GX24q-3 | $1 \times 32.0$ | ELXd 142.709 | 188923 | 220-240 | Al BAT | 10 to 50 | max. 65 | K2 | 34.5 | 106.3 |
| 2×32 | TC-TEL | GX24q-3 | $2 \times 32.0$ | ElXd 242.711 | 188974 | 220-240 | Al BAT | 10 to 50 | max. 70 | K3 | 69.0 | 97.6 |
| 42 | TC-TEL | GX24q-4 | $1 \times 42.0$ | ElXd 142.709 | 188923 | 220-240 | Al BAT | 10 to 50 | max. 65 | K2 | 45.0 | 103.8 |
| 2×42 | TC-TEL | GX24q-4 | $2 \times 42.0$ | ELXd 242.711 | 188974 | 220-240 | Al BAT | 10 to 50 | max. 70 | K3 | 90.0 | 99.1 |

Circuit diagrams see pages 220-223

| Independent electronic ballasts |  |  |  |  |  |  |  |  |  |  | 1-10 VDALI/PUSH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| Output W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{array}{\|l\|} \hline V \text { Voltage } \mathrm{AC} \\ 50,60 \mathrm{~Hz} \\ \mathrm{~V} \pm 10 \% \\ \hline \end{array}$ | Energy efficiency | Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$ | Casing | $\begin{aligned} & \text { Output } \\ & \mathrm{W} \end{aligned}$ | Luminous factor \% |
| 18 | TC-DEL/TEL | G24q-2/GX24q-2 | $1 \times 16.5$ | ElXd 118.705 | 188953 | 220-240 | AlBAT | 10 to 50 | max. 65 | K2 | 20.2 | 105.5 |
| $2 \times 18$ | TC-DEL/TEL | G24q-2/GX24q-2 | $2 \times 18.0$ | ElXd 218.707 | 188955 | 220-240 | AlBAT | 10 to 60 | max. 70 | K3 | 40.0 | 100.1 |
| 26 | TC-DEL/TEL | G24q-3/GX24q-3 | $1 \times 25.0$ | ElXd 142.709 | 188924 | 220-240 | AlBAT | 10 to 50 | max. 65 | K2 | 27.5 | 106.3 |
| 2×26 | TC-DEL/TEL | G24q-3/GX24q-3 | $2 \times 24.0$ | ElXd 242.711 | 188975 | 220-240 | AlBAT | 10 to 50 | max. 70 | K3 | 56.0 | 97.9 |
| 32 | TC-TEL | GX24q-3 | $1 \times 32.0$ | ElXd 142.709 | 188924 | 220-240 | AlBAT | 10 to 50 | max. 65 | K2 | 34.8 | 106.3 |
| 2×32 | TC-TEL | GX24q-3 | $2 \times 32.0$ | ElXd 242.711 | 188975 | 220-240 | AlBAT | 10 to 50 | max. 70 | K3 | 69.0 | 97.6 |
| 42 | TC-TEL | GX24q-4 | $1 \times 42.0$ | ElXd 142.709 | 188924 | 220-240 | AlBAT | 10 to 50 | max. 65 | K2 | 45.0 | 103.8 |
| 2×42 | TC-TEL | GX24q-4 | $2 \times 42.0$ | ElXd 242.711 | 188975 | 220-240 | AlBAT | 10 to 50 | max. 70 | K3 | 90.0 | 99.1 |

[^43]
## ELXc - Warm Start for T5 and T8 Lamps

Electronic built-in ballasts
Casing: metal
Power factor: $\geq 0.95$
RFI-suppressed
For luminaires of protection class I

Degree of protection: IP20
For lighting systems with
high switching frequency (> 5/day)


## M6

## M8



M10/M11


## ELXc - Warm Start for T5 and T8 Lamps

DC voltage
for operation: 176-264 V
for ignition: 198-264 V
(ELXc 135.856, 235.857, 149.858,
154.864, 180.866, 280.538:

DC voltage cannot be reduced to 176 V )
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$

For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
EOL shut down approved
acc. to EN 61347 Test 2 (for T5)
EOL shut down (for T8)

| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$ | Energy efficiency | Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing <br> temperature <br> tc $\left({ }^{\circ} \mathrm{C}\right)$ | Casing | Output <br> W | Luminous <br> factor <br> \% |

For T5 lamps - Casing: $\mathrm{M} 8, \mathrm{M} 10$ and M 11

| 14 | T5 | G5 | $1 \times 14.0$ | ELXc 135.856 | 188093 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M10 | 17.0 | 110.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \times 14$ | T5 | G5 | $2 \times 14.0$ | ELXc 235.857 | 188094 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M10 | 33.4 | 107.0 |
| $3 \times 14$ | T5 | G5 | $3 \times 14.0$ | ELXc 414.868 | 188438 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M8 | 48.0 | 105.4 |
| $4 \times 14$ | T5 | G5 | $4 \times 14.0$ | ELXc 414.868 | 188438 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M8 | 63.0 | 102.3 |
| 21 | T5 | G5 | $1 \times 21.0$ | ELXc 135.856 | 188093 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M10 | 24.0 | 107.4 |
| 2×21 | T5 | G5 | $2 \times 21.0$ | ELXc 235.857 | 188094 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M10 | 50.2 | 110.6 |
| 24 | T5 | G5 | $1 \times 22.5$ | ELXc 140.862 | 188140 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M1O | 27.0 | 114.0 |
| 2×24 | T5 | G5 | $2 \times 22.5$ | ELXc 240.863 | 188616 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M1O | 51.0 | 107.4 |
| $3 \times 24$ | T5 | G5 | $3 \times 22.5$ | ELXc 424.223 | 183039 | 220-240 | A2 BAT | -15 to 55 | max. 75 | M8 | 78.0 | 103.7 |
| $4 \times 24$ | T5 | G5 | $4 \times 22.5$ | ELXc 424.223 | 183039 | 220-240 | A2 BAT | -15 to 55 | max. 75 | M8 | 101.7 | 103.5 |
| 28 | T5 | G5 | $1 \times 28.0$ | ELXc 135.856 | 188093 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M1O | 32.0 | 104.9 |
| 2×28 | T5 | G5 | $2 \times 28.0$ | ELXc 235.857 | 188094 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M1O | 60.6 | 106.2 |
| 35 | T5 | G5 | $1 \times 35.0$ | ELXc 135.856 | 188093 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M1O | 39.5 | 102.7 |
| 2×35 | T5 | G5 | $2 \times 35.0$ | ELXc 235.857 | 188094 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M1O | 74.5 | 102.5 |
| 39 | T5 | G5 | $1 \times 38.0$ | ELXc 140.862 | 188140 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M10 | 43.0 | 107.0 |
| 2×39 | T5 | G5 | $2 \times 38.0$ | ELXc 240.863 | 188616 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M10 | 82.0 | 97.9 |
| 49 | T5 | G5 | $1 \times 49.0$ | ELXc 149.858 | 188095 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M10 | 54.0 | 102.5 |
| 2x49 | T5 | G5 | $2 \times 49.0$ | ELXc 249.859 | 188617 | 220-240 | A2 BAT | -15 to 50 | max. 70 | M10 | 113.0 | 106.6 |
| 54 | T5 | G5 | $1 \times 54.0$ | ELXc 154.864 | 188142 | 220-240 | A2 BAT | -15 to 55 | max. 65 | M1O | 59.0 | 101.1 |
| 2×54 | T5 | G5 | $2 \times 54.0$ | ELXc 254.865 | 188618 | 220-240 | A2 BAT | -15 to 50 | max. 70 | M1O | 119.0 | 106.0 |
| 80 | T5 | G5 | $1 \times 80.0$ | ELXc 180.866 | 188144 | 220-240 | A2 BAT | -15 to 55 | max. 70 | M1O | 87.0 | 97.6 |
| 2×80 | T5 | G5 | $2 \times 80.0$ | ELXc 280.538 | 188619 | 220-240 | A2 BAT | -15 to 50 | max. 70 | M11 | 175.0 | 97.2 |

For T8 lamps - Casing: M8

| $3 \times 18$ | T8 | G13 | $3 \times 16.0$ | $E L X_{c} 418.204$ | $\mathbf{1 8 8 7 4 4}$ | $220-240$ | A2 BAT | -15 to 55 | max. 70 | M8 | 56.0 | 100.8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $4 \times 18$ | T8 | G13 | $4 \times 16.0$ | ELXc 418.204 | $\mathbf{1 8 8 7 4 4}$ | $220-240$ | A2 BAT | -15 to 55 | max. 70 | M8 | 71.5 | 98.9 |
| $3 \times 36$ | T8 | G13 | $3 \times 32.0$ | ELXc 336.214 | $\mathbf{1 8 8 5 9 5}$ | $220-240$ | A2 BAT | -15 to 50 | max. 65 | M8 | 105.0 | 99.4 |

[^44]( 15
TC
BUILT-IN
INDEPENDENT
$1-10 \mathrm{~V}$ DALI/PUSH

## ELXc EffectLine - Warm start

Warm start for T5 and T8 lamps - Casing: M6, M8 and M10

DC voltage
for operation: 176-264 V
for ignition: 198-264 V
(not possible for T8)
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$
EOL shut down approved
acc. to EN 61347 Test 2 (for T5)
EOL shut down (for T8)
$\begin{array}{lll}\text { T5 } & \text { TC } & \text { BUILT-IN } \\ \text { T8 } & \text { INDEPENDENT }\end{array}$
$1-10 \mathrm{~V}$ DALI/PUSH


For T5 lamps - Casing: M6 and M10

| 14 | T5 | G5 | $1 \times 14.3$ | ELXc 135.220 | $\mathbf{1 8 8 9 2 1}$ | $220-240$ | A2 BAT | -15 to 55 | max. 70 | M6 | 17.0 | 104.8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2 \times 14$ | T5 | G5 | $2 \times 14.3$ | ELXc 235.221 | $\mathbf{1 8 8 9 2 2}$ | $220-240$ | A2 BAT | -15 to 55 | max. 70 | M10 | 34.5 | 101.9 |
| 21 | T5 | G5 | $1 \times 20.4$ | ELXc 135.220 | $\mathbf{1 8 8 9 2 1}$ | $220-240$ | A2 BAT | -15 to 55 | max. 70 | M6 | 23.3 | 106.9 |
| $2 \times 21$ | T5 | G5 | $2 \times 21.4$ | ELXc 235.221 | $\mathbf{1 8 8 9 2 2}$ | $220-240$ | A2 BAT | -15 to 55 | max. 70 | M10 | 48.3 | 104.9 |
| 28 | T5 | G5 | $1 \times 26.7$ | ELXc 135.220 | $\mathbf{1 8 8 9 2 1}$ | $220-240$ | A2 BAT | -15 to 55 | max. 70 | M6 | 29.9 | 107.5 |
| $2 \times 28$ | T5 | G5 | $2 \times 28.7$ | ELXc 235.221 | $\mathbf{1 8 8 9 2 2}$ | $220-240$ | A2 BAT | -15 to 55 | max. 70 | M10 | 62.1 | 109.0 |
| 35 | T5 | G5 | $1 \times 32.6$ | ELXc 135.220 | $\mathbf{1 8 8 9 2 1}$ | $220-240$ | A2 BAT | -15 to 55 | max. 70 | M6 | 36.5 | 103.0 |
| $2 \times 35$ | T5 | G5 | $2 \times 35.6$ | ELXc 235.221 | $\mathbf{1 8 8 9 2 2}$ | $220-240$ | A2 BAT | -15 to 55 | max. 70 | M10 | 78.2 | 100.8 |

For T8 lamps - Casing: M8

| 18 | T8 | G13 | $1 \times 16.0$ | ELXc 136.207 | $\mathbf{1 8 8 7 0 4}$ | $220-240$ | A2 BAT | -20 to 55 | max. 60 | M8 | 18.4 | 105.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2 \times 18$ | T8 | G13 | $2 \times 16.0$ | ELXc 236.208 | $\mathbf{1 8 8 7 0 5}$ | $220-240$ | A2 BAT | -20 to 50 | max. 60 | M8 | 35.2 | 106.0 |
| 36 | T8 | G13 | $1 \times 32.0$ | ELXc 136.207 | $\mathbf{1 8 8 7 0 4}$ | $220-240$ | A2 BAT | -20 to 55 | max. 60 | M8 | 35.4 | 97.0 |
| $2 \times 36$ | T8 | G13 | $2 \times 32.0$ | ELXc 236.208 | $\mathbf{1 8 8 7 0 5}$ | $220-240$ | A2 BAT | -20 to 50 | max. 60 | M8 | 69.7 | 98.0 |
| 58 | T8 | G13 | $1 \times 50.0$ | ELXc 158.209 | $\mathbf{1 8 8 7 0 6}$ | $220-240$ | A2 BAT | -20 to 50 | max. 60 | M8 | 52.6 | 106.0 |
| $2 \times 58$ | T8 | G13 | $2 \times 50.0$ | ELXc 258.210 | $\mathbf{1 8 8 7 0 7}$ | $220-240$ | A2 | -20 to 50 | max. 65 | M8 | 109.9 | 105.0 |

Circuit diagrams see pages 220-223

## ELXc EffectLine II - Warm start

## Warm start for T8 lamps - Casing: M8

DC voltage
for operation: 176-264 V
(DC voltage can be reduced to 176 V for 2 hours)
for ignition: 198-264 V
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$
EOL 2 shut down


| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & V_{ \pm} 10 \% \end{aligned}$ | Energy efficiency | Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$ | Casing | Output <br> W | Luminous <br> factor <br> \% |
| 18 | T8 | G13 | $1 \times 16.0$ | ELXc 136.216 | 188912 | 220-240 | A2 BAT | -20 to 55 | max. 65 | M8 | 19.8 | 105.7 |
| $2 \times 18$ | T8 | G13 | $2 \times 16.0$ | ELXc 236.217 | 188913 | 220-240 | A2 BAT | -20 to 60 | max. 70 | M8 | 38.0 | 101.6 |
| 36 | T8 | G13 | $1 \times 32.0$ | ELXc 136.216 | 188912 | 220-240 | A2 BAT | -20 to 55 | max. 65 | M8 | 34.4 | 97.5 |
| 2×36 | T8 | G13 | $2 \times 32.0$ | ELXc 236.217 | 188913 | 220-240 | A2 BAT | -20 to 60 | max. 70 | M8 | 71.9 | 110.6 |
| 58 | T8 | G13 | $1 \times 50.0$ | ELXc 158.218 | 188914 | 220-240 | A2 BAT | -20 to 60 | max. 65 | M8 | 56.0 | 100.8 |
| 2x58 | T8 | G13 | $2 \times 50.0$ | ELXc 258.219 | 188915 | 220-240 | A2 | -20 to 55 | max. 70 | M8 | 110.0 | 101.0 |

Circuit diagrams see pages 220-223

## ELXc - Warm Start New T5 EffectLine

Electronic built-in ballasts
Casing: metal
Push-in terminals with lever opener: $0.5-1 \mathrm{~mm}^{2}$ RFI-suppressed
For luminaires of protection class I
Degree of protection: IP20
For lighting systems with
high switching frequency (> 5/day)
Automatic restart after lamp has been changed
Suitable for use in luminaires for emergency
lighting systems acc. to VDE 0108
EOL shut down approved acc. to EN 61347 Test 1


M7.1 / M10.2


M7. 2


| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$ | Energy efficiency | Power factor | Ambient temperature $\operatorname{ta}\left({ }^{\circ} \mathrm{C}\right)$ | Casing temperature $\mathrm{tc}\left({ }^{\circ} \mathrm{C}\right)$ | Casing | $\mid \mathrm{L}$ | $\left\lvert\, \begin{aligned} & \mathrm{W} \\ & \mathrm{~mm} \end{aligned}\right.$ | Output <br> W | $\begin{aligned} & \text { Luminous } \\ & \text { factor } \\ & \% \\ & \hline \end{aligned}$ |
| 14 | T5 HE | G5 | $1 \times 14.0$ | ELXc 228.229 | 183111 | 220-240 | EEI=A2 | > 0.90 | 0 to 50 | max. 75 | M7. 1 | 280 | 30 | 16,5 | 100 |
|  |  |  |  | ELXc 135.231 | 183113 | 220-240 | EEI=A2 | > 0.90 | 0 to 50 | max. 75 | M7. 1 | 280 | 30 | 16,5 | 100 |
| $2 \times 14$ | T5 HE | G5 | $2 \times 14.0$ | ELXc 228.229 | 183111 | 220-240 | EEI=A2 | > 0.92 | 0 to 50 | max. 75 | M7. 1 | 280 | 30 | 31,0 | 100 |
| $3 \times 14$ | T5 HE | G5 | $3 \times 14.0$ | ELXc 414.227 | 183109 | 220-240 | EEI=A2 | > 0.95 | 0 to 50 | max. 75 | M7.2 | 280 | 39 | 48,0 | 100 |
| 4×14 | T5 HE | G5 | $4 \times 14.0$ | ELXc 414.227 | 183109 | 220-240 | EEI=A2 | > 0.95 | 0 to 50 | max. 75 | M7.2 | 280 | 39 | 63,0 | 100 |
| 21 | T5 HE | G5 | $1 \times 21.0$ | ElXc 228.229 | 183111 | 220-240 | EEI=A2 | > 0.90 | 0 to 50 | max. 75 | M7.1 | 280 | 30 | 24,0 | 100 |
|  |  |  |  | ElXc 135.231 | 183113 | 220-240 | EEI=A2 | $>0.92$ | 0 to 50 | max. 75 | M7. 1 | 280 | 30 | 24,0 | 100 |
| 2×21 | T5 HE | G5 | $2 \times 21.0$ | ELXc 228.229 | 183111 | 220-240 | EEI=A2 | $>0.95$ | 0 to 50 | max. 75 | M7. 1 | 280 | 30 | 47,5 | 100 |
| 24 | T5 HO | G5 | $1 \times 24.0$ | ELXc 239.233 | 183115 | 220-240 | EEI=A2 | > 0.90 | 0 to 50 | max. 75 | M7. 1 | 280 | 30 | 28,0 | 100 |
| 2×24 | T5 HO | G5 | $2 \times 24.0$ | ELXc 239.233 | 183115 | 220-240 | EEI=A2 | > 0.95 | 0 to 50 | max. 75 | M7. 1 | 280 | 30 | 53,5 | 100 |
| 3×24 | T5 HO | G5 | $3 \times 24.0$ | ELXc 424.228 | 183110 | 220-240 | EEI=A2 | $>0.95$ | 0 to 50 | max. 75 | M7.2 | 280 | 39 | 76,0 | 100 |
| 4×24 | T5 HO | G5 | $4 \times 24.0$ | ELXc 424.228 | 183110 | 220-240 | EEI=A2 | $>0.95$ | 0 to 50 | max. 75 | M7.2 | 280 | 39 | 100,0 | 100 |
| 28 | T5 HE | G5 | $1 \times 28.0$ | ElXc 228.229 | 183111 | 220-240 | EEI=A2 | > 0.92 | 0 to 50 | max. 75 | M7.1 | 280 | 30 | 31,0 | 100 |
|  |  |  |  | ELXc 135.231 | 183113 | 220-240 | EEI=A2 | $>0.95$ | 0 to 50 | max. 75 | M7.1 | 280 | 30 | 32,0 | 100 |
| $2 \times 28$ | T5 HE | G5 | $2 \times 28.0$ | ELXc 228.229 | 183111 | 220-240 | EEI=A2 | $>0.95$ | 0 to 50 | max. 75 | M7. 1 | 280 | 30 | 61,0 | 100 |
|  |  |  |  | ELXc 328.230 | 183112 | 220-240 | EEI=A2 | $>0.95$ | 0 to 50 | max. 75 | M7.2 | 280 | 39 | 61,0 | 100 |
| $3 \times 28$ | T5 HE | G5 | $3 \times 28.0$ | ELXc 328.230 | 183112 | 220-240 | EEI=A2 | $>0.95$ | 0 to 50 | max. 75 | M7.2 | 280 | 39 | 94,0 | 100 |
| 35 | T5 HE | G5 | $1 \times 35.0$ | ELXc 135.231 | 183113 | 220-240 | EEI=A2 | > 0.95 | 0 to 50 | max. 75 | M7. 1 | 280 | 30 | 38,0 | 100 |
| 2×35 | T5 HE | G5 | $2 \times 35.0$ | ELXc 235.232 | 183114 | 220-240 | EEI=A2 | $>0.95$ | 0 to 50 | max. 75 | M10.2 | 360 | 30 | 74,0 | 100 |
| 39 | T5 HO | G5 | $1 \times 39.0$ | ELXc 239.233 | 183115 | 220-240 | EEI=A2 | > 0.92 | 0 to 50 | max. 75 | M7. 1 | 280 | 30 | 43,5 | 100 |
| 2×39 | T5 HO | G5 | $2 \times 39.0$ | ELXc 239.233 | 183115 | 220-240 | EEI=A2 | $>0.95$ | 0 to 50 | max. 75 | M7.1 | 280 | 30 | 83,0 | 100 |
| 49 | T5 HO | G5 | $1 \times 49.0$ | ELXc 149.234 | 183116 | 220-240 | EEI=A2 | > 0.95 | 0 to 50 | max. 75 | M7. 1 | 280 | 30 | 51,0 | 100 |
| 2×49 | T5 HO | G5 | $2 \times 49.0$ | ELXc 249.235 | 183117 | 220-240 | EEI=A2 | $>0.95$ | 0 to 50 | max. 75 | M10.2 | 360 | 30 | 108,0 | 100 |
| 54 | T5 HO | G5 | $1 \times 54.0$ | ELXc 254.236 | 183118 | 220-240 | EEI=A2 | > 0.92 | 0 to 50 | max. 75 | M7. 1 | 280 | 30 | 58,0 | 100 |
| 2×54 | T5 HO | G5 | $2 \times 54.0$ | ELXc 254.236 | 183118 | 220-240 | EEI=A2 | $>0.95$ | 0 to 50 | max. 75 | M7.1 | 280 | 30 | 113,0 | 100 |
| 80 | T5 HO | G5 | $1 \times 80.0$ | ELXc 180.237 | 183119 | 220-240 | EEI=A2 | > 0.95 | 0 to 50 | max. 75 | M7. 1 | 280 | 30 | 86,0 | 100 |

[^45]
## ELXc - ECO EffectLine Warm Start for T5 and T8 Lamps

Electronic built-in ballasts
Casing: PC, white
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$ RFI-suppressed
For luminaires of protection class I
Degree of protection: IP20
For lighting systems with
high switching frequency (> 5/day)
EOL shut down approved acc. to EN 61347 Test 1
(for T5 lamps); EOL shut down (for T8 lamps)


K7.1 / K7.2


K5.1 / K5.2


| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Base | Power consumption W | Type | Ref. No. | $\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$ | Energy efficiency | Power factor | Ambient temperature $\mathrm{ta}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$ | Casing <br> temperature <br> tc $\left({ }^{\circ} \mathrm{C}\right)$ | Casing $\left\lvert\, \begin{aligned} & \mathrm{W} \\ & \mathrm{~mm} \end{aligned}\right.$ | $\left\lvert\, \begin{aligned} & \mathrm{H} \\ & \mathrm{~mm} \end{aligned}\right.$ | Output <br> W | Luminous <br> factor <br> \% |

## For T5 lamps

| 14 | T5 HE | G5 | $1 \times 14.8$ | ELXc 114.238 | 183122 | 220-240 | A2 | > 0.95 | 0 to 50 | max. 75 | K7.1 | 20 | 21.5 | 17.0 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2×14 | T5 HE | G5 | $2 \times 14.5$ | ElXc 214.240 | 183124 | 220-240 | A2 | > 0.95 | 0 to 50 | max. 75 | K7.2 | 33 | 21.5 | 33.0 | 100 |
| $4 \times 14$ | T5 HE | G5 | $4 \times 14.0$ | ELXc 414.242 | 183126 | 220-240 | A2 | > 0.95 | 0 to 50 | max. 75 | K5.2 | 40 | 30 | 64.0 | 100 |
| 28 | T5 HE | G5 | $1 \times 28.5$ | ElXc 128.239 | 183123 | 220-240 | A2 | > 0.95 | O to 50 | max. 75 | K7.1 | 20 | 21.5 | 31.5 | 100 |
| 2×28 | T5 HE | G5 | $2 \times 26.5$ | ELXc 228.241 | 183125 | 220-240 | A2 | > 0.95 | 0 to 50 | max. 75 | K7. 2 | 33 | 21.5 | 59.0 | 95 |
| For T8 lamps |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18 | T8 | G13 | $1 \times 15.5$ | ElXc 118.243 | 183127 | 220-240 | A2 | > 0.95 | -15 to 50 | max. 70 | K5.1 | 30 | 28 | 18.5 | 98 |
| 2×18 | T8 | G13 | $2 \times 15.5$ | ELXc 218.246 | 183130 | 220-240 | A2 | > 0.96 | -15 to 50 | max. 70 | K5.1 | 30 | 28 | 35.0 | 98 |
| $4 \times 18$ | T8 | G13 | $4 \times 15.5$ | ElXc 418.249 | 183133 | 220-240 | A2 | > 0.98 | -15 to 50 | max. 70 | K5.2 | 40 | 30 | 69.0 | 97 |
| 36 | T8 | G13 | $1 \times 30.5$ | ELXc 136.244 | 183128 | 220-240 | A2 | > 0.96 | -15 to 50 | max. 70 | K5.1 | 30 | 28 | 34.0 | 95 |
| 2x36 | T8 | G13 | $2 \times 31.0$ | ElXc 236.247 | 183131 | 220-240 | A2 | > 0.98 | -15 to 50 | max. 70 | K5.2 | 40 | 30 | 68.0 | 97 |
| 58 | T8 | G13 | $1 \times 48.0$ | ElXc 158.245 | 183129 | 220-240 | A2 | > 0.96 | -15 to 50 | max. 70 | K5.1 | 30 | 28 | 53.5 | 96 |
| $2 \times 58$ | T8 | G13 | $2 \times 49.5$ | ELXc 258.248 | 183132 | 220-240 | A2 | > 0.98 | -15 to 50 | max. 80 | K5.2 | 40 | 30 | 107.0 | 100 |

[^46]
## ELXd - Dimmable for мя

 T5 and T8 LampsElectronic built-in ballasts
Casing: metal
Power factor: $\geq 0.95$ at $100 \%$ operation

DC voltage
for operation: 154-276 V (M22, M23, M24)
for operation: $176-264 \mathrm{~V}$ (M9)
for ignition: 198-264 V
For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5
RFI-suppressed
For luminaires of protection class I Degree of protection: IP20
For lighting systems with
high switching frequency (>5/day)
Suitable for use in luminaires for emergency
lighting systems acc. to VDE 0108


M23


M22/M24


## ELXd - Dimmable 1-10 V with lamp detection

## Dimming range:

approx. 1-100\% of lamp power
(*3-100 \%: ElXd 135.823, 235.735, 118.718,
218.719, 136.720, 236.721, 158.722, 258.7231

Control voltage: DC 1-10 V acc. to EN 60929 with earth leakage current 0.5 mA
(protected if connected to mains voltage)

For use with open- or closed-loop control units
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
EOL shut down approved
acc. to EN 61347 Test 2 (for T5)
EOL 2 shut down (for T8)

| T5 | TC | OUILT-IN | 1-10 |
| :--- | :--- | :--- | :--- |
| T8 |  | INDEPENDENT | DALI/PUSH |


| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Base | Power con- <br> sumption W | Type | Ref. No. | Voltage AC <br> $50,60 \mathrm{~Hz}$ <br> $\mathrm{V} \pm 10 \%$ | Energy efficiency | Ambient <br> temperature <br> ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing <br> temperature <br> tc $\left({ }^{\circ} \mathrm{C}\right)$ | Casing | Output <br> W | Luminous factor \% |

T5 lamps - Casing: M10, M22, M23 and M24

| 14 | T5 | G5 | $1 \times 14.0$ | ElXd 135.823 | 188717* | 220-240 | Al BAT | 10 to 55 | max. 65 | M10 | 17.0 | 99.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ElXd 124.607 | 188336 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 16.0 | 100.0 |
| $2 \times 14$ | T5 | G5 | $2 \times 13.6$ | ElXd 235.735 | 183059* | 220-240 | Al BAT | 10 to 50 | max. 70 | M1 1 | 33.4 | 98.7 |
|  |  |  | $2 \times 14.0$ | ElXd 224.608 | 188337 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 31.0 | 100.0 |
| $3 \times 14$ | T5 | G5 | $3 \times 14.0$ | ElXd 324.623 | 188597 | 220-240 | Al BAT | 10 to 50 | max. 75 | M23 | 45.3 | 100.0 |
| $4 \times 14$ | T5 | G5 | $4 \times 14.0$ | ElXd 424.624 | 188598 | 220-240 | Al BAT | 10 to 50 | max. 75 | M23 | 60.4 | 100.0 |
| 21 | T5 | G5 | $1 \times 21.0$ | ElXd 135.823 | 188717* | 220-240 | Al BAT | 10 to 55 | max. 65 | M10 | 24.0 | 99.0 |
|  |  |  |  | ElXd 139.609 | 188338 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 23.0 | 100.0 |
| 2×21 | T5 | G5 | $2 \times 20.5$ | ElXd 235.735 | 183059* | 220-240 | Al BAT | 10 to 50 | max. 70 | M11 | 47.0 | 95.1 |
|  |  |  | $2 \times 21.0$ | ElXd 239.610 | 188339 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 45.0 | 100.0 |
| 24 | T5 | G5 | $1 \times 23.0$ | ElXd 124.607 | 188336 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 26.0 | 100.0 |
| 2×24 | T5 | G5 | $2 \times 23.0$ | ElXd 224.608 | 188337 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 50.0 | 100.0 |
| 3×24 | T5 | G5 | $3 \times 23.0$ | ElXd 324.623 | 188597 | 220-240 | Al BAT | 10 to 50 | max. 75 | M23 | 73.4 | 100.0 |
| 4×24 | T5 | G5 | $4 \times 23.0$ | ElXd 424.624 | 188598 | 220-240 | Al BAT | 10 to 50 | max. 75 | M23 | 97.6 | 100.0 |
| 28 | T5 | G5 | $1 \times 28.0$ | ElXd 135.823 | 188717* | 220-240 | Al BAT | 10 to 55 | max. 65 | M10 | 32.0 | 98.6 |
|  |  |  |  | ElXd 154.611 | 188340 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 31.0 | 100.0 |
| $2 \times 28$ | T5 | G5 | $2 \times 27.3$ | ElXd 235.735 | 183059* | 220-240 | Al BAT | 10 to 50 | max. 70 | M11 | 62.1 | 97.6 |
|  |  |  | $2 \times 28.0$ | ElXd 254.612 | 188341 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 61.0 | 100.0 |
| 35 | T5 | G5 | $1 \times 35.0$ | ELXd 135.823 | 188717* | 220-240 | Al BAT | 10 to 55 | max. 65 | M10 | 38.0 | 95.0 |
|  |  |  |  | ElXd 180.613 | 188342 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 38.0 | 100.0 |
| $2 \times 35$ | T5 | G5 | $2 \times 33.9$ | ElXd 235.735 | 183059* | 220-240 | Al BAT | 10 to 50 | max. 70 | M11 | 76.9 | 96.7 |
|  |  |  | $2 \times 35.0$ | ElXd 249.614 | 188343 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 75.0 | 100.0 |
|  |  |  |  | ElXd 280.630 | 188604 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 75.0 | 100.0 |
| 39 | T5 | G5 | $1 \times 38.0$ | ElXd 139.609 | 188338 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 42.0 | 100.0 |
| 2×39 | T5 | G5 | $2 \times 38.0$ | ElXd 239.610 | 188339 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 82.0 | 100.0 |
| 49 | T5 | G5 | $1 \times 49.0$ | ElXd 180.613 | 188342 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 54.0 | 100.0 |
| 2×49 | T5 | G5 | $2 \times 49.0$ | ElXd 249.614 | 188343 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 104.0 | 100.0 |
|  |  |  |  | ElXd 280.630 | 188604 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 104.0 | 100.0 |
| 54 | T5 | G5 | $1 \times 54.0$ | ElXd 154.611 | 188340 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 59.0 | 100.0 |
| 2×54 | T5 | G5 | $2 \times 54.0$ | ElXd 254.612 | 188341 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 115.0 | 100.0 |
| 80 | T5 | G5 | $1 \times 80.0$ | ElXd 180.613 | 188342 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 88.0 | 100.0 |
| 2×80 | T5 | G5 | $2 \times 80.0$ | ElXd 280.630 | 188604 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 165.0 | 100.0 |

T8 lamps - Casing: M9

| 18 | T8 | G13 | $1 \times 16.0$ | ElXd 118.718 | 188873* | 220-240 | EEI=A1 | 10 to 50 | max. 70 | M9 | 21.0 | 102.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2×18 | T8 | G13 | $2 \times 16.0$ | ElXd 218.719 | 188874* | 220-240 | EEI=A1 | 10 to 50 | max. 70 | M9 | 41.5 | 104.6 |
| 36 | T8 | G13 | $1 \times 32.0$ | ElXd 136.720 | 188875* | 220-240 | Al BAT | 10 to 50 | max. 70 | M9 | 37.3 | 101.6 |
| 2×36 | T8 | G13 | $2 \times 32.0$ | ElXd 236.721 | 188876* | 220-240 | EEI=A1 | 10 to 50 | max. 70 | M9 | 72.0 | 98.9 |
| 58 | T8 | G13 | $1 \times 50.0$ | ELXd 158.722 | 188877* | 220-240 | Al BAT | 10 to 50 | max. 70 | M9 | 55.0 | 101.3 |
| 2×58 | T8 | G13 | $2 \times 50.0$ | ElXd 258.723 | 188878* | 220-240 | EEI=A1 | 10 to 50 | max. 75 | M9 | 109.0 | 96.5 |

[^47]
## ELXd - Dimmable with push key or DALI with lamp detection

## Dimming range:

## approx. 1-100\% of lamp power

PUSH: dimmable with usual push key
DALI: poles are not polarity sensitive
(protected if connected to mains voltage) for use with DALI compatible control units
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
EOL shut down approved
acc. to EN 61347 Test 2 (for T5)
EOL 2 shut down (for T 8 )
standby power consumption: $\leq 0.2 \mathrm{~W}$

Complete implementation of the DALL-standard: addressable, memory store for scenes and groups, revertive information communication, physical and RND-selection, standardized lamp characteristic Low-power design ensures very low standby power consumption
Compatible with IEC 62386

| (-15 | Tc | ( built-in | 1-10 v |
| :---: | :---: | :---: | :---: |
| T8 |  | Independent | O DALI/PUSH |


| Lamp |  |  |  | Electronic ballast |  |  |  |  |  |  | System |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output W | Type | Base | Power consumption W | Type | Ref. No. | Voltage AC $50,60 \mathrm{~Hz}$ $\mathrm{V}+10 \%$ | Energy efficiency | Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing <br> temperature <br> tcc $^{\circ}\left({ }^{\circ} \mathrm{C}\right)$ | Casing | Output <br> W | Luminous factor \% |


| For T5 lamps - Casing: M10, M1 1, M22, M23 and M24 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | T5 | G5 | $1 \times 13.7$ | ElXd 135.724 | 188932 | 220-240 | Al BAT | 10 to 50 | max. 65 | M10 | 16.4 | 102.6 |
|  |  |  | $1 \times 14.0$ | ElXd 124.600 | 188329 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 16.0 | 100.0 |
| $2 \times 14$ | T5 | G5 | $2 \times 13.6$ | ElXd 235.725 | 188933 | 220-240 | Al BAT | 10 to 50 | max. 70 | M11 | 33.4 | 96.7 |
|  |  |  | $2 \times 14.0$ | ElXd 224.601 | 188330 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 31.0 | 100.0 |
| $3 \times 14$ | T5 | G5 | $3 \times 14.0$ | ElXd 324.626 | 188600 | 220-240 | Al BAT | 10 to 50 | max. 75 | M23 | 45.3 | 100.0 |
| $4 \times 14$ | T5 | G5 | $4 \times 14.0$ | ElXd 424.628 | 188602 | 220-240 | Al BAT | 10 to 50 | max. 75 | M23 | 60.4 | 100.0 |
| 21 | T5 | G5 | $1 \times 20.7$ | ElXd 135.724 | 188932 | 220-240 | Al BAT | 10 to 50 | max. 65 | M10 | 24.3 | 102.7 |
|  |  |  | $1 \times 21.0$ | ElXd 139.602 | 188331 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 23.0 | 100.0 |
| $2 \times 21$ | T5 | G5 | $2 \times 20.5$ | ElXd 235.725 | 188933 | 220-240 | Al BAT | 10 to 50 | max. 70 | M11 | 47.0 | 97.6 |
|  |  |  | $2 \times 21.0$ | ElXd 239.621 | 188350 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 45.0 | 100.0 |
| 24 | T5 | G5 | $1 \times 23.0$ | ElXd 124.600 | 188329 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 26.0 | 100.0 |
| 2×24 | T5 | G5 | $2 \times 23.0$ | ElXd 224.601 | 188330 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 50.0 | 100.0 |
| $3 \times 24$ | T5 | G5 | $3 \times 23.0$ | ElXd 324.626 | 188600 | 220-240 | Al BAT | 10 to 50 | max. 75 | M23 | 73.4 | 100.0 |
| $4 \times 24$ | T5 | G5 | $4 \times 23.0$ | ElXd 424.628 | 188602 | 220-240 | Al BAT | 10 to 50 | max. 75 | M23 | 97.6 | 100.0 |
| 28 | T5 | G5 | $1 \times 27.8$ | ElXd 135.724 | 188932 | 220-240 | Al BAT | 10 to 50 | max. 65 | M10 | 32.0 | 104.1 |
|  |  |  | $1 \times 28.0$ | ElXd 154.603 | 188332 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 31.0 | 100.0 |
| $2 \times 28$ | T5 | G5 | $2 \times 27.3$ | ElXd 235.725 | 188933 | 220-240 | Al BAT | 10 to 50 | max. 70 | M11 | 62.1 | 95.1 |
|  |  |  | $2 \times 28.0$ | ElXd 254.604 | 188333 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 61.0 | 100.0 |
| 35 | T5 | G5 | $1 \times 34.7$ | ElXd 135.724 | 188932 | 220-240 | Al BAT | 10 to 50 | max. 65 | M10 | 40.0 | 107.5 |
|  |  |  | $1 \times 35.0$ | ElXd 180.605 | 188334 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 38.0 | 100.0 |
| $2 \times 35$ | T5 | G5 | $2 \times 33.9$ | ElXd 235.725 | 188933 | 220-240 | Al BAT | 10 to 50 | max. 70 | M1 1 | 76.9 | 98.7 |
|  |  |  | $2 \times 35.0$ | ElXd 280.631 | 188605 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 74,0 | 100,0 |
|  |  |  |  | ElXd 249.606 | 188335 | 220-240 | A1 BAT | 10 to 50 | max. 75 | M24 | 75.0 | 100.0 |
| 39 | T5 | G5 | $1 \times 38.0$ | ElXd 139.602 | 188331 | 220-240 | A1 BAT | 10 to 50 | max. 75 | M22 | 42.0 | 100.0 |
| 2×39 | T5 | G5 | $2 \times 38.0$ | ElXd 239.621 | 188350 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 82.0 | 100.0 |
| 49 | T5 | G5 | $1 \times 49.0$ | ELXd 180.605 | 188334 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 54.0 | 100.0 |
| 2×49 | T5 | G5 | $2 \times 49.0$ | ElXd 280.631 | 188605 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 101,0 | 100,0 |
|  |  |  |  | ElXd 249.606 | 188335 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 104.0 | 100.0 |
| 54 | T5 | G5 | $1 \times 54.0$ | ElXd 154.603 | 188332 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 59.0 | 100.0 |
| 2×54 | T5 | G5 | $2 \times 54.0$ | ElXd 254.604 | 188333 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 115.0 | 100.0 |
| 80 | T5 | G5 | $1 \times 80.0$ | ElXd 180.605 | 188334 | 220-240 | Al BAT | 10 to 50 | max. 75 | M22 | 88.0 | 100.0 |
| 2×80 | T5 | G5 | $2 \times 80.0$ | ElXd 280.631 | 188605 | 220-240 | Al BAT | 10 to 50 | max. 75 | M24 | 165.0 | 100.0 |

[^48]
## Accessories for Dimmable Electronic Ballasts

Manual controller
Dimmer for EB with low-voltage interface $1-10 \mathrm{~V}$ Dimensions: $67 \times 67 \times 51 \mathrm{~mm}$
Push-button change-over switch with stud 4 mm for installation in flushtype boxes with $\varnothing 55 \mathrm{~mm}$
Max. 50 EBs per dimmer
Weight: 60/30 g, unit: 25 pcs.
Without cover plate
Ref. No.: 172778
Cover plate with rotary knob
Dimensions: $80 \times 80 \times 9 \mathrm{~mm}$
Ref. No.: 172775 white

Light sensor
Constant light control with clamp
fastening for fluorescent lamps T8 (T26)
and compact fluorescent lamps
Dimensions: $33.5 \times 40 \times 96 \mathrm{~mm}$
With connection lead: $2 \times 0.24 \mathrm{~mm}^{2}$
Length: 800 mm
Max. 50 EBs per light sensor
Weight: 55 g , unit: 60 pcs.
Ref. No.: 172776

Multi sensor
Dimensions: $58.5 \times 70.5 \times 42 \mathrm{~mm}$
With the sensor the lighting can be kept on a pre-defined level
With integrated motion detector
Max. 50 EBs per multi sensor
Weight: 125 g, unit: 25 pcs.
Ref. No.: 172777


Electronic Ballasts for TC and T Lamps

## Electromagnetic Ballasts for TC and T Lamps

## RELIABLE AND DURABLE



## ELECTROMAGNETIC BALLASTS

The following chapter presents Vossloh-Schwabe's broad range of electromagnetic ballasts for compact fluorescent lamps and tubular fluorescent lamps. The variety of available performance properties and shapes satisfies the most diverse design requirements.

Vossloh-Schwabe's electromagnetic ballasts are characterized by extremely tight impedance-value tolerances, which are achieved by individual adjustment of the air gap during the automated production and testing process of the ballasts. This optimises both light output as well as the service life of fluorescent lamps.

3 Electromagnetic Ballasts for TC and T Lamps
Electromagnetic ballasts for compact fluorescent lamps ..... 148-151Standard ballasts148-151
Electromagnetic ballasts for tubular fluorescent lamps ..... 152-155
Super low-loss ballasts ..... 152
Standard ballasts ..... 153-155
Technical details for fluorescent lamps ..... 208-235
General technical details ..... 348-356
Glossary ..... 357-359

## Standard Ballasts <br> 5-16 W, 230/240/220 V

## For compact fluorescent lamps

## Shape: $\mathbf{2 8 \times 4 1} \mathbf{m m}$

Vacuum-impregnated with polyester resin
Push-in terminal for leads: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:


IDC terminals for leads H05V-U 0.5
tw 130
Protection class |


230 V, $\mathbf{5 0 ~ H z}$

| 5 | TC-S | G23 | 180 | L7/9/11.307* | 163694 | 230,50 | 85 | 75 | 34 | 0.32 | 60/85 | B2 | 2.0 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \times 5$ | TC-S | G23 | 180 | LN 13.805* | 169647 | 230,50 | 85 | 75 | 34 | 0.32 | 50/85 | B1 | 2.0 | 70 |
|  |  |  |  | LN 13.313* | 163711 | 230,50 | 85 | 75 | 34 | 0.32 | 55/80 | B2 | 2.0 | 70 |
| 7 | TC-S | G23 | 175 | L7/9/11.307* | 163694 | 230,50 | 85 | 75 | 34 | 0.32 | 60/85 | B2 | 2.0 | 50 |
| $2 \times 7$ | TC-S | G23 | 160 | LNN 13.044 | 564190 | 230,50 | 155 | 140 | 92 | 0.80 | 25/40 | A2 | 2.0 | 80 |
|  |  |  |  | LN 13.805* | 169647 | 230,50 | 85 | 75 | 34 | 0.32 | 50/85 | B1 | 2.0 | 70 |
|  |  |  |  | LN 13.313* | 163711 | 230,50 | 85 | 75 | 34 | 0.32 | 55/80 | B2 | 2.0 | 70 |
| 9 | TC-S | G23 | 170 | LNN 9/11.015 | 562658 | 230,50 | 155 | 140 | 92 | 0.80 | 15/40 | A2 | 2.0 | 60 |
|  |  |  |  | L7/9/11.307* | 163694 | 230,50 | 85 | 75 | 34 | 0.32 | 60/85 | B1 | 2.0 | 60 |
| $2 \times 9$ | TC-S | G23 | 140 | LNN 13.044 | 564190 | 230,50 | 155 | 140 | 92 | 0.80 | 25/40 | A2 | 2.0 | 80 |
|  |  |  |  | LN 13.805* | 169647 | 230,50 | 85 | 75 | 34 | 0.32 | 50/85 | B1 | 2.0 | 70 |
|  |  |  |  | LN 13.313* | 163711 | 230,50 | 85 | 75 | 34 | 0.32 | 55/80 | B2 | 2.0 | 80 |
| 10 | TC-D | G24d-1 | 190 | LN 13.805* | 169647 | 230,50 | 85 | 75 | 34 | 0.32 | 50/85 | B1 | 2.0 | 70 |
|  |  |  |  | LN 13.313* | 163711 | 230,50 | 85 | 75 | 34 | 0.32 | 55/80 | B2 | 2.0 | 70 |
|  | TC-DD | GR10q | 180 | LN 13.805* | 169647 | 230,50 | 85 | 75 | 34 | 0.32 | 50/85 | B1 | 2.0 | 70 |
|  |  |  |  | LN 13.313* | 163711 | 230,50 | 85 | 75 | 34 | 0.32 | 55/80 | B2 | 2.0 | 70 |
| 11 | TC-S | G23 | 155 | LNN 9/11.015 | 562658 | 230,50 | 155 | 140 | 92 | 0.80 | 15/40 | A2 | 2.0 | 60 |
|  |  |  |  | L7/9/11.307* | 163694 | 230,50 | 85 | 75 | 34 | 0.32 | 60/85 | B1 | 2.0 | 80 |
| 13 | TC-D/TC-T | G24d-1/GX24d-1 | 175 | LNN 13.044 | 564190 | 230,50 | 155 | 140 | 92 | 0.80 | 25/40 | A2 | 2.0 | 80 |
|  |  |  |  | LN 13.805* | 169647 | 230,50 | 85 | 75 | 34 | 0.32 | 50/85 | B1 | 2.0 | 80 |
|  |  |  |  | LN 13.313* | 163711 | 230,50 | 85 | 75 | 34 | 0.32 | 55/80 | B2 | 2.0 | 80 |
| 16 | TC-DD | GR8/GR10q | 195 | LN 16.316* | 163730 | 230,50 | 85 | 75 | 34 | 0.32 | 60/125 | B1 | 2.0 | 100 |

240 V, 50 Hz

| 5 | TC-S | G23 | 180 | L7/9/11.411 | 164335 | 240,50 | 85 | 75 | 34 | 0.32 | 60/85 | B2 | 2.0 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2x5 | TC-S | G23 | 180 | LN 13.413 | 164342 | 240,50 | 85 | 75 | 34 | 0.32 | 60/90 | B2 | 2.0 | 70 |
| 7 | TC-S | G23 | 175 | L 7/9/11.411 | 164335 | 240,50 | 85 | 75 | 34 | 0.32 | 60/85 | B2 | 2.0 | 50 |
| $2 \times 7$ | TC-S | G23 | 160 | LN 13.413 | 164342 | 240,50 | 85 | 75 | 34 | 0.32 | 60/90 | B2 | 2.0 | 70 |
| 9 | TC-S | G23 | 170 | L 7/9/11.411 | 164335 | 240,50 | 85 | 75 | 34 | 0.32 | 60/85 | B 1 | 2.0 | 60 |
| 2×9 | TC-S | G23 | 140 | LN 13.413 | 164342 | 240,50 | 85 | 75 | 34 | 0.32 | 60/90 | B2 | 2.0 | 80 |
| 10 | TC-D | G24d-1 | 190 | LN 13.413 | 164342 | 240,50 | 85 | 75 | 34 | 0.32 | 60/90 | B2 | 2.0 | 70 |
|  | TC-DD | GR10q | 180 | LN 13.413 | 164342 | 240,50 | 85 | 75 | 34 | 0.32 | 60/90 | B2 | 2.0 | 70 |
| 11 | TC-S | G23 | 155 | L7/9/11.411 | 164335 | 240,50 | 85 | 75 | 34 | 0.32 | 60/85 | B1 | 2.0 | 80 |
| 13 | TC-D/TC-T | G24d-1/GX24d-1 | 175 | LN 13.413 | 164342 | 240,50 | 85 | 75 | 34 | 0.32 | 60/90 | B 1 | 2.0 | 80 |
| 16 | TC-DD | GR8/GR10q | 195 | LN 16.417 | 164358 | 240,50 | 85 | 75 | 34 | 0.32 | 60/130 | B1 | 2.0 | 100 |

[^49]
## Standard Ballasts 5-16 W, 230/240/220 V

| Lamp |  |  |  | Ballast |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Base | Current <br> mA | Type | Ref. No. | Voltage <br> V, Hz | a <br> mm | b <br> mm | c <br> mm | Weight <br> kg | $\begin{aligned} & \Delta t / \Delta \mathrm{t}_{\mathrm{an}} . \\ & \mathrm{K} \end{aligned}$ | Energy efficiency | Cp <br> $\mu F$ | Current <br> mA |
| 220 V, 60 Hz |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | TC-S | G23 | 180 | L 7/9/11.207 | 163305 | 220,60 | 85 | 75 | 34 | 0.32 | 35/65 | - | 2.0 | 70 |
| 2×5 | TC-S | G23 | 180 | L 13.210 | 520992 | 220,60 | 85 | 75 | 34 | 0.32 | 45/80 | - | 2.0 | 90 |
| 7 | TC-S | G23 | 175 | L 7/9/11.207 | 163305 | 220,60 | 85 | 75 | 34 | 0.32 | 35/65 | - | 2.0 | 70 |
| $2 \times 7$ | TC-S | G23 | 160 | L 13.210 | 520992 | 220,60 | 85 | 75 | 34 | 0.32 | 45/80 | - | 2.0 | 90 |
| 9 | TC-S | G23 | 170 | L 7/9/11.207 | 163305 | 220,60 | 85 | 75 | 34 | 0.32 | 35/65 | - | 2.0 | 70 |
| 2×9 | TC-S | G23 | 140 | L 13.210 | 520992 | 220,60 | 85 | 75 | 34 | 0.32 | 45/80 | - | 2.0 | 90 |
| 10 | TC-D | G24d-1 | 190 | L 13.210 | 520992 | 220,60 | 85 | 75 | 34 | 0.32 | 45/80 | - | 2.0 | 80 |
|  | TC-DD | GR10q | 180 | L 13.210 | 520992 | 220,60 | 85 | 75 | 34 | 0.32 | 45/80 | - | 2.0 | 80 |
| 11 | TC-S | G23 | 155 | L 7/9/11.207 | 163305 | 220,60 | 85 | 75 | 34 | 0.32 | 35/65 | - | 2.0 | 80 |
| 13 | TC-D/TC-T | G24d-1/GX24d-1 | 165 | L 13.210 | 520992 | 220,60 | 85 | 75 | 34 | 0.32 | 45/80 | - | 2.0 | 110 |

## Standard Ballasts <br> 18-58 W 230/240/220 V

For compact fluorescent lamps Shape: 28x41 mm

Vacuum-impregnated with polyester resin
 Push-in terminal for leads: $0.5-1 \mathrm{~mm}^{2}$ For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5 tw 130
Protection class I


| Lamp |  |  |  | Ballast |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Base | Current <br> mA | Type | Ref. No. | Voltage <br> V, Hz | a <br> mm | b <br> mm | c <br> mm | Weight <br> kg | $\Delta t / \Delta \tan .$ <br> K | Energy efficiency | Cp <br>  | Current <br> mA |
| $\mathbf{2 3 0 ~ V , ~ 5 0 ~ H z ~}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18 | TC-D/TC-T | G24d-2/GX24d-2 | 220 | LNN 181.046 | 564192 | 230,50 | 232.5 | 220 | 160 | 1.35 | 15/30 | A2 | 2.0 | 110 |
|  |  |  |  | LN 181.940* | 508922 | 230,50 | 85 | 75 | 34 | 0.32 | 50/120 | B1 | 2.0 | 110 |
|  |  |  |  | LN 181.319* | 163763 | 230,50 | 85 | 75 | 34 | 0.32 | 60/140 | B1 | 2.0 | 110 |
|  | TC-F/TC-L | 2G10/2G11 | 370 | LN 18.510* | 164572 | 230,50 | 155 | 140 | 92 | 0.80 | 40/65 | B1 | 4.5 | 120 |
|  |  |  |  | LN 18.131* | 530941 | 230,50 | 150 | 140 | 60 | 0.55 | 55/95 | B2 | 4.5 | 120 |
|  |  |  |  | L 18.934* | 534621 | 230, 50 | 150 | 140 | 45 | 0.43 | 70/150 | - | 4.5 | 120 |
|  | T-U | 2G13 | 370 | LN 18.131* | 530941 | 230, 50 | 150 | 140 | 60 | 0.55 | 55/95 | B2 | 4.5 | 120 |
|  |  |  |  | L 18.934* | 534621 | 230, 50 | 150 | 140 | 45 | 0.43 | 70/150 | - | 4.5 | 120 |
| $2 \times 18$ | TC-F/TC-L | 2G10/2G11 | 400 | LNN 2X18.043 | 564189 | 230,50 | 150 | 135 | 60 | 0.55 | 40/160 | A2 | 4.0 | 210 |
|  |  |  |  | LN 2x18.135* | 532155 | 230,50 | 150 | 140 | 45 | 0.43 | 65 | B1 | 4.0 | 210 |
| 22 | T-R | G10q | 400 | LN 30.530* | 164680 | 230,50 | 155 | 140 | 92 | 0.80 | 45/65 | B2 | 4.5 | 200 |
| 24 | TC-F/TC-L | 2G10/2G11 | 345 | LN 24/26.804* | 534490 | 230,50 | 150 | 140 | 60 | 0.55 | 55/110 | B2 | 4.5 | 150 |
|  |  |  |  | L 18.934* | 534621 | 230, 50 | 150 | 140 | 45 | 0.43 | 70/150 | - | 4.5 | 150 |

[^50]
## Standard Ballasts 18-58 W, 230/240/220 V


$230 \mathrm{~V}, 50 \mathrm{~Hz}$

| 26 | TC-D/TC-T | G24d-3/GX24d-3 | 325 | LN 18.131* | 530941 | 230,50 | 150 | 140 | 60 | 0.55 | 55/95 | B1 | 3.5 | 140 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | LN 26.813* | 509502 | 230,50 | 110 | 100 | 45 | 0.41 | 55/145 | B2 | 3.5 | 140 |
|  |  |  |  | L 18.934* | 534621 | 230,50 | 150 | 140 | 45 | 0,43 | 70/150 | - | 3,5 | 140 |
| 28 | TC-DD | GR8/GR10q | 320 | LN 18.510* | 164572 | 230,50 | 155 | 140 | 92 | 0.80 | 40/65 | B1 | 3.5 | 150 |
|  |  |  |  | LN 18.131* | 530941 | 230,50 | 150 | 140 | 60 | 0.55 | 55/95 | B1 | 3.5 | 150 |
|  |  |  |  | L 18.934* | 534621 | 230,50 | 150 | 140 | 45 | 0.43 | 70/150 | - | 3.5 | 150 |
| 32 | T-R | G10q | 450 | LN 36.570* | 169779 | 230,50 | 155 | 140 | 92 | 0.80 | 35/90 | B2 | 4.0 | 220 |
| 36 | TC-F/TC-L | 2G10/2G11 | 430 | LN 36.570* | 169779 | 230,50 | 155 | 140 | 92 | 0.80 | 35/90 | B1 | 4.5 | 210 |
|  |  |  |  | LN 36.511* | 164590 | 230,50 | 155 | 140 | 92 | 0.80 | 35/95 | B1 | 4.5 | 210 |
|  |  |  |  | LN 36.130* | 527191 | 230,50 | 150 | 140 | 60 | 0.55 | 50/140 | B2 | 4.5 | 210 |
|  |  |  |  | LN 36.149* | 529029 | 230,50 | 150 | 140 | 60 | 0.55 | 55/150 | B2 | 4.5 | 210 |
|  |  |  |  | L 36.132* | 535977 | 230,50 | 150 | 140 | 45 | 0.43 | 65 | - | 4.5 | 210 |
| $36 / 40$ | T-U/T-R | 2G13/G10q | 430 | LN 36.570* | 169779 | 230,50 | 150 | 140 | 92 | 0.80 | 35/90 | B1 | 4.5 | 210 |
|  |  |  |  | LN 36.149* | 529029 | 230,50 | 150 | 140 | 60 | 0.55 | 55/150 | B2 | 4.5 | 210 |
|  |  |  |  | L 36.132* | 535977 | 230,50 | 150 | 140 | 45 | 0.43 | 65 | - | 4.5 | 210 |
| 38 | TC-DD | GR10q | 430 | LN 36.570* | 169779 | 230,50 | 155 | 140 | 92 | 0.80 | 35/90 | B1 | 4.5 | 210 |
|  |  |  |  | LN 36.149* | 529029 | 230,50 | 150 | 140 | 60 | 0.55 | 55/150 | B2 | 4.5 | 210 |
|  |  |  |  | L 36.132* | 535977 | 230,50 | 150 | 140 | 45 | 0.43 | 65 | - | 4.5 | 210 |
| 58 | T-U | 2G13 | 670 | LN 58.568* | 169389 | 230,50 | 233 | 220 | 160 | 1.31 | 35/95 | B1 | 7.0 | 320 |
|  |  |  |  | LN 58.990* | 509349 | 230,50 | 190 | 180 | 110 | 0.95 | 50/130 | B2 | 7.0 | 320 |
|  |  |  |  | LN 58.116* | 508186 | 230,50 | 190 | 180 | 92 | 0.80 | 55/160 | B2 | 7.0 | 320 |

240 V, 50 Hz

| 18 | TC-D/TC-T | G24d-2/GX24d-2 | 220 | LN 181.418 | 164353 | 240,50 | 85 | 75 | 34 | 0.28 | 60/130 | B 1 | 2.0 | 110 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TC-F/TC-L | 2G10/2G11 | 370 | LN 18.507 | 164566 | 240,50 | 155 | 140 | 92 | 0.80 | 35/60 | B1 | 4.5 | 120 |
|  |  |  |  | LN 18.162 | 533043 | 240,50 | 150 | 140 | 60 | 0.55 | 60/110 | B2 | 4.5 | 120 |
|  |  |  |  | L 18.936* | 534627 | 240,50 | 150 | 140 | 45 | 0.43 | 70/140 | - | 4.5 | 120 |
|  | T-U | 2G13 | 370 | LN 18.507 | 164566 | 240,50 | 155 | 140 | 92 | 0.80 | 35/60 | B1 | 4.5 | 120 |
|  |  |  |  | LN 18.162 | 533043 | 240,50 | 150 | 140 | 60 | 0.55 | 60/110 | B2 | 4.5 | 120 |
|  |  |  |  | L 18.936* | 534627 | 240,50 | 150 | 140 | 45 | 0.43 | 70/140 | - | 4.5 | 120 |
| $2 \times 18$ | TC-F/TC-L | 2G10/2G11 | 400 | LN 2x18.135 | 535778 | 240,50 | 150 | 140 | 45 | 0.43 | 65 | B1 | 4.0 | 210 |
|  |  |  |  | LN 36.201 | 527196 | 240,50 | 150 | 140 | 60 | 0.55 | 55/140 | B1 | 4.0 | 210 |
|  |  |  |  | LN 36.505 | 164555 | 240,50 | 155 | 140 | 92 | 0.80 | 40/95 | B1 | 4.0 | 210 |
| 21 | TC-DD | GR10q | 260 | LN 21.293 | 547145 | 240,50 | 105 | 95 | 45 | 0,41 | 55 | B1 | 3,0 | 120 |
| 24 | TC-F/TC-L | 2G10/2G11 | 345 | LN 18.507 | 164566 | 240,50 | 155 | 140 | 92 | 0.80 | 35/60 | B1 | 4.5 | 150 |
|  |  |  |  | LN 18.162 | 533043 | 240,50 | 150 | 140 | 60 | 0.55 | 60/110 | B2 | 4.5 | 150 |
|  |  |  |  | L 18.936* | 534627 | 240,50 | 150 | 140 | 45 | 0.43 | 70/140 | - | 4.5 | 150 |
| 26 | TC-D/TC-T | G24d-3/GX24d-3 | 325 | LN 18.162 | 533043 | 240,50 | 150 | 140 | 60 | 0.55 | 60/110 | B1 | 4.5 | 150 |
|  |  |  |  | LN 26.238 | 545405 | 240,50 | 105 | 95 | 45 | 0.41 | 55/145 | B2 | 3.5 | 140 |
| 28 | TC-DD | GR8/GR10q | 320 | LN 18.162 | 533043 | 240,50 | 150 | 140 | 60 | 0.55 | 60/110 | B1 | 3.5 | 150 |
|  |  |  |  | L 18.936* | 534627 | 240,50 | 150 | 140 | 45 | 0.43 | 70/140 | - | 3.5 | 150 |
| 32 | T-R | G10q | 450 | LN 36.505 | 164555 | 240,50 | 155 | 140 | 92 | 0.80 | 40/95 | B 1 | 4.0 | 220 |
| 36 | TC-F/TC-L | 2G10/2G11 | 430 | LN 36.505 | 164555 | 240,50 | 155 | 140 | 92 | 0.80 | 40/95 | B1 | 4.5 | 210 |
|  |  |  |  | LN 36.201 | 527196 | 240,50 | 155 | 140 | 60 | 0.55 | 55/140 | B2 | 4.5 | 210 |
|  |  |  |  | L 36/40.443* | 164438 | 240,50 | 150 | 140 | 60 | 0.55 | 65/155 | - | 4.5 | 210 |
| 36/40 | T-U/T-R | 2G13/G10q | 430 | LN 36.505 | 164555 | 240,50 | 155 | 140 | 92 | 0.80 | 40/95 | B1 | 4.5 | 210 |
|  |  |  |  | LN 36.201 | 527196 | 240,50 | 150 | 140 | 60 | 0.55 | 55/140 | B2 | 4.5 | 210 |
|  |  |  |  | L 36/40.443* | 164438 | 240,50 | 150 | 140 | 60 | 0.55 | 65/155 | - | 4.5 | 210 |
| 38 | TC-DD | GR10q | 430 | LN 36.201 | 527196 | 240,50 | 150 | 140 | 60 | 0.55 | 55/140 | B2 | 4.5 | 210 |
|  |  |  |  | L 36/40.443* | 164438 | 240,50 | 150 | 140 | 60 | 0.55 | 65/155 | - | 4.5 | 210 |
| 58 | T-U | 2G13 | 670 | LN 58.506 | 164560 | 240,50 | 233 | 220 | 160 | 1.31 | 35/85 | B1 | 7.0 | 320 |
|  |  |  |  | LN 58.192 | 507936 | 240,50 | 190 | 180 | 110 | 0.95 | 50/150 | B2 | 7.0 | 320 |
|  |  |  |  | LN 58.722 | 534252 | 240,50 | 190 | 180 | 92 | 0.80 | 60/180 | B2 | 7.0 | 320 |

* Ballasts without CE marking for replacements or markets outside of the EU


## Standard Ballasts 18-58 W, 230/240/220 V



220 V, 50 Hz

| 18 | TC-F/TC-L | 2G10/2G11 | 370 | L1 8.933 | 534624 | 220,50 | 150 | 140 | 45 | 0.43 | 70/160 | - | 4.5 | 120 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | T-U | 2G13 | 370 | L18.933 | 534624 | 220,50 | 150 | 140 | 45 | 0.43 | 70/160 | - | 4.5 | 120 |
| 2×18 | TC-F/TC-L | 2G10/2G11 | 400 | L 36.158 | 530252 | 220,50 | 150 | 140 | 45 | 0.43 | 65 | - | 4.0 | 210 |
| 24 | TC-F/TC-L | 2G10/2G11 | 345 | L18.933 | 534624 | 220,50 | 150 | 140 | 45 | 0.43 | 70/160 | - | 4.5 | 150 |
| 26 | TC-D/TC-T | G24d-3/GX24d-3 | 325 | L1 8.933 | 534624 | 220,50 | 150 | 140 | 45 | 0.43 | 70/160 | - | 3.5 | 140 |
| 28 | TC-DD | GR8/GR10q | 320 | L18.933 | 534624 | 220,50 | 150 | 140 | 45 | 0.43 | 70/160 | - | 3.5 | 150 |
| 36 | TC-F/TC-L | 2G10/2G11 | 430 | L 36.158 | 530252 | 220,50 | 150 | 140 | 45 | 0.43 | 65 | - | 4.5 | 210 |
| 36/40 | T-U/T-R | 2G13/G10q | 430 | L 36.158 | 530252 | 220,50 | 150 | 140 | 45 | 0.43 | 65 | - | 4.5 | 210 |
| 38 | TC-DD | GR10q | 430 | L 36.158 | 530252 | 220,50 | 150 | 140 | 45 | 0.43 | 65 | - | 4.5 | 210 |
| 58 | T-U | 2G13 | 670 | L 58.625 | 164828 | 220,50 | 190 | 180 | 92 | 0.80 | 55/155 | - | 7.0 | 320 |

220 V, 60 Hz

| 18 | TC-D/TC-T | G24d-2/GX24d-2 | 220 | L 181.602 | 164779 | 220,60 | 85 | 75 | 34 | 0.32 | 45/110 | - | 2.0 | 110 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TC-F/TC-L | 2G10/2G11 | 370 | L 18.121 | 532149 | 220,60 | 110 | 100 | 45 | 0.42 | 65/145 | - | 4.0 | 150 |
|  |  |  |  | L 18.121 | 528582 | 220,60 | 150 | 140 | 45 | 0.43 | 65/145 | - | 4.0 | 150 |
|  |  |  |  | L 18.249 | 538801 | 220,60 | 150 | 140 | 34 | 0.32 | 75/140 | - | 4.0 | 150 |
|  | T-U | 2G13 | 370 | L 18.121 | 532149 | 220,60 | 110 | 100 | 45 | 0.42 | 65/145 | - | 4.0 | 150 |
|  |  |  |  | L 18.121 | 528582 | 220,60 | 150 | 140 | 45 | 0.43 | 65/145 | - | 4.0 | 150 |
|  |  |  |  | L 18.249 | 538801 | 220,60 | 150 | 140 | 34 | 0.32 | 75/140 | - | 4.0 | 150 |
| $2 \times 18$ | TC-F/TC-L | 2G10/2G11 | 400 | L 36.120 | 509373 | 220,60 | 150 | 140 | 45 | 0.43 | 60/170 | - | 4.0 | 210 |
| 24 | TC-F/TC-L | 2G10/2G11 | 345 | L 18.121 | 532149 | 220,60 | 110 | 100 | 45 | 0.42 | 65/145 | - | 4.0 | 190 |
|  |  |  |  | L 18.121 | 528582 | 220,60 | 150 | 140 | 45 | 0.43 | 65/145 | - | 4.0 | 190 |
|  |  |  |  | L 18.249 | 538801 | 220,60 | 150 | 140 | 34 | 0.32 | 75/140 | - | 4.0 | 190 |
| 26 | TC-D/TC-T | G24d-3/GX24d-3 | 325 | L 18.121 | 532149 | 220,60 | 110 | 100 | 45 | 0.42 | 65/145 | - | 3.0 | 160 |
|  |  |  |  | L18.121 | 528582 | 220,60 | 150 | 140 | 45 | 0.43 | 65/145 | - | 3.0 | 160 |
|  |  |  |  | L 18.249 | 538801 | 220,60 | 150 | 140 | 34 | 0.32 | 75/140 | - | 3.0 | 160 |
| 28 | TC-DD | GR8/GR10q | 320 | L 18.121 | 532149 | 220,60 | 110 | 100 | 45 | 0.42 | 65/145 | - | 3.0 | 155 |
|  |  |  |  | L 18.249 | 538801 | 220,60 | 150 | 140 | 34 | 0.32 | 75/140 | - | 3.0 | 155 |
| 36 | TC-F/TC-L | 2G10/2G11 | 430 | L 36.120 | 509373 | 220,60 | 150 | 140 | 45 | 0.43 | 60/170 | - | 4.0 | 210 |
| 36/40 | T-U/T-R | 2G13/G10q | 430 | L 36.120 | 509373 | 220,60 | 150 | 140 | 45 | 0.43 | 60/170 | - | 4.0 | 220 |
| 38 | TC-DD | GR10q | 430 | L 36.120 | 509373 | 220,60 | 150 | 140 | 45 | 0.43 | 60/170 | - | 4.0 | 220 |
| 58 | T-U | 2G13 | 670 | L 58.657 | 164870 | 220,60 | 195 | 180 | 92 | 0.80 | 55/140 | - | 6.0 | 320 |

## Super Low-loss Ballasts 18-65 W, 230 V

For fluorescent lamps Shape: 28x41 mm / 53x66 mm

Vacuum-impregnated with polyester resin Push-in terminal for leads: $0.5-1 \mathrm{~mm}^{2}$
tw 130
Protection class I
Energy efficiency: A2, minimum EU energy efficiency requirements as of 2017

A $53 \times 66 \mathrm{~mm}$
B $28 \times 41 \mathrm{~mm}$



| Lamp |  |  |  | Ballast |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output | Type | Base | Current | Type | Ref. No. | Voltage | Draw- <br> ing |  |  |  | Weight | $\Delta t / \Delta \mathrm{tan}$. | Energy efficiency | Cp | Current |
| W |  |  | mA |  |  | V, Hz |  | mm | mm | mm | kg | K |  | $\mu \mathrm{F}$ | mA |


| 2×8 | T5 (T16) | G5 | 155 | LNN 13.044 | 564190 | 230,50 | B | 155 | 140 | 92 | 0.80 | 25/40 | A2 | 2.0 | 80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | T5 (T16) | G5 | 165 | LNN 13.044 | 564190 | 230,50 | B | 155 | 140 | 92 | 0.80 | 25/40 | A2 | 2.0 | 80 |
| 2×15 | T8 (T26) | G13 | 340 | LNN 30.045 | 564191 | 230,50 | B | 232.5 | 220 | 160 | 1.35 | 25/40 | A2 | 4.0 | 185 |
| 18 | T8 (T26)/T12 (T38) | G13 | 370 | LNN 181.046 | 564192 | 230,50 | B | 232.5 | 220 | 160 | 1.35 | 15/30 | A2 | 2.0 | 110 |
| 18/20 | T8 (T26)/T12 (T38) | G13 | 370 | LNN 18.645 | 560657 | 230,50 | A | 130 | 105 | 64 | 1.80 | 10/20 | A2 | 4.5 | 120 |
| 2×18/20 | T8 (T26)/T12 (T38) | G13 | 400 | LNN 36.646 | 560659 | 230,50 | A | 108 | 90 | 36 | 1.10 | 25/70 | A2 | 4.0 | 210 |
|  |  |  |  | LNN 2X18.043 | 564189 | 230,50 | B | 150 | 135 | 60 | 0.55 | 40/160 | A2 | 4.0 | 210 |
|  |  |  |  | LNN 36.648 | 560664 | 230,50 | B | 232.5 | 220 | 160 | 1.35 | 25/40 | A2 | 4.5 | 210 |
| 30 | T8 (T26) | G13 | 365 | LNN 30.045 | 564191 | 230,50 | B | 232.5 | 220 | 160 | 1.35 | 25/40 | A2 | 4.5 | 180 |
| 36/40 | T8 (T26)/T12 (T38) | G13 | 430 | LNN 36.646 | 560659 | 230,50 | A | 108 | 90 | 36 | 1.10 | 25/70 | A2 | 4.0 | 120 |
|  |  |  |  | LNN 36.648 | 560664 | 230,50 | B | 232.5 | 220 | 160 | 1.35 | 25/40 | A2 | 4.5 | 210 |
| 58/65 | T8 (T26)/T12 (T38) | G13 | $670$ | LNN 58.647 | 560661 | 230,50 | A | 108 | 90 | 36 | 1.10 | 30/110 | A2 | 7.0 | 320 |
|  |  |  |  | LNN 58TD.649* | 560665 | 230,50 | B | 232.5 | 220 | 160 | 1.35 | 20/40 | A2 | 7.0 | 320 |

[^51]
## Standard Ballasts <br> 4-13 W <br> 230/240/220 V

For fluorescent lamps
Shape: $\mathbf{2 8 \times 4 1} \mathbf{~ m m}$

Vacuum-impregnated with polyester resin
Push-in terminal for leads: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
tw 130
Protection class I



## 230 V, 50 Hz

| 4 | T5 (T16) | G5 | 170 | L 4/6/8.304* | 163683 | 230, 50 | 85 | 75 | 34 | 0.32 | 55/85 | B2 | 2.0 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \times 4$ | T5 (T16) | G5 | 155 | L 4/6/8.304* | 163683 | 230,50 | 85 | 75 | 34 | 0.32 | 55/85 | B 1 | 2.0 | 50 |
| 6 | T5 (T16) | G5 | 160 | L 4/6/8.304* | 163683 | 230,50 | 85 | 75 | 34 | 0.32 | 55/85 | B 1 | 2.0 | 50 |
| $2 \times 6$ | T5 (T16) | G5 | 175 | LN 13.313* | 163711 | 230,50 | 85 | 75 | 34 | 0.32 | 55/80 | B 1 | 2.0 | 65 |
| 8 | T5 (T16) | G5 | 145 | L 4/6/8.304* | 163683 | 230,50 | 85 | 75 | 34 | 0.32 | 55/85 | B 1 | 2.0 | 60 |
| $2 \times 8$ | T5 (T16) | G5 | 155 | LNN 13.044 | 564190 | 230,50 | 155 | 140 | 92 | 0.80 | 25/40 | A2 | 2.0 | 80 |
|  |  |  |  | LN 13.313* | 163711 | 230,50 | 85 | 75 | 34 | 0.32 | 55/80 | B 1 | 2.0 | 85 |
| 13 | T5 (T16) | G5 | 165 | LNN 13.044 | 564190 | 230,50 | 155 | 140 | 92 | 0.80 | 25/40 | A2 | 2.0 | 80 |
|  |  |  |  | LN 13.313* | 163711 | 230,50 | 85 | 75 | 34 | 0.32 | 55/80 | B 1 | 2.0 | 80 |
| 240 V, 50 Hz |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | T5 (T16) | G5 | 170 | L 4/6/8.404 | 164326 | 240,50 | 85 | 75 | 34 | 0.32 | 55/80 | B2 | 2.0 | 40 |
| 2×4 | T5 (T16) | G5 | 155 | L 4/6/8.404 | 164326 | 240,50 | 85 | 75 | 34 | 0.32 | 55/80 | B 1 | 2.0 | 50 |
| 6 | T5 (T16) | G5 | 160 | L 4/6/8.404 | 164326 | 240,50 | 85 | 75 | 34 | 0.32 | 55/80 | B 1 | 2.0 | 50 |
| $2 \times 6$ | T5 (T16) | G5 | 175 | LN 13.413 | 164342 | 240,50 | 85 | 75 | 34 | 0.32 | 60/90 | B 1 | 2.0 | 65 |
| 8 | T5 (T16) | G5 | 145 | L 4/6/8.404 | 164326 | 240,50 | 85 | 75 | 34 | 0.32 | 55/80 | B 1 | 2.0 | 60 |
| 2×8 | T5 (T16) | G5 | 155 | LN 13.413 | 164342 | 240,50 | 85 | 75 | 34 | 0.32 | 60/90 | B 1 | 2.0 | 85 |
| 13 | T5 (T16) | G5 | 165 | LN 13.413 | 164342 | 240,50 | 85 | 75 | 34 | 0.32 | 60/90 | B 1 | 2.0 | 80 |

## 220 V, 60 Hz

| 4 | T5 (T16) | G5 | 170 | L 4/6/8.218 | $\mathbf{5 3 2 6 4 4}$ | 220,60 | 85 | 75 | 34 | 0.32 | $60 / 80$ | - |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2 \times 4$ | T5 (T16) | G5 | 155 | L $4 / 6 / 8.218$ | $\mathbf{5 3 2 6 4 4}$ | 220,60 | 85 | 75 | 34 | 0.32 | $60 / 80$ | - | 40 |
| 6 | T5 (T16) | G5 | 160 | L 4/6/8.218 | $\mathbf{5 3 2 6 4 4}$ | 220,60 | 85 | 75 | 34 | 0.32 | $60 / 80$ | - | 2.0 |
| $2 \times 6$ | T5 (T16) | G5 | 175 | L 13.210 | $\mathbf{5 2 0 9 9 2}$ | 220,60 | 85 | 75 | 34 | 0.32 | $45 / 80$ | - | 2.0 |
| 8 | T5 (T16) | G5 | 145 | L 4/6/8.218 | $\mathbf{5 3 2 6 4 4}$ | 220,60 | 85 | 75 | 34 | 0.32 | $60 / 80$ | - | 2.0 |
| $2 \times 8$ | T5 (T16) | G5 | 155 | L13.210 | $\mathbf{5 2 0 9 9 2}$ | 220,60 | 85 | 75 | 34 | 0.32 | $45 / 80$ | - | 2.0 |
| 13 | T5 (T16) | G5 | 165 | L 13.210 | $\mathbf{5 2 0 9 9 2}$ | 220,60 | 85 | 75 | 34 | 0.32 | $45 / 80$ | - | 2.0 |

[^52]
## Standard Ballasts 14-65 W, 230 V

## For fluorescent lamps <br> Shape: $\mathbf{2 8 \times 4 1} \mathbf{~ m m}$

Vacuum-impregnated with polyester resin Push-in terminal for leads: $0.5-1 \mathrm{~mm}^{2}$ For the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5
tw 130
Protection class $\mid$


| Lamp |  |  |  | Ballast |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Base | Current <br> mA | Type | Ref. No. | Voltage <br> V, Hz | a <br> mm | b <br> mm |  | Weight $\mathrm{kg}$ | $\begin{aligned} & \Delta \mathrm{t} / \Delta \tan . \\ & \mathrm{K} \end{aligned}$ | Energy efficiency | Cp <br> $\mu F$ | Current $\mathrm{mA}$ |
| $\mathbf{2 3 0 ~ V , ~} 50$ Hz |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 14 | T8 (T26) | G13 | 395 | LN 18.510* | 164572 | 230,50 | 155 | 140 | 92 | 0.80 | 40/65 | B2 | 4.5 | 150 |
| 15 | T8 (T26) | G13 | 310 | LN 15.329* | 163861 | 230,50 | 150 | 140 | 60 | 0.55 | 50/80 | B2 | 3.5 | 120 |
| $2 \times 15$ | T8 (T26) | G13 | 340 | LNN 30.045 | 564191 | 230,50 | 232.5 | 220 | 160 | 1.35 | 25/40 | A2 | 4.0 | 185 |
|  |  |  |  | LN 30.801* | 169645 | 230,50 | 150 | 140 | 60 | 0.55 | 55/110 | B2 | 4.0 | 185 |
|  |  |  |  | L 30.347* | 164033 | 230,50 | 150 | 140 | 60 | 0.55 | 60/150 | - | 4.0 | 185 |
|  | T8 (T26) | G13 | 200 | LN 16.316* | 163730 | 230,50 | 85 | 75 | 34 | 0.32 | 60/125 | B1 | 2.0 | 90 |
| $\overline{18 / 20}$ | T8 (T26)/T12 (T38) | G13 | 370 | LN 18.510* | 164572 | 230,50 | 155 | 140 | 92 | 0.80 | 40/65 | B1 | 4.5 | 120 |
|  |  |  |  | LN 18.131* | 530941 | 230,50 | 150 | 140 | 60 | 0.55 | 55/95 | B2 | 4.5 | 120 |
|  |  |  |  | L 18.934* | 534621 | 230,50 | 150 | 140 | 45 | 0.43 | 70/150 | - | 4.5 | 120 |
| 2×18/20 | T8 (T26)/T12 (T38) | G13 | 400 | LNN 2X18.043 | 564189 | 230,50 | 150 | 135 | 60 | 0.55 | 40/160 | A2 | 4.0 | 210 |
|  |  |  |  | LN 2x18.135* | 532155 | 230,50 | 150 | 140 | 45 | 0.43 | 65 | B1 | 4.0 | 210 |
| 25 | T12 (T38) | G13 | 290 | L 25.346* | 164013 | 230,50 | 150 | 140 | 60 | 0.55 | 45/80 | B1 | 3.5 | 130 |
| 30 | T8 (T26) | G13 | 365 | LNN 30.045 | 564191 | 230,50 | 232.5 | 220 | 160 | 1.35 | 25/40 | A2 | 4.5 | 180 |
|  |  |  |  | LN 30.801* | 169645 | 230,50 | 150 | 140 | 60 | 0.55 | 55/110 | B2 | 4.5 | 180 |
| 36-1 | T8 (T26) | G13 | 556 | L 361.342* | 538072 | 230,50 | 195 | 180 | 110 | 0.87 | 50/120 | B2 | 6.5 | 250 |
| 36/40 | T8 (T26)/T12 (T38) | G13 | 430 | LN 36.570* | 169779 | 230,50 | 155 | 140 | 92 | 0.80 | 35/90 | B1 | 4.5 | 210 |
|  |  |  |  | LN 36.511* | 164590 | 230,50 | 155 | 140 | 92 | 0.80 | 35/95 | B1 | 4.5 | 210 |
|  |  |  |  | LN 36.130* | 527191 | 230,50 | 150 | 140 | 60 | 0,55 | 50/140 | B2 | 4.5 | 210 |
|  |  |  |  | LN 36.149* | 529029 | 230,50 | 150 | 140 | 60 | 0.55 | 55/150 | B2 | 4.5 | 210 |
|  |  |  |  | L 36.132* | 535977 | 230,50 | 150 | 140 | 45 | 0.43 | 65 | - | 4.5 | 210 |
| 38 | T8 (T26) | G13 | 430 | LN 36.570* | 169779 | 230,50 | 155 | 140 | 92 | 0.80 | 35/90 | B1 | 4.5 | 210 |
|  |  |  |  | LN 36.511* | 164590 | 230,50 | 155 | 140 | 92 | 0.80 | 35/95 | B1 | 4.5 | 210 |
|  |  |  |  | LN 36.149* | 529029 | 230,50 | 150 | 140 | 60 | 0.55 | 55/150 | B2 | 4.5 | 210 |
|  |  |  |  | L 36.132* | 535977 | 230,50 | 150 | 140 | 45 | 0.43 | 65 | - | 4.5 | 210 |
| 58/65 | T8 (T26)/T12 (T38) | G13 | 670 | LN 58.568* | 169389 | 230,50 | 233 | 220 | 160 | 1.31 | 35/95 | B1 | 7.0 | 320 |
|  |  |  |  | LN 58.990* | 509349 | 230,50 | 190 | 180 | 110 | 0.95 | 50/130 | B2 | 7.0 | 320 |
|  |  |  |  | LN 58.116* | 508186 | 230,50 | 190 | 180 | 92 | 0.80 | 55/160 | B2 | 7.0 | 320 |
|  |  |  |  | L 58.718* | 169658 | 230,50 | 190 | 180 | 92 | 0.80 | 60/170 | - | 7.0 | 320 |

[^53]
## Standard Ballasts <br> 15-75 W, 240/220 V

## For fluorescent lamps

## Shape: $\mathbf{2 8 \times 4 1} \mathbf{m m}$

| Lamp |  |  |  |  |  |  |  |  |  |  |  |  | Capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | Base | Current <br> mA | Type | Ref. No. | Voltage <br> V, Hz |  | b <br> mm | c <br> mm | Weight <br> kg | $\begin{aligned} & \Delta t / \Delta \tan . \\ & \mathrm{K} \end{aligned}$ | Energy efficiency | $C_{p}$ <br> $\mu F$ | Current <br> mA |
| $\mathbf{2 4 0 ~ V , ~} 50 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2×15 | T8 (T26) | G13 | 340 | LN 30.806 | 533067 | 240,50 | 150 | 140 | 60 | 0.55 | 55/130 | B2 | 4.0 | 185 |
| 16 | T8 (T26) | G13 | 200 | LN 16.417 | 164358 | 240,50 | 85 | 75 | 34 | 0.32 | 60/130 | B1 | 2.0 | 90 |
| 18/20 | T8 (T26)/T12 (T38) | G13 | 370 | LN 18.507 | 164566 | 240,50 | 155 | 140 | 92 | 0.80 | 35/60 | B1 | 4.5 | 120 |
|  |  |  |  | LN 18.162 | 533043 | 240,50 | 150 | 140 | 60 | 0.55 | 60/110 | B2 | 4.5 | 120 |
|  |  |  |  | L 18.936* | 534627 | 240,50 | 150 | 140 | 45 | 0.43 | 70/140 | - | 4.5 | 120 |
| 2×18/20 | T8 (T26)/T12 (T38) | G13 | 400 | LN 2x18.135 | 535778 | 240,50 | 150 | 140 | 45 | 0.43 | 65 | B1 | 4.0 | 210 |
|  |  |  |  | LN 36.201 | 527196 | 240,50 | 150 | 140 | 60 | 0.55 | 55/140 | B1 | 4.0 | 210 |
|  |  |  |  | LN 36.505 | 164555 | 240,50 | 155 | 140 | 92 | 0.80 | 40/95 | B1 | 4.0 | 210 |
| 30 | T8 (T26) | G13 | 365 | LN 30.806 | 533067 | 240,50 | 150 | 140 | 60 | 0.55 | 55/130 | B2 | 4.5 | 180 |
| 36/40 | T8 (T26)/T12 (T38) | G13 | 430 | LN 36.505 | 164555 | 240,50 | 155 | 140 | 92 | 0.80 | 40/95 | B1 | 4.5 | 210 |
|  |  |  |  | LN 36.201 | 527196 | 240,50 | 150 | 140 | 60 | 0.55 | 55/140 | B2 | 4.5 | 210 |
|  |  |  |  | L 36/40.443* | 164438 | 240,50 | 150 | 140 | 60 | 0.55 | 65/155 | - | 4.5 | 210 |
| 38 | T8 (T26) | G13 | 430 | LN 36.505 | 164555 | 240,50 | 155 | 140 | 92 | 0.80 | 40/95 | B1 | 4.5 | 210 |
|  |  |  |  | LN 36.201 | 527196 | 240,50 | 150 | 140 | 60 | 0.55 | 55/140 | B2 | 4.5 | 210 |
|  |  |  |  | L 36/40.443* | 164438 | 240,50 | 150 | 140 | 60 | 0.55 | 65/155 | - | 4.5 | 210 |
| 58/65 | T8 (T26)/T1 2 (T38) | G13 | 670 | LN 58.506 | 164560 | 240,50 | 233 | 220 | 160 | 1.31 | 35/85 | B1 | 7.0 | 320 |
|  |  |  |  | LN 58.192 | 507936 | 240,50 | 190 | 180 | 110 | 0.95 | 50/150 | B2 | 7.0 | 320 |
|  |  |  |  | LN 58.722 | 534252 | 240,50 | 190 | 180 | 92 | 0.80 | 60/180 | B2 | 7.0 | 320 |
| 70/75 | T8 (T26)/T12 (T38) | G13 | 670 | LN 75.170 | 533650 | 240,50 | 190 | 180 | 110 | 0.95 | 50/150 | B2 | 6.0 | 320 |
| $\mathbf{2 2 0 ~ V , ~} 50$ Hz |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18/20 | T8 (T26)/T12 (T38) | G13 | 370 | L 18.933 | 534624 | 220,50 | 150 | 140 | 45 | 0.43 | 70/160 | - | 4.5 | 120 |
| 2×18/20 | T8 (T26)/T12 (T38) | G13 | 430 | L 36.158 | 530252 | 220,50 | 150 | 140 | 45 | 0.43 | 65 | - | 4.0 | 210 |
| 36/40 | T8 (T26)/T12 (T38) | G13 | 430 | L 36.158 | 530252 | 220,50 | 150 | 140 | 45 | 0.43 | 65 | - | 4.5 | 210 |
| 38 | T8 (T26) | G13 | 430 | L 36.158 | 530252 | 220,50 | 150 | 140 | 45 | 0.43 | 65 | - | 4.5 | 210 |
| 58/65 | T8 (T26)/T12 (T38) | G13 | 670 | L 58.625 | 164828 | 220,50 | 190 | 180 | 92 | 0.80 | 55/155 | - | 7.0 | 320 |
| $220 \mathrm{~V}, 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 15 | T8 (T26) | G13 | 310 | L 15.007 | 537744 | 220,60 | 150 | 140 | 45 | 0.43 | 55/80 | - | 3.0 | 120 |
| 2×15 | T8 (T26) | G13 | 350 | L 30.006 | 537750 | 220,60 | 150 | 140 | 45 | 0.43 | 60/120 | - | 4.0 | 185 |
| 18/20 | T8 (T26)/T12 (T38) | G13 | 370 | L 18.121 | 532149 | 220,60 | 110 | 100 | 45 | 0.42 | 65/145 | - | 4.0 | 190 |
|  |  |  |  | L 18.121 | 528582 | 220,60 | 150 | 140 | 45 | 0.43 | 65/145 | - | 4.0 | 190 |
|  |  |  |  | L 18.149 | 538801 | 220,60 | 150 | 140 | 34 | 0.32 | 75/140 | - | 4.0 | 190 |
| 2×18/20 | T8 (T26)/T12 (T38) | G13 | 430 | L 36.120 | 509373 | 220,60 | 150 | 140 | 45 | 0.43 | 60/170 | - | 4.0 | 220 |
| 30 | T8 (T26) | G13 | 365 | L 30.006 | 537750 | 220,60 | 150 | 140 | 45 | 0.43 | 60/120 | - | 4.0 | 180 |
| 36/40 | T8 (T26)/T12 (T38) | G13 | 430 | L 36.120 | 509373 | 220,60 | 150 | 140 | 45 | 0.43 | 60/170 | - | 4.0 | 220 |
| 38 | T8 (T26) | G13 | 430 | L 36.120 | 509373 | 220,60 | 150 | 140 | 45 | 0.43 | 60/170 | - | 4.0 | 230 |
| 58/65 | T8 (T26)/T12 (T38) | G13 | 670 | L 58.657 | 164870 | 220,60 | 195 | 180 | 92 | 0.80 | 55/140 | - | 6.0 | 320 |

[^54]
## COMPACT AND VERSATIIE



## VS LAMPHOLDERS FOR COMPACT FLUORESCENT LAMPS

Vossloh-Schwabe provides a broad range of lampholders for singleended compact fluorescent lamps, with regard to which the numerous fixing methods make just about any luminaire design possible.

As compact fluorescent lamps generate considerably less heat in comparison to incandescent lamps, the advantages provided by thermoplastics can be fully utilized for lampholder design.

Almost all VS lampholders for compact fluorescent lamps are made of thermoplastic PBT and therefore bear the T marking T140, which refers to the maximum base temperature in accordance with EN 61199 (VDE 0715 T9). The use of this highly heat-resistant material was born of close cooperation between Vossloh-Schwabe and the world's leading lamp manufacturers that also use PBT for producing lamp bases. In connection with fatigue-resistant, stainless steel lamp mounting springs, harmonizing the casing material ensures a permanent and secure lamp fit.

3 Lampholders and Accessories for TC Lamps
G24, GX24 lampholders ..... 158-162
2G7 lampholders ..... 163
G23 lampholders ..... 164-166
GR10q lampholders ..... 166-167
2G10 lampholders ..... 167
2G11 lampholders ..... 168
Accessories ..... 169-171
GX53-1 lampholders, accessories ..... 171
Technical details for fluorescent lamps ..... 208-235
General technical details ..... 348-348
Glossary357-359

## G24, GX24 Lampholders

## For single-ended compact fluorescent lamps TC-D, TC-T, TC-DEL, TC-TEL

The drawings and photos contained in this chapter only show lampholders for lamps with base G24q-1. Further drawings of lamp bases can be found on page 230 .

When mounting the lampholder it has to be considered that the TC-T and TC-TEL lamp is wider than the lampholder. When using the central hole for mounting additional depressions for anti-rotation pips have to be provided.

## G24, GX24 lampholders

Plain casing
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Central fixing hole for screw M3
Rotation stop
For cover caps (see p. 291-293)



| Type | Ref. No. | Base | Lamp | Output (W) | Weight (g) |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 71501 | $\mathbf{5 2 7 7 3 5}$ | G24d-1/GX24d-1 | TC-D/TC-T | $10,13 / 13$ | 13 |  |
| 71502 | $\mathbf{5 2 7 7 3 6}$ | G24d-2/GX24d-2 | TC-D/TC-T | $18 / 18$ | 500 |  |
| 71503 | $\mathbf{5 2 7 7 3 7}$ | G24d-3/GX24d-3 (pcs.) |  |  |  |  |
| 71511 | $\mathbf{5 2 7 7 3 9}$ | G24q-1/GX24q-1 | TC-D/TC-T | $26 / 26$ | 13 |  |
| 71512 | $\mathbf{5 2 7 7 4 0}$ | TC-DEL/TC-TEL | $10,13 / 13$ | 14 | 500 |  |
| 71513 | $\mathbf{5 2 7 7 4 1}$ | G24q-2/GX24q-2 | TC-DEL/TC-TEL | $18 / 18$ | 500 |  |
| 71519 | $\mathbf{5 2 7 7 4 5}$ | G24q-3/GX24q-3 | TC-DEL/TC-TEL | $26 / 26,32$ | 14.5 | 14.5 |
| 71514 | $\mathbf{5 2 7 7 4 2}$ | GX24q-3/-4* | TC-TEL | $26,32 / 42$ | 14.5 | 500 |
| 71515 | $\mathbf{5 2 7 7 4 3}$ | GX24q-4 | TC-TEL | 42 | 500 |  |
| 71516 | $\mathbf{5 2 7 7 4 4}$ | GX24q-5 | GX24q-6 | TC-TEL | 57 | 14.5 |

[^55]G24, GX24 lampholders
External thread 40×2.5 IEC 60399
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Central fixing hole for screw M3
Rotation stop
For cover caps (see p. 291-293)
For screw rings (see p. 307)


| Type | Ref. No. | Base | Lamp | Output (W) | Weight (g) |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 71001 | $\mathbf{5 2 7 5 0 2}$ | G24d-1/GX24d-1 | TC-D/TC-T | $10,13 / 13$ | 12.7 |  |
| 71002 | $\mathbf{5 2 7 5 0 3}$ | G24d-2/GX24d-2 | TC-D/TC-T | $18 / 18$ | 500 |  |
| 71003 | $\mathbf{5 2 7 5 0 4}$ | G24d-3/GX24d-3 (pcs.) |  |  |  |  |
| 71011 | $\mathbf{5 2 7 5 0 6}$ | TC-D/TC-T | $26 / 26$ | 12.7 | 500 |  |
| 71012 | $\mathbf{5 2 7 5 0 7}$ | G24q-1/GX24q-1 | TC-DEL/TC-TEL | $10,13 / 13$ | 15.7 |  |
| 71013 | $\mathbf{5 2 7 5 0 8}$ | G24q-2/GX24q-2 | TC-DEL/TC-TEL | $18 / 18$ | 500 |  |
| 71019 | $\mathbf{5 2 7 5 1 2}$ | G24q-3/GX24q-3 | TC-DEL/TC-TEL | $26 / 26,32$ | 15.2 |  |
| 71014 | $\mathbf{5 2 7 5 0 9}$ | GX24q-3/-4* | TC-TEL | $26,32 / 42$ | 15.2 | 50 |
| 71015 | $\mathbf{5 2 7 5 1 0}$ | GX24q-4 | TC-TEL | 42 | 500 |  |
| 71016 | $\mathbf{5 2 7 5 1 \mathbf { 1 }}$ | GX24q-5 | GX24q-6 | TC-TEL | 57 | 15.2 |

* Lampholder 527512 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

G24, GX24 lampholders
Profiled shape
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Central fixing hole for screw M3
Rotation stop


| Type | Ref. No. | Base | Lamp | Output (W) | Weight (g) |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 71101 | $\mathbf{5 2 7 5 2 9}$ | G24d-1/GX24d-1 | TC-D/TC-T | $10,13 / 13$ | 8.5 |  |
| 71102 | $\mathbf{5 2 7 5 3 0}$ | G24d-2/GX24d-2 | TC-D/TC-T | $18 / 18$ | 500 |  |
| 71103 | $\mathbf{5 2 7 5 3 1}$ | G24d-3/GX24d-3 | TC-D/TC-T | $26 / 26$ | 8.5 | 50 |
| 71111 | $\mathbf{5 2 7 5 3 3}$ | G24q-1/GX24q-1 | TC-DEL/TC-TEL | $10,13 / 13$ | 10.9 |  |
| 71112 | $\mathbf{5 2 7 5 3 4}$ | G24q-2/GX24q-2 | TC-DEL/TC-TEL | $18 / 18$ | 500 |  |
| 71113 | $\mathbf{5 2 7 5 3 5}$ | G24q-3/GX24q-3 | TC-DEL/TC-TEL | $26 / 26,32$ | 10.9 |  |
| 71119 | $\mathbf{5 2 7 5 3 9}$ | GX24q-3/-4* | TC-TEL | $26,32 / 42$ | 10.9 | 500 |
| 71114 | $\mathbf{5 2 7 5 3 6}$ | GX24q-4 | TC-TEL | 42 | 500 |  |
| 71115 | $\mathbf{5 2 7 5 3 7}$ | TC-TEL | 57 | 500 |  |  |
| 71116 | $\mathbf{5 2 7 5 3 8}$ | TC-TEL | 70 | 10.9 |  |  |



[^56]G24, GX24 push-fit lampholders
Lamp position: $45^{\circ}$
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: 0.5-1 mm² (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$ for wall thickness $0.6^{-1} \mathrm{~mm}$
Foot with facility for cable routing


| Type | Ref. No. | Base | Lamp | Output (W) | Weight (g) | Unit (pcs.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 71301 | 527585 | G24d-1/GX24d-1 | TC-D/TC-T | 10, 13 / 13 | 10.2 | 500 |
| 71302 | 527586 | G24d-2/GX24d-2 | TC-D/TC-T | 18/18 | 10.2 | 500 |
| 71303 | 527587 | G24d-3/GX24d-3 | TC-D/TC-T | 26/26 | 10.2 | 500 |
| 71311 | 527589 | G24q-1/GX24q-1 | TC-DEL/TC-TEL | 10,13/13 | 12.1 | 500 |
| 71312 | 527590 | G24q-2/GX24q-2 | TC-DEL/TC-TEL | 18/18 | 12.1 | 500 |
| 71313 | 527591 | G24q-3/GX24q-3 | TC-DEL/TC-TEL | 26/26,32 | 12.1 | 500 |
| 71319 | 527596 | GX24q-3/-4* | TC-TEL | 26, 32 / 42 | 12.1 | 500 |
| 71314 | 527592 | GX24q-4 | TC-TEL | 42 | 12.1 | 500 |
| 71315 | 527594 | GX24q-5 | TC-TEL | 57 | 12.6 | 500 |
| 71316 | 527595 | GX24q-6 | TC-TEL | 70 | 12.6 | 500 |

Lampholder 527596 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

G24, GX24 push-fit lampholders
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$ for wall thickness $0.6^{-1} \mathrm{~mm}$ Foot with facility for cable routing


| Type | Ref. No. | Base | Lamp | Output (W) | Weight (g) | Unit (pcs.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 71801 | 528029 | G24d-1/GX24d-1 | TC-D/TC-T | 10,13/13 | 10.2 | 500 |
| 71802 | 528030 | G24d-2/GX24d-2 | TC-D/TC-T | 18/18 | 10.2 | 500 |
| 71803 | 528031 | G24d-3/GX24d-3 | TC-D/TC-T | 26/26 | 10.2 | 500 |
| 71811 | 528033 | G24q-1/GX24q-1 | TC-DEL/TC-TEL | 10,13/13 | 12.1 | 500 |
| 71812 | 528034 | G24q-2/GX24q-2 | TC-DEL/TC-TEL | 18/18 | 12.1 | 500 |
| 71813 | 528035 | G24q-3/GX24q-3 | TC-DEL/TC-TEL | 26/26,32 | 12.1 | 500 |
| 71819 | 528039 | GX24q-3/-4* | TC-TEL | 26, $32 / 42$ | 12.1 | 500 |
| 71814 | 528036 | GX24q-4 | TC-TEL | 42 | 12.1 | 500 |
| 71815 | 528037 | GX24q-5 | TC-TEL | 57 | 12.7 | 500 |
| 71816 | 528038 | GX24q-6 | TC-TEL | 70 | 12.7 | 500 |

[^57]G24, GX24 surface-mounted lampholders
Casing: PBT GF, white, T140, Nominal rating: 2/500 Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Base fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F Base oblong holes for screws M4 Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST2.9-C/F and ST4.2-C/F


Front fixing holes for screws M3

| Type | Ref. No. | Base | Lamp | Output (W) | Weight (g) |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 71701 | $\mathbf{5 2 7 7 9 0}$ | G24d-1/GX24d-1 | TC-D/TC-T | $10,13 / 13$ | 13.2 |  |
| 71702 | $\mathbf{5 2 7 7 9 1}$ | G24d-2/GX24d-2 | TC-D/TC-T | $18 / 18$ | 500 |  |
| 71703 | $\mathbf{5 2 7 7 9 2}$ | G24d-3/GX24d-3 | TC-D/TC-T | $26 / 26$ | 13.2 |  |
| 71711 | $\mathbf{5 2 7 7 9 4}$ | G24q-1/GX24q-1 | TC-DEL/TC-TEL | $10,13 / 13$ | 15.2 |  |
| 71712 | $\mathbf{5 2 7 7 9 5}$ | G24q-2/GX24q-2 | TC-DEL/TC-TEL | $18 / 18$ | 500 |  |
| 71713 | $\mathbf{5 2 7 7 9 6}$ | G24q-3/GX24q-3 | TC-DEL/TC-TEL | $26 / 26,32$ | 15.2 |  |
| 71719 | $\mathbf{5 2 7 8 0 0}$ | GX24q-3/-4* | TC-TEL | $26,32 / 42$ | 15.2 | 500 |
| 71714 | $\mathbf{5 2 7 7 9 7}$ | GX24q-4 | TC-TEL | 42 | 500 |  |
| 71715 | $\mathbf{5 2 7 7 9 8}$ | TC-TEL | 57 | 15.2 |  |  |
| 71716 | $\mathbf{5 2 7 7 9 9}$ | TC-TEL | 70 | 15.8 | 500 |  |

* Lampholder 527800 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
the applicable standards and that cover the luminaire performance range of 26,32 and $42 \mathrm{~W} . \mathrm{G} 24$, GX24 sufface-mounted lampholders

Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Front fixing holes for screws M3


| Type | Ref. No. | Base | Lamp | Output (W) | Weight (g) | Unit (pcs.) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 71201 | $\mathbf{5 2 7 5 5 6}$ | G24d-1/GX24d-1 | TC-D/TC-T | $10,13 / 13$ | 12 | 500 |
| 71202 | $\mathbf{5 2 7 5 5 7}$ | G24d-2/GX24d-2 | TC-D/TC-T | $18 / 18$ | 12 |  |
| 71203 | $\mathbf{5 2 7 5 5 8}$ | G24d-3/GX24d-3 | TC-D/TC-T | $26 / 26$ | 12 |  |
| 71211 | $\mathbf{5 2 7 5 6 0}$ | G24q-1/GX24q-1 | TC-DEL/TC-TEL | $10,13 / 13$ | 12.9 | 500 |
| 71212 | $\mathbf{5 2 7 5 6 1}$ | G24q-2/GX24q-2 | TC-DEL/TC-TEL | $18 / 18$ | 500 |  |
| 71213 | $\mathbf{5 2 7 5 6 2}$ | G24q-3/GX24q-3 | TC-DEL/TC-TEL | $26 / 26,32$ | 12.9 |  |
| 71219 | $\mathbf{5 2 7 5 6 6}$ | GX24q-3/-4* | TC-TEL | $26,32 / 42$ | 12.9 |  |
| 71214 | $\mathbf{5 2 7 5 6 3}$ | GX24q-4 | TC-TEL | 42 | 500 |  |
| 71215 | $\mathbf{5 2 7 5 6 4}$ | TC-TEL | 57 | 12.9 |  |  |
| 71216 | $\mathbf{5 2 7 5 6 5}$ | TC-TEL | 70 | 13.5 | 500 |  |

[^58]G24, GX24 push-fit lampholders
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Base split pins for wall thickness $0.8-1.7 \mathrm{~mm}$


| Type | Ref. No. | Base | Lamp | Output (W) | Weight (g) | Unit (pcs.) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 71601 | $\mathbf{5 2 7 7 6 2}$ | G24d-1/GX24d-1 | TC-D/TC-T | $10,13 / 13$ | 10.5 | 500 |
| 71602 | $\mathbf{5 2 7 7 6 3}$ | G24d-2/GX24d-2 | TC-D/TC-T | $18 / 18$ | 10.5 | 500 |
| 71603 | $\mathbf{5 2 7 7 6 4}$ | G24d-3/GX24d-3 | TC-D/TC-T | $26 / 26$ | 10.5 | 500 |
| 71611 | $\mathbf{5 2 7 7 6 6}$ | G24q-1/GX24q-1 | TC-DEL/TC-TEL | $10,13 / 13$ | 12 | 500 |
| 71612 | $\mathbf{5 2 7 7 6 8}$ | G24q-2/GX24q-2 | TC-DEL/TC-TEL | $18 / 18$ | 12 |  |
| 71613 | $\mathbf{5 2 7 7 6 9}$ | G24q-3/GX24q-3 | TC-DEL/TC-TEL | $26 / 26,32$ | 12 | 500 |
| 71619 | $\mathbf{5 2 7 7 7 3}$ | GX24q-3/-4* | TC-TEL | $26,32 / 42$ | 12 | 500 |
| 71614 | $\mathbf{5 2 7 7 7 0}$ | GX24q-4 | TC-TEL | TC-TEL | 42 | 500 |
| 71615 | $\mathbf{5 2 7 7 7 1}$ | GX24q-5 | TC-TEL | 57 | 12 | 500 |
| 71616 | $\mathbf{5 2 7 7 7 2}$ | GX24q-6 | 70 | 12.6 | 500 |  |

[^59]G24, GX24 push-fit lampholders
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Rear split pins for wall thickness $0.8-1.7 \mathrm{~mm}$ Width of split pin: 4.5 mm


| Type | Ref. No. | Base | Lamp | Output (W) | Weight (g) |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 72101 | $\mathbf{5 2 8 1 1 6}$ | G24d-1/GX24d-1 | TC-D/TC-T | $10,13 / 13$ | 10.4 |  |
| 72102 | $\mathbf{5 2 8 1 1 7}$ | G24d-2/GX24d-2 | TC-D/TC-T | $18 / 18$ | 500 |  |
| 72103 | $\mathbf{5 2 8 1 1 8}$ | G24d-3/GX24d-3 | TC-D/TC-T | $26 / 26$ | 10.4 | 50 |
| 72111 | $\mathbf{5 2 8 1 2 0}$ | G24q-1/GX24q-1 | TC-DEL/TC-TEL | $10,13 / 13$ | 12.3 |  |
| 72112 | $\mathbf{5 2 8 1 2 1}$ | G24q-2/GX24q-2 | TC-DEL/TC-TEL | $18 / 18$ | 500 |  |
| 72113 | $\mathbf{5 2 8 1 2 2}$ | G24q-3/GX24q-3 | TC-DEL/TC-TEL | $26 / 26,32$ | 12.3 |  |
| 72119 | $\mathbf{5 2 8 1 2 6}$ | GX24q-3/-4* | TC-TEL | $26,32 / 42$ | 12.3 |  |
| 72114 | $\mathbf{5 2 8 1 2 3}$ | TC-TEL | 42 | 500 |  |  |
| 72115 | $\mathbf{5 2 8 1 2 4}$ | GX24q-4 | GX24q-5 | TC-TEL | 57 | 500 |
| 72116 | $\mathbf{5 2 8 1 2 5}$ | GX24q-6 |  | 70 | 12.3 |  |

[^60]
## 2G7 Lampholders

## For single-ended compact fluorescent lamps TC-SEL

2G7 push-fit lampholder
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Rear fixing hole for self-tapping screw
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Locking of the lampholder by a $15^{\circ}$ turn
Weight: 13.7 g , unit: 500 pcs.
Type: 35610

## Ref. No.: 109235

2G7 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Push-fit foot for cutout $10 \times 20 \mathrm{~mm}$
for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 18 g , unit: 500 pcs.
Type: 35613
Ref. No.: 500574

2G7 surface-mounted lampholder
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Fixing holes for screws M4
Lateral and rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 18.1 g , unit: 500 pcs.
Type: 35611

## Ref. No.: 109238

2G7 surface-mounted lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 14 g , unit: 500 pcs.
Type: 35612
Ref. No.: 109240




## G23 Lampholders

## For single-ended compact fluorescent lamps TC-S

If the central hole is used for mounting,
make sure there is no risk of rotation.

G23 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Split pins for wall thickness up to 1.2 mm
Central fixing hole for screw M3
Weight: 12 g , unit: 500 pcs.
Type: 35004


Ref. No.: 101298

G23 surface-mounted lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Central fixing hole for screw M3
Weight: 12.4 g , unit: 500 pcs.
Type: 35006


## Ref. No.: 101306



## G23 lampholder

For push-fit on track
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Fixing holes for screws M4
Central fixing hole for screw M3
Weight: 14 g, unit: 500 pcs.
Type: 35007

## Ref. No.: 101310

G23 surface-mounted lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Central fixing hole for screw M3
Weight: 11.1 g , unit: 500 pcs.
Type: 35008
Ref. No.: 101314


## Lampholders and Accessories for TC Lamps

G23 lampholder, for cover caps (see p. 291-293) External thread 40×2.5 IEC 60399
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Central fixing hole for screw M3
When using the central hole for mounting additional depressions for anti-rotation pips have to be provided.
For screw rings (see p. 307)
Weight: 16.3 g , unit: 500 pcs.
Type: 35010

## Ref. No.: 101320

G23 lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral pivots for bracket 105820
Central fixing hole for screw M3
Weight: 11 g , unit: 500 pcs.
Type: 35011

## Ref. No.: 101324



G23 surface-mounted lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Front fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Weight: 11.9 g , unit: 500 pcs.
Type: 35012

## Ref. No.: 108898



G23 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for wall thickness $0.8-1.3 \mathrm{~mm}$
Central fixing hole for screw M3
Weight: 11 g , unit: 500 pcs.
Type: 35051
Ref. No.: 101344


G23 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Front split pins for wall thickness $0.8-1.3 \mathrm{~mm}$
Central fixing hole for screw M3
Weight: 12 g , unit: 500 pcs.
Type: 35052
Ref. No.: 101346


10

G23 lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Central fixing hole for screw M3
Particularly suitable for narrow mounting
(e.g. for insertion into tube systems)

Weight: 8 g , unit: 500 pcs.


Type: 35201
Ref. No.: 101364


## GR10q Lampholders

## For single-ended compact fluorescent lamps TC-DD

GR1Oq push-fit lampholder
Casing: PC, white, T110
Nominal rating: 2/250
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base fixing clip for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 6.2 g, unit: 1000 pcs.
Type: 35500
Ref. No.: 108927


GR1Oq push-fit lampholder
Casing: PC, white, T110
Nominal rating: 2/250
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 6.2 g , unit: 1000 pcs.
Type: 35510
Ref. No.: 108928

GR1Oq push-fit lampholder
Material: PBT, white, T110
Nominal rating: 2/250
Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base fixing clip for wall thickness $0.6-1 \mathrm{~mm}$ Weight: 7.2 g , unit: 1000 pcs.
Type: 35530
Ref. No.: 108932


GR1Oq push-fit lampholder
Material: PBT, white, T110
Nominal rating: 2/250
Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 7.2 g , unit: 1000 pcs.
Type: 35540
Ref. No.: 108933


GR1Oq surface-mounted lampholder
Material: PBT, white, T110
Nominal rating: 2/250
Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fastening slots for screws M3
Weight: 7.4 g , unit: 1000 pcs.
Type: 35550
Ref. No.: 108934



## 2G10 Lampholders

## For single-ended compact fluorescent lamps TC-F

2G10 surface-mounted lampholder, with lamp lock
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral lamp insertion
Front fixing holes for cheese-head screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Base fixing holes for screws M4
Weight: 25.5 g , unit: 250 pcs.
Type: 36300

## Ref. No.: 101521



## 2G11 Lampholders

## For single-ended compact fluorescent lamps TC-L

2G11 surface-mounted lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Base fixing holes for screws M4
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 13.7 g , unit: 500 pcs.
Type: 36050

## Ref. No.: 101485



2 G11 surface-mounted lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 12.7 g , unit: 500 pcs.
Type: 36051

## Ref. No.: 101489



2 G11 push-fit lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500 Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Lamp position: vertical
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 14.3 g , unit: 500 pcs.
Type: 36052

## Ref. No.: 101491



2G11 push-fit lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Option for base wiring
Weight: 14.1 g , unit: 500 pcs.
Type: 36053
Ref. No.: 101493

## Accessories

## For single-ended compact fluorescent lamps

The luminaire manufacturer is responsible for the right choice of accessories.
Cover caps for G24/GX24 lampholders
(see p. 290-293)

Lamp support for TC-D, TC-DEL lamps
Material: PC, white, UV-stabilised
Lamp position: $45^{\circ}$
Fixing foot with slot for screw M3.5
Weight: 1.5 g , unit: 500 pcs.
Type: 97031
Ref. No.: 105448

Lamp supports for TC-S, TC-SEL lamps
Height adjustable H: $17.5 / 20.5 / 23.5 \mathrm{~mm}$
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: 0.4/0.8/0.8 g, unit: 500 pcs.
Type: 35060
Ref. No.: 105775 foot, PC, white
Ref. No.: 105776 bracket, PC, crystal-clear, UV-stabilised
Ref. No.: 106416 bracket, PC, white, UV-stabilised

Lamp supports for TC-S, TC-SEL lamps
Height adjustable $H: 27.5 / 30.5 / 33.5 \mathrm{~mm}$
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: 0.7/0.8/0.8 g, unit: 500 pcs .
Type: 35061
Ref. No.: 105931 foot, PC, white
Ref. No.: 105776 bracket, PC, crystal-clear, UV-stabilised
Ref. No.: 106416 bracket, PC, white, UV-stabilised

Lamp supports for TC-L lamps
Height adjustable H: $21 / 24 / 27 \mathrm{~mm}$
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: 0.4/1.3/1.1 g, unit: 500 pcs.
Type: 35760
Ref. No.: 105775 foot, PC, white
Ref. No.: 105777 bracket, PC, crystal-clear, UV-stabilised
Ref. No.: 106417 bracket, PC, white, UV-stabilised



3


Lamp supports for TC-L lamps
Height adjustable H: 31/34/37 mm
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: $0.7 / 1.3 / 1.1 \mathrm{~g}$, unit: 500 pcs .
Type: 35761
Ref. No.: 105931 foot, PC, white
Ref. No.: 105777 bracket, PC, crystal-clear, UV-stabilised
Ref. No.: 106417 bracket, PC, white, UV-stabilised

Lamp supports for TC-S, TC-SEL lamps
Material: stainless steel
Weight: 1.3 g , unit: 500 pcs.
Type: 93056 push-fit foot for $\varnothing 5.5 \mathrm{~mm}$

## Ref. No.: 509522

Type: 93057 push-fit foot for $8.5 \times 10.5 \mathrm{~mm}$
Ref. No.: 509521

Lamp supports for TC-F, TC-L lamps
Material: stainless steel
Weight: 1.5 g , unit: 500 pcs.
Type: 93058 push-fit foot for $\varnothing 5.5 \mathrm{~mm}$

## Ref. No.: 509520

Type: 93059 push-fit foot for $8.5 \times 10.5 \mathrm{~mm}$

## Ref. No.: 509519

Lamp supports for TC-F, TC-L lamps
For wall thickness 0.6-1 mm
Material: PC, white, UV-stabilised
Weight: 1.3 g , unit: 500 pcs.
Type: 97638 push-fit foot for $\varnothing 5.5 \mathrm{~mm}$

## Ref. No.: 105981


$\oint_{-\infty 5 \cdot 5+0.1}$

$\oplus_{\varnothing 5,5+0,1}$


Lamp support for TC-L lamps
Material: PC, white, UV-stabilised Push-fit foot for cutout $\varnothing 5.5 \mathrm{~mm}$ for wall thickness up to 1 mm
Weight: 0.7 g , unit: 500 pcs.
Type: 36060
Ref. No.: 108878



Lamp support for TC-L lamps
Material: PC, crystal-clear, UV-stabilised Lockable
Base split pins for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 4 g , unit: 500 pcs.
Type: 36061

## Ref. No.: 101497





10

## LAMPHOLDERS FOR T5, T8, T12 AND T2 LAMPS



## VS LAMPHOLDERS FOR DOUBLEENDED FLUORESCENT LAMPS

Vossloh-Schwabe's comprehensive range of lampholders for doubleended fluorescent lamps covers all major fixing methods. Push-through, push-fit and built-in lampholders with split pins or catches are available just as models with screw and push fittings.

High-grade materials for the contacts and thermoplastics for the casings guarantee reliable contacts and a long service life of the components.

Special G13 lampholders for the USA and Canada can be found under www.unvlt.com
G5 lampholders ..... 174-180
G5 lampholders, accessories ..... 174-178
G5 twin lampholder ..... 178
G5 lampholders, degree of protection IP54/IP65/IP67 ..... 179-180
Lamp supports for lamps T-R5 ..... 180
G13 lampholders ..... 181-197
G13 push-through lampholders ..... 181-183
G13 push-fit lampholders ..... 183-185
G13 push-fit twin lampholders, accessories ..... 186-187
G13 built-in lampholders ..... 187-190
G13 surface-mounted lampholders ..... 191
Accessories for T8 and T1 2 lamps ..... 192-193
G13 lampholders, degree of protection IP54/IP65/IP67, accessories ..... 194-197
Technical details for fluorescent lamps ..... 208-235
General technical details ..... 348-356
Glossary ..... 357-359

## G5 Lampholders, Accessories

## For fluorescent lamps T5 (T16)

Max. permitted temperature $T_{m}$
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G5 push-through/surface-mounted lampholder Lamp axis push-hhrough lampholder: 13.2 mm Lamp axis surface-mounted lampholder: 15.2 mm Casing: PC, white, T110
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$ Fixing slot for screw M3
Weight: 3.2 g , unit: 1000 pcs.
Type: 09105


## Ref. No.: 100305

G5 built-in lampholder
Casing: PC, white, T110
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm Weight: 2.6 g , unit: 1000 pcs.


Type: 09205

## Ref. No.: 100310

G5 built-in/push-fit lampholder
Lamp axis: 12 mm
Casing: PC, white, T110
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm Base split pins for wall thickness up to 1 mm Weight: 2.9 g , unit: 1000 pcs.
Type: 09210
Ref. No.: 106455


G5 push-through lampholders
For the automatic luminaire wiring
Casing: PBT GF, white, frontplate: PC, white
Rotor: PBT GF, white, T140, lamp axis: 15 mm
Nominal rating: 2/500
IDC terminals for leads H05V-U 0.5
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$
Weight: 5 g , unit: 1000 pcs.
Type: 09420/ 09421
Ref. No.: 532377
with stop
Ref. No.: 532378 without stop

G5 push-fit lampholder
For the automatic luminaire wiring Lamp axis: 18 mm
Casing: PC, white, rotor: PBT GF, white, T130
Nominal rating: 2/500
IDC terminals for leads H05V-U 0.5
Lateral push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Weight: 5.5 g , unit: 1000 pcs.
Type: 09900
Ref. No.: 534644

G5 built-in lampholder
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips
Weight: 2.8 g , unit: 1000 pcs.
Type: 09404
Ref. No.: 505732

G5 built-in lampholders
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm Weight: 2.9/3.3 g, unit: 1000 pcs.
Type: 09405

## Ref. No.: 505733

Type: 09406 with spring adjustment
Ref. No.: 505734

G5 built-in lampholder
Lampholder thickness: 12.5 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1 mm Weight: 3 g , unit: 1000 pcs.
Type: 09407
Ref. No.: 508590

G5 built-in lampholders
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: $2 / 500$
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Weight: 2.9/3.2 g, unit: 1000 pcs.
Type: 09415
Ref. No.: 505735
Type: 09416 with spring adjustment
Ref. No.: 505736




## Lampholders and Accessories for T Lamps

G5 push-through lampholders
Lamp axis: 15 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$
Weight: 3.5/3.4 g, unit: 1000 pcs.
Type: 09420/09421
Ref. No.: 505737 with stop
Ref. No.: 505739 without stop

G5 push-through lampholders Lamp axis: 20 mm
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$
Weight: 4.1 g , unit: 1000 pcs.
Type: 09432/09433
Ref. No.: 545933 with stop
Ref. No.: 545935 without stop

G5 push-through lampholders
Lamp axis: 25 mm
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$
Weight: 4.5 g , unit: 1000 pcs .
Type: 09434/09435
Ref. No.: 545937 with stop
Ref. No.: 545939 without stop

G5 push-through lampholders
Lamp axis: 35 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$
Weight: 4.6 g , unit: 1000 pcs.
Type: 09426/09427
Ref. No.: 505745 with stop
Ref. No.: 505746 without stop

G5 push-fit lampholder
Lamp axis: 14 mm
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear fixing clips for wall thickness $0.6-1 \mathrm{~mm}$
Base or lateral wiring
Weight: 3.3 g , unit: 1000 pcs.
Type: 09440
Ref. No.: 505747


## Lampholders and Accessories for T Lamps

G5 push-fit lampholder
Lamp axis: 18 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear fixing clips for wall thickness $0.6-1 \mathrm{~mm}$ Base or lateral wiring
Weight: 3.9 g , unit: 1000 pcs.
Type: 09446
Ref. No.: 545894

G5 push-fit lampholder
Lamp axis: 23 mm
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear fixing clips for wall thickness $0.6-1 \mathrm{~mm}$
Base or lateral wiring
Weight: 4.2 g , unit: 1000 pcs.
Type: 09447

## Ref. No.: 545896

G5 push-fit lampholder
Lamp axis: 15 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: $2 / 500$
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 3.4 g , unit: 1000 pcs .
Type: 09450

## Ref. No.: 505750

G5 push-fit lampholder
Lamp axis: 11.8 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness up to 1 mm Lateral wiring
Weight: 3.1 g , unit: 1000 pcs.
Type: 09460
Ref. No.: 505751

## G5 lampholder

For push-fit onto the lamp
Casing: PBT GF, white, T130
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Pin support for reliable contact
Lamp support 109685 (see page 178)
Weight: 3.7 g , unit: 1000 pcs.
Type: 09170
Ref. No.: 109686



10

Lamp support for lamps $\varnothing 16 \mathrm{~mm}$
Material: zinc-coated polished steel
Fixing hole for screw M3.5
Weight: 1.3 g , unit: 1000 pcs.
Type: 94088
Ref. No.: 109685

Lamp support for lamps $\varnothing 16$ mm Material: PC, white, UV-stabilised Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$ Weight: 1 g , unit: 500 pcs.
Type: 84001

## Ref. No.: 500757

## G5 Twin Lampholder

## For fluorescent lamps T5 (T16)

Max. permitted temperature $T_{m}$
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G5 built-in lampholder
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: $2 / 500$
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips
Weight: 2.8 g , unit: 1000 pcs.
Type: 09404
Ref. No.: 505732

## Push-fit bracket

For two G5 built-in lampholders 505732
Material: PC, white
Lamp axis: 20 mm
Distance between two lamp axes: 24 mm
Push-fit foot for wall thickness $0.5-1 \mathrm{~mm}$
Weight: 3.5 g , unit: 1000 pcs.
Type: 97677
Ref. No.: 507562


# G5 Lampholders, Degree of Protection IP54/IP65/IP67 

## For fluorescent lamps T5 (T16) <br> For luminaires of protection class I and II

Lampholders protected against dust and splashing water (IP54)
Lampholders protected against dust and jet of water (IP65)
Dust and watertight lampholders (IP67)

G5 push-fit lampholder for metal casing Casing: PC, white, interior part: PBT GF T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for wall thickness: $1.4-2 \mathrm{~mm}$
Weight: 11.3 g , unit: 500 pcs.
Type: 84101 system 153

## Ref. No.: 529832

Foot gaskets for systems 153
Weight: 0.5/0.7/0.7 g
Unit: 1000 pcs.
Type: 98002 degree of protection IP67
Ref. No.: 108947 material: PE foam
Type: 98087 degree of protection IP67
Ref. No.: 503773 material: EPDM, black
Type: 98003 degree of protection IP54
Ref. No.: 108266 material: EPDM, black

G5 push-fit lampholder
Casing: PC, white, interior part: PBT GF
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for wall thickness: $1.4-2 \mathrm{~mm}$
Weight: 12.7 g , unit: 250 pcs.
Type: 84108 system 151
Ref. No.: 534073

Foot gaskets for system 151
Weight: 1/1.1/1.1 g
Unit: 1000 pcs.
Type: 98004 degree of protection IP65
Ref. No.: 108267 material: cellular rubber, black
Type: 98011 degree of protection IP67
Ref. No.: 504078 material: silicone, transparent
Type: 98008 degree of protection IP67
Ref. No.: 546254 profiled foot gasket, material: EPDM, black

Pin support for reliable contact
With spring adjustment
Max. permitted temperature $T_{m}$
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$


10

Screw ring for systems 151 and 153
Ring: PBT GF, white, gasket: silicone
Weight: 11.8 g, unit: 250 pcs.
Type: 84103
Ref. No.: 529836


## Lamp supports for lamps T-R5

## For fluorescent lamps T-R5 (T-R16)

Lamp support for lamps $\varnothing 16$ mm
Material: PC, white, UV-stabilised
Fixing hole for screw M3
Fixing hole for self-tapping screw
acc. to ISO 1481/7049-ST4.2-C/F
Weight: 1 g, unit: 500 pcs.


Lamp support for lamps $\varnothing 16$ mm
Material: PC, white, UV-stabilised
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
Weight: 1 g , unit: 500 pcs.
Type: 84001
Ref. No.: 500757


## G13 Push-through Lampholders

## For fluorescent lamps T8 (T26), T 12 (T38)

Lampholders with integrated starter holder have
push-in twin terminals for the lamp circuit and push-in terminals for the the starter circuit.
Pin support for reliable contact
Max. permitted temperature $T_{m}$
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$
G13 push-through lampholders for lamps T8 and T12 Lamp axis: 23 mm
Casing: PC, white, frontplate: PBT GF, white T140, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$ Weight: 6 g , unit: 1000 pcs.
Type: 27700/27701
Ref. No.: 109330 with stop
Ref. No.: 109331 without stop

G13 Rotoclic push-through lampholders
for lamps T8 and T12
Lamp axis: 23 mm
Casing: PC, white, frontplate: PBT GF, white T140, nominal rating: $2 / 500$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: 6.8 g , unit: 1000 pcs.
Type: 27700/27701
Ref. No.: 546641 with stop
Ref. No.: 546642 without stop
G13 push-through lampholders for lamps T8
With starter attachment
Lamp axis: 23 mm
Casing: PC, white, frontplate: PBT GF, white T140, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$ Weight: 10.4 g , unit: 500 pcs.
Type: 27800/27801
Ref. No.: 109332 with stop
Ref. No.: 109335 without stop



G13 Rotoclic push-through lampholders for lamps T8, with starter attachment Lamp axis: 23 mm
Casing: PC, white, frontplate: PBT GF, white T140, nominal rating: $2 / 500$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: 10.4 g , unit: 500 pcs.
Type: 27800/27801
Ref. No.: 546647 with stop
Ref. No.: 546648 without stop


10

Starter Holders and Terminal Blocks, Accessories

G13 push-hhrough lampholders for lamps T8, T12 Lamp axis: 17 mm
Casing: PC, white, frontplate: PBT GF, white T140, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: 5,4 g, unit: 1000 pcs.
Type: 26300/26310
Ref. No.: 551271 with stop
Ref. No.: $\mathbf{5 5 1 2 7 2}$ without stop

G13 push-through lampholders for lamps T8 and T12 With starter attachment
Lamp axis: 22.5 mm
Casing: PC, white, rotor: PBT, white
T130, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.6-2 \mathrm{~mm}$
Weight: 9.5 g , unit: 500 pcs.
Type: 27820/27821
Ref. No.: 100579 with stop
Ref. No.: 100581 without stop
G13 push-through lampholders for lamps T8 and T12 Lamp axis: 31 mm
Casing: PC, white, frontplate: PBT GF, white T140, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: 7.8 g , unit: 1000 pcs.
Type: 28500/28501
Ref. No.: 109338 with stop
Ref. No.: 109339 without stop

G13 push-through lampholders for lamps T8 and T12
With starter attachment
Lamp axis: 31 mm
Casing: PC, white, frontplate: PBT GF, white
T140, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: $10.3 / 10.1 \mathrm{~g}$, unit: 500 pcs.
Type: 28600/28601
Ref. No.: 109340 with stop
Ref. No.: 109341 without stop
G13 push-through lampholders for lamps T8 and T12 Lamp axis: 31 mm
Casing: PC, white, rotor: PBT GF, white
T130, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.6-2 \mathrm{~mm}$
Weight: 9.6 g , unit: 500 pcs.
Type: 28740/28741
Ref. No.: 542983 with stop
Ref. No.: 542984 without stop



G13 push-through lampholders for lamps T8 and T12 Lamp axis: 31 mm
Casing: PC, white, rotor: PBT, white
T130, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.6-2 \mathrm{~mm}$
Weight: 9.9 g , unit: 1000 pcs.
Type: 28500/28501
Ref. No.: 100591
with stop
Ref. No.: 100593 without stop

## G13 Push-fit Lampholders

## For fluorescent lamps T8 (T26), T12 (T38)

Lampholders with integrated starter holder are equipped with big rotor and have push-in twin terminals for the lamp circuit and push-in terminals for the the starter circuit.
Pin support for reliable contact

G13 Rotoclic push-fit lampholders for lamps T8 and T12 T140, nominal rating: $2 / 500$, suitable for Top Test Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for luminaire cut-out $13.3 \times 25.5 \mathrm{~mm}$ with wall thickness $0.6-1 \mathrm{~mm}$
Lampholder foot/luminaire: IP40 (537135: IP50)
Weight: 5.9/5.9/6/6 g, unit: 1000 pcs.
Type: 24100/24110/24170/24150
Ref. No.: $\mathbf{5 3 7 1 3 2}$ lamp axis H: 25 mm
Ref. No.: 537135 lamp axis H: 25 mm , IP50
Ref. No.: 537150 lamp axis H: 21 mm
Ref. No.: 537144 lamp axis H: 18 mm


Weight: 5.7/6 g, unit: 1000 pcs.
Type: 24120/24160
Ref. No.: 537138 lamp axis H: 25 mm
Ref. No.: 537147 lamp axis H: 21 mm

G13 Rotoclic push-fit lampholders for lamps T8
T140, nominal rating: $2 / 500$
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness up to 1.2 mm
Lampholder foot/luminaire: IP40
Weight: 5.9/5.7 g, unit: 1000 pcs.
Type: 24360/24350
Ref. No.: 537155 lamp axis $\mathrm{H}: 30 \mathrm{~mm}$
Ref. No.: $\mathbf{5 3 7 1 5 3}$ lamp axis H: 23.5 mm


G13 Rotoclic push-fit lampholders for lamps T8 and T12
T140, nominal rating: $2 / 500$, suitable for Top Test Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for luminaire cut-out $10 \times 20 \mathrm{~mm}$
with wall thickness $0.6-1 \mathrm{~mm}$
Lampholder foot/luminaire: IP40



10


Casing: PC, white, frontplate/rotor: PBT GF, white Max. permitted temperature $T_{m}$ on the rear side of the lampholder: $110^{\circ} \mathrm{C}$ T-Marking acc. to IEC
IP50 version: push-fit foot with gasket


## Lampholders and Accessories for T Lamps

G13 Rotoclic push-fit lampholders for lamps T8 T140, nominal rating: 2/500
Suitable for Top Test
Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness up to 1.2 mm
Lampholder foot/luminaire: IP40
Weight: 6/5.8/5.3 g, unit: 1000 pcs.
Type: 23360/23350/23370
Ref. No.: 537160 lamp axis H: 30 mm
Ref. No.: 537157 lamp axis H: 23.5 mm
Ref. No.: 539128 lamp axis H: 18 mm

G13 push-fit lampholders with starter attachment for lamps T8
T130, nominal rating: $2 / 250$
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness up to 1.2 mm Lampholder foot/luminaire: IP40
Weight: 9.7/9.5 g, unit: 1000 pcs.
Type: 27460/27450
Ref. No.: 100559 lamp axis H: 30 mm
Ref. No.: 100557 lamp axis H: 23.5 mm

G13 push-fit lampholders for lamps T8 and T12 Lamp axis H: 25 mm
T130, nominal rating: 2/500
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for luminaire cutout $13.3 \times 25.5 \mathrm{~mm}$
with wall thickness $0.5-1 \mathrm{~mm}$
Lampholder foot/luminaire: IP40
Weight: 5/11 g, unit: 500 pcs.
Type: 28100/28200
Ref. No.: 100585
Ref. No.: 100588 with starter attachment
G13 push-fit lampholder for lamps T8
For the automatic luminaire wiring Lamp axis: 31 mm
T130, nominal rating: 2/500
IDC terminals for leads H05V-U 0.5
Base split pins for wall thickness up to 1 mm Weight: 7.2 g , unit: 1000 pcs.
Type: 28310
Ref. No.: 506007

G13 push-fit lampholder for lamps T8
For the automatic luminaire wiring
Lamp axis: 26.5 mm
T130, nominal rating: 2/500
IDC terminals for leads H05V-U 0.5
Base split pins for wall thickness up to 1 mm Weight: 7.1 g , unit: 1000 pcs.
Type: 28315
Ref. No.: 504202


G13 push-fit lampholder for lamps T8
For the automatic luminaire wiring
Lamp axis: 31 mm
T130, nominal rating: 2/500
IDC terminals for leads H05V-U 0.5
Lateral push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness up to 1 mm
Front cable holder for up to 3 individual conductors


Weight: 8 g , unit: 1000 pcs.
Type: 28330

## Ref. No.: 508423

G13 push-fit lampholders
Lamp axis: 25 mm
T130, nominal rating: 5/500
Lateral and base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for luminaire cut-out $10 \times 20 \mathrm{~mm}$
for wall thickness $0.4-1 \mathrm{~mm}$
Weight: $6 / 8.5 \mathrm{~g}$, unit: 500 pcs.
Type: 28921/28920
Ref. No.: 108438 for lamps T8 and T12
Ref. No.: 108437 for lamps T8
with starter attachment



## G13 Push-fit Twin Lampholders, Accessories

## For fluorescent lamps $\mathbf{T 8}$ (T26), T12 (T38)

Casing: PC, white, rotor: PBT GF, white
Pin support for reliable contact
Max. permitted temperature $T_{m}$
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G13 twin lampholder for lamps T8
Lamp axis: 22 mm
Distance between two lamp axes: 50 mm
T130, nominal rating: 2/500
Base wiring
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for wall thickness 1 mm
Weight: 14 g , unit: 400 pcs.
Type: 22900


G13 twin lampholders for lamps T8 and T12 Lamp axis: 25 mm
Distance between two lamp axes: 76 mm T130, nominal rating: 2/500
Base push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Push-fit foot for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 21 g, unit: 200/500 pcs.
Type: 22604/22602 without starter attachment

## Ref. No.: 108816 with stop

Ref. No.: 100487 without stop
Type: 22600/22601 with starter attachment
Ref. No.: 100484 with stop
Ref. No.: 100486 without stop
G13 twin lampholders for lamps T8 and T12
Lamp axis: 31.5 mm
Distance between two lamp axes: 76 mm
T130, nominal rating: 2/500
For wiring inserts 108777/108778
and 545261/545262
Weight: 17 g , unit: 250 pcs.
Type: 22800/22801
Ref. No.: 108773 with starter aftachment
Ref. No.: 108775 without starter attachment

Wiring inserts with push-fit foot
For G13 twin lampholders 108773/108775
Material: PC, white
Push-in terminals: $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads HO5V-U 0.5
Weight: 5.3 g , unit: 500 pcs.
Type: 22850/22851
Ref. No.: 108777 with stop
Ref. No.: 108778 without stop

Wiring inserts with push-fit foot For G13 twin lampholders 108773/108775
Material: PC, white
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Weight: 4.4 g , unit: 500 pcs .
Type: 22860/22861
Ref. No.: 545261 with stop
Ref. No.: 545262 without stop


## G13 Built-in Lampholders

## For fluorescent lamps T8 (T26), T12 (T38)

Lampholders with integrated starter holder are equipped with big rotor and have push-in twin terminals for the lamp circuit and push-in terminals for the the starter circuit.
Pin support for reliable contact
(except for type 485)
Casing: PC, white, frontplate/rotor: PBT GF, white
Max. permitted temperature $T_{m}$
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$
T-Marking acc. to IEC
G13 built-in lampholders for lamps T8 and T12
Lampholder thickness: 13 mm
T140, nominal rating: $2 / 500$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Weight: $4.6 / 5.4 \mathrm{~g}$, unit: 1000 pcs.
Type: 47105/47106

## Ref. No.: 509152

Ref. No.: 509154 with spring adjustment

G13 built-in lampholders for lamps T8 and T12
Lampholder thickness: 9.5 mm
T140, nominal rating: $2 / 500$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Weight: 4.4/5.1 g, unit: 1000 pcs.
Type: 47505/47506
Ref. No.: 509162
Ref. No.: 509164 with spring adjustment

G13 built-in lampholder for lamps T8 and T12 Lampholder thickness: 10.5 mm T140, nominal rating: $2 / 500$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Weight: 4.6 g , unit: 1000 pcs .
Type: 47304
Ref. No.: 509156



## Lampholders and Accessories for T Lamps

G13 Rotoclic built-in lampholders for lamps T8 and T12
T140, nominal rating: 2/500
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes $\varnothing 3.2 \mathrm{~mm}$
Weight: 5 g , unit: 1000 pcs.
Type: 49100/49500
Ref. No.: 537165 lampholder thickness: 13 mm
Ref. No.: $\mathbf{5 3 7 1 7 3}$ lampholder thickness: 9.5 mm

G13 built-in lampholders with spring adjustment
for lamps T8 and T12
T130, nominal rating: 2/500
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 6/5.5 g, unit: 1000 pcs.
Type: 47102/47502
Ref. No.: 101681 lampholder thickness: 13 mm
Ref. No.: 101740 lampholder thickness: 9.5 mm

G13 Rotoclic built-in lampholders for lamps T8 and T12
T140, nominal rating: 2/500
Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Suitable for Top Test
Fixing holes $\varnothing 3.2 \mathrm{~mm}$
Weight: $5 / 4.7 \mathrm{~g}$, unit: 1000 pcs.
Type: 59100/59500
Ref. No.: 537181 lampholder thickness: 13 mm
Ref. No.: $\mathbf{5 3 7 2 0 5}$ lampholder thickness: 9.5 mm

G13 built-in lampholders with starter attachment
for lamps T8 and T12
T130, nominal rating: 2/500
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 8.7/8 g, unit: 1000 pcs.
Type: 47200 lampholder thickness: 13 mm

## Ref. No.: 101706

Type: 47600 lampholder thickness: 9,5 mm

## Ref. No.: 101765

G13 Rotoclic built-in lampholders for lamps T8 and T12
T140, nominal rating: $2 / 500$
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Weight: 5.1/5.9/5/5.5 g, unit: 1000 pcs.
Type: 49105/49106 lampholder thickness: 13 mm

## Ref. No.: 537166

Ref. No.: 537167 with spring adjustment
Type: 49505/49506 lampholder thickness: 9.5 mm
Ref. No.: 537174
Ref. No.: 537175 with spring adjustment


## Lampholders and Accessories for T Lamps

G13 Rotoclic built-in lampholders for lamps T 8 and T 12 T140, nominal rating: 2/500
Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$, suitable for Top Test Rear split pins for wall thickness up to 1.2 mm
Weight: $5.1 / 5.9 / 5 / 5.5 \mathrm{~g}$, unit: 1000 pcs .


Type: 59105/59106 lampholder thickness: 13 mm

## Ref. No.: 537182

Ref. No.: 537183 with spring adjustment
Type: 59505/59506 lampholder thickness: 9.5 mm
Ref. No.: 537206
Ref. No.: 537207 with spring adjustment




G13 lampholder
For push-fitting onto lamps T12 Lampholder thickness: 9.5 mm Casing: PC, white, T110
Front cover plate: PBT GF, white
Nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 10.5 g , unit: 1000 pcs.
Type: 47700

## Ref. No.: 101781

G13 lampholder
For push-fitting onto lamps 78 Lampholder thickness: 9.5 mm Casing: PC, white, Tllo
Front cover plate: PBT GF, white
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing hole for screw M3
Weight: 5.3 g , unit: 1000 pcs .
Type: 47900
Ref. No.: 101784


G13 lampholder with starter aftachment
For push-fititing onto lamps $T 8$
Lampholder thickness: 9.5 mm
Casing: PC, white, T 110
Front cover plate: PBT GF, white
Nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing hole for screw M3
Weight: 8.1 g , unit: 1000 pcs.


Type: 47920

## Ref. No.: 101785

G13 built-in lampholder with lamp lock
for lamps T8 and T12
Contacts on both sides
Casing: PBT GF, white, T130, nominal rating: 2/500
Screw terminals: 0.5-2.5 mm²
Fixing holes for screws M3
Weight: 12.9/18 g, unit: 500 pcs.
Type: 46100/46101
Ref. No.: 101643
Ref. No.: 101647 with spring adjustment

G13 built-in lampholders for lamps T8 and T12
Casing: PC, white, T110
Nominal rating: 2/500
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
5 rotation stops
Weight: 9/10.6 g, unit: 1000 pcs.
Type: 48500/48501

## Ref. No.: 101787

Ref. No.: 101789 with spring adjustment

## G13 Surface-mounted Lampholders

## For fluorescent lamps T8 (T26), T 12 (T38)

Pin support for reliable contact
(except for type 485)
Max. permitted temperature $T_{m}$
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G13 surface-mounted lampholder for lamps T8 and T12 Lamp axis: 25.5 mm
Casing: PC, white, rotor: PBT GF, white, T130
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing hole: $\varnothing 3.8 \mathrm{~mm}$
Weight: 7.2 g , unit: 500 pcs.
Type: 27722
Ref. No.: 100572

G13 surface-mounted lampholder with starter attachment for lamps T8 and T12
Lamp axis: 25.5 mm
Casing: PC, white, rotor: PBT GF, white, T130
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing hole: $\varnothing 3.8 \mathrm{~mm}$
Weight: 9.5 g , unit: 500 pcs.
Type: 27822
Ref. No.: 100583

G13 surface-mounted lampholder for lamps T8
Lamp axis: 17 mm
Casing: PC, white, rotor: PBT GF, white, T130
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing hole for self-tapping screw
acc. to ISO 1481/7049-ST3.5-C/F
Weight: 5.4 g , unit: 1000 pcs.
Type: 27356
Ref. No.: 100551

G13 surface-mounted lampholders
for lamps T8 and T12
Lamp axis: 25 mm , casing: PC, white, T110
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$, nominal rating: $2 / 500$
Bracket: zinc-coated polished steel
Fixing slots for screws M4
5 rotation stops
Weight: 26/28.1 g, unit: 500 pcs.
Type: 48502/48503

## Ref. No.: 101791

Ref. No.: 101793 with spring adjustment


10

## Accessories

For lampholders for fluorescent lamps $\mathbf{T 8}$ (T26), 12 (T38)

The luminaire manufacturer is responsible for
the right choice of accessories.

Lamp supports
Fixing hole for screw M4
Weight: 4.3/6.8 g, unit: 500 pcs.
Type: 20400 for lamps T8
Ref. No.: 100442
material: zinc-coated polished steel


Lamp supports for lamps T8
Material: PC, crystal-clear
Fixing hole for screw M4
Weight: 2 g , unit: 1000 pcs .
Type: 20501
Ref. No.: 100448


Push-fit bracket
For G13 built-in lampholder 537174, 537206
(see p. 188, 189) and starter holder 101627
and 109792 (see p. 201, 202), material: PC, white
Lamp axis optional: 46/51/56 mm
or 43 mm (lateral lamp insertion)
Push-fit foot for wall thickness $0.5-1 \mathrm{~mm}$
Option for lateral or base wiring
Weight: 5.3 g , unit: 1000 pcs.
Type: 97532


## Ref. No.: 105843

Push-fit bracket
For G13 built-in lampholder 537181, 537166, 537174 (see p. 188), 537206 (see p. 189)
Material: PC, grey
Lamp axis optional: 33/40/46/51/56
or 43 mm (lateral lamp insertion)
Push-fit foot for wall thickness $0.5-1 \mathrm{~mm}$
Weight: 6 g , unit: 1000 pcs.
Type: 97044
Ref. No.: 108780


Foot gasket for degree of protection IP50
For push-fit bracket 108780
Material: EPDM, black
Weight: 0.7 g
Type: 98003
Ref. No.: 108266


## Cable holder

Material: PA, white
Push-fit foot for cutout $\varnothing 4 \mathrm{~mm}$
for wall thickness $0.6-1.2 \mathrm{~mm}$
Weight: 0.2 g , unit: 5000 pcs .
Type: 97147
Ref. No.: 109086

Cable holder
For the automatic luminaire wiring
and manual wiring
Material: PC, white
Degree of protection IP50
Weight: 0.5 g , unit: 5000 pcs.
Type: 97117
Ref. No.: 108845

Cable holder
For the automatic luminaire wiring
and manual wiring
Material: PA, white
Weight: 2.1 g , unit: 7500 pcs.
Type: 0607
Ref. No.: 159968




## G 13 Lampholders, Degree of Protection IP54

## For fluorescent lamps $\mathbf{T 8}$ (T26), T12 (T38) <br> For luminaires of protection class I and II

Lampholders protected against dust and splashing water (IP54)
To convert luminaires from IP20 to IP54
Pin support for reliable contact
With spring adjustment

G13 push-fit lampholder for lamps T8/T12
Casing: PC, white, interior part: PBT GF, white Rotor: PBT GF, white, T140
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing clips for wall thickness 0.7 mm
Screw rings see page 197
Weight: 17.1 g , unit: 500 pcs.
Type: 84171 system 161
Ref. No.: 107957

G13 push-fit twin lampholder for lamps T8/T12 Casing: PC, white, interior part: PBT GF, white Rotor: PBT GF, white, T140
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing clips for wall thickness 0.7 mm
Screw rings see page 197
Weight: 33.6 g, unit: 250 pcs.
Type: 84173 system 162
Ref. No.: 107959

Food gasket for degree of protection IP54
For lampholder systems 161, 162
Material: EPDM, black
Weight: 0.7 g
Type: 98003
Ref. No.: 108266

Max. permitted temperature $T_{m}$ on the rear side of the lampholder: $110^{\circ} \mathrm{C}$


# G13 Lampholders, Degree of Protection IP65/IP67 

## For fluorescent lamps T8 (T26), T 12 (T38) <br> For luminaires of protection class I and II

Lampholders protected against dust and jet of water (IP65)
Dust and watertight lampholders (IP67)
Pin support for reliable contact
with spring adjustment

G13 push-fit lampholders for lamps T8/T12
Casing: PC, interior part: PBT GF
Rotor: PBT GF, white, T140
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing clips for wall thickness $1.4-2 \mathrm{~mm}$
Screw rings see page 197
Weight: 17.3 g , unit: 500 pcs
Type: 84172 system 163

## Ref. No.: 107958 casing white <br> Ref. No.: 108666 casing grey

G13 push-fit twin lampholders for lamps T8/T12
Casing: PC, interior part: PBT GF
Rotor: PBT GF, white, T140
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing clips for wall thickness $1.4-2 \mathrm{~mm}$
Screw rings see page 197
Weight: 34.2 g , unit: 250 pcs.
Type: 84174 system 164
Ref. No.: 107960 casing white
Ref. No.: 108669 casing grey
G13 push-fit lampholders for lamps $\mathrm{T} / \mathrm{T} 12$
Casing: PC, interior part: PBT GF, T140
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing clips for wall thickness $1.4-2 \mathrm{~mm}$
With slot insertion
Screw rings see page 197
Weight: 14.5 g , unit: 250 pcs.
Type: 84175 system 165
Ref. No.: 108608 casing white
Ref. No.: 108614 casing grey

Foot gaskets
For lampholder systems 163, 164, 165
Weight: $1 / 1.1 \mathrm{~g}$
For degree of protection IP65
Material: cellular rubber
Type: 98004

## Ref. No.: 108267

For degree of protection IP67
Material: silicone, transparent
Type: 98011
Ref. No.: 504078

Max. permitted temperature $T_{m}$
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$



Profiled foot gasket
For degree of protection IP67
For lampholder systems 163, 164, 165
Material: EPDM, black
Weight: 1.1 g , unit: 1000 pcs.
Type: 98008


Ref. No.: 546254

Foot gasket, profiled shape
For degree of protection IP67
For lampholder systems 167, 168
Material: EPDM, black
Weight: 0.7 g , unit: 1000 pcs.
Type: 98087


Ref. No.: 503773

G13 lampholder for lamps T8/T12
Casing: PC, white, interior part: PBT GF, T140
Nominal rating: 2/500
Screw fixing foot with tapped holes M4
Screw rings see page 197
With slot insertion
Weight: 14 g , unit: 250 pcs.


Type: 84105 system 152

## Ref. No.: 521123



Foot gasket for degree of protection IP65/IP67
For lampholder system 152
Material: EPDM, black
Weight: 1.4 g , unit: 1000 pcs.
Type: 98085
Ref. No.: 106094


## Screw Rings for G13 Lampholders, Degree of Protection IP54, IP65, IP67

For lampholder systems 152, 161, 162, 163, 164, 165

Screw rings
Ring: PBT GF, gasket: silicone
Weight: 17/20 g, unit: 500/250 pcs.
Type: 84122 for lamps $T 8$
Ref. No.: 103710 white
Ref. No.: 103709 grey
Type: 84123 for lamps T12 or
for lamps 18 with protection tube $\varnothing 38 \mathrm{~mm}$
Ref. No.: 103712 white
Ref. No.: 103711 grey

Screw rings with heat dissipator
For lamps T8 with
plastic protection tube $\varnothing 38 \mathrm{~mm}$
Ring: PBT GF
Gasket: silicone, shell: aluminium
Weight: 40 g, unit: 250 pcs.
Type: 84154
Ref. No.: 103744 white
Ref. No.: 103743 grey



## OPTIMUM START WITH COMPONENTS MADE BY VS



3 Starter Holders and Terminal Blocks, Accessories
Starter holders, accessories ..... 200-203
Terminal blocks, accessories ..... 204-206
Built-in rocker switches ..... 207
Technical details for fluorescent lamps 208-235
General technical details ..... 348-356
Glossary357-359

## Starter Holders, Accessories

## For starters acc. to DIN VDE 0712 part 101, IEC 60155

Starter holders with central studs, suitable for luminaires of protection class II, are available on request.

Starter holder
Material: PC, white
T110, nominal rating: $2 / 250$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm Weight: 2.1 g , unit: 1000 pcs.
Type: 02113
Ref. No.: 535131


## Starter holder

Material: PC, white
T110, nominal rating: $2 / 250$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$, single-core Front and rear split pins for wall thickness up to 1.2 mm
Rear of starter holder/luminaire: IP40
Weight: 2.8 g , unit: 1000 pcs.
Type: 02110
Ref. No.: 109784

Starter holder
Material: PC, white
T110, nominal rating: $2 / 250$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm Lateral split pins for wall thickness up to 1.25 mm Rear of starter holder/luminaire: IP40
Weight: 3.7 g , unit: 1000 pcs.
Type: 02120


Ref. No.: 100064

Starter holder
Material: PC, white
T110, nominal rating: $2 / 250$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 3.8 g , unit: 1000 pcs.
Type: 02150
Ref. No.: 100069


Starter Holders and Terminal Blocks, Accessories

Starter holder
Material: PC, white
T110, nominal rating: $2 / 250$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Front split pins, flat
for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 3.1 g , unit: 1000 pcs.
Type: 02170
Ref. No.: 106818

Starter holder
Material: PC, white
T110, nominal rating: $2 / 250$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Rear of starter holder/luminaire: IP40
Weight: 3.3 g , unit: 1000 pcs.
Type: 43000
Ref. No.: 101627

## Starter holder

Material: PC, white
T110, nominal rating: $2 / 250$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral split pins for wall thickness up to 1 mm
Rear of starter holder/luminaire: IP40
Weight: 3.4 g , unit: 1000 pcs .
Type: 43010

## Ref. No.: 101629

## Starter holder

Material: PC, white
T110, nominal rating: $2 / 250$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear and lateral split pins
for wall thickness up to 1 mm
Rear of starter holder/luminaire: IP40
Weight: 3.5 g , unit: 1000 pcs.
Type: 43020
Ref. No.: 108671

Starter holder
Material: PC, white
T110, nominal rating: $2 / 250$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 3.7 g , unit: 1000 pcs.
Type: 43100
Ref. No.: 101631



10

Starter Holders and Terminal Blocks, Accessories

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$, single-core
Lateral split pins for wall thickness up to 1 mm
Rear of starter holder/luminaire: IP40
Weight: 3.7 g , unit: 1000 pcs.
Type: 43200
Ref. No.: 109790

Starter holder
Material: PC, white
T110, nominal rating: $2 / 250$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$, single-core
Rear split pins for wall thickness up to 1.2 mm Lateral split pins for wall thickness up to 1 mm Rear of starter holder/luminaire: IP40
Weight: 3.7 g , unit: 1000 pcs.
Type: 43210
Ref. No.: 109792

Starter holder with integrated extension piece
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Front split pins for wall thickness up to 0.8 mm Weight: 5.4 g , unit: 1000 pcs.
Type: 43300

## Ref. No.: 101636

Starter holder with integrated extension piece
Material: PC, white
For the automatic luminaire wiring
T110, nominal rating: 2/250
IDC terminals for leads H05V-U 0.5
Front split pins for wall thickness up to 1 mm
Weight: 5.4 g , unit: 1000 pcs.
Type: 43500
Ref. No.: 108454

Starter holder
Material: PC, white
T110, nominal rating: $2 / 250$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
Rear split pins for wall thickness up to 1 mm
Weight: 3 g , unit: 1000 pcs.
Type: 43520
Ref. No.: 530079


Starter Holders and Terminal Blocks, Accessories

Starter holder
Material: PA, white
T110, nominal rating: 2/250
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
Lateral split pins for wall thickness up to 1 mm
Weight: 3 g , unit: 1000 pcs.
Type: 43410
Ref. No.: 107445

Extension piece
For front clip-in fixing into luminaire metal sheets
For use with starter holder 109784 (see p. 200)
For screw caps type 97065
Material: PC, white
Weight: 3.5 g , unit: 500 pcs.
Type: 97064
Ref. No.: 105482




Screw caps for degree of protection IP54/IP65/IP67
For extension piece 105482
Material: PP
Gasket: EPDM cellular rubber
Weight: 3.2/4/0.3 g, unit: 500 pcs.
Type: 97065 screw cap
Ref. No.: 105483 white
Ref. No.: 109575 grey
Type: 98086 gasket
Ref. No.: 106095


## Terminal Blocks, Accessories

Suitable only for solid conductors on the secondary connection

## Terminal blocks

Casing: PC, white, T85
Nominal rating: 450 V
Primary connection with release button: push-in twin terminals $0.5-2.5 \mathrm{~mm}^{2} / 16 \mathrm{~A}$ Secondary connection:
push-in twin terminals $0.5-1.5 \mathrm{~mm}^{2} / 16 \mathrm{~A}$ and $0.5-2.5 \mathrm{~mm}^{2} / 16 \mathrm{~A}$
Connection for X2 RFI-suppression capacitor: $0.5-0.75 \mathrm{~mm}^{2}$, capacitor's pins must be insulated (stripped lead ends: $8^{+1} \mathrm{~mm}$ )
 or the automatic luminaire wiring: IDC terminals for leads H05V-U 0.5/6 A Base split pins for wall thickness $0.6-1 \mathrm{~mm}$


| Type | Ref. No. | Number of poles | Earth-contact connection | Mark | Weight (g) | Unit (pcs.) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 41500 | $\mathbf{5 3 3 3 1 2}$ | 3-poles | not earthed | N, L2, L1 | 9.2 | 500 |
| 41510 | $\mathbf{5 3 3 3 1 3}$ | 3-poles | earth spike | N, PE, L1 | 9.4 | 500 |
| 41520 | $\mathbf{5 3 3 3 1 4}$ | 3-poles | earth strap M4 | N, PE, L1 | 10 | 500 |
| 41530 | $\mathbf{5 3 4 9 4 8}$ | 3-poles | earth finger | N, PE, L1 | 10 | 50 |
| 41540 | $\mathbf{5 3 3 3 1 5}$ | 5-poles | not earthed | L3, L2, L4, N, L1 | 15.1 |  |
| 41550 | $\mathbf{5 3 3 3 1 6}$ | 5-poles | earth spike | L3, L2, PE, N, L1 | 15.3 | 500 |
| 41560 | $\mathbf{5 3 3 3 1 7}$ | 5-poles | earth strap M4 | L3, L2, PE, N, L1 | 16 |  |
| 41570 | $\mathbf{5 3 4 9 5 4}$ | 5-poles | earth finger | L3, L2, PE, N, L1 | 16 | 500 |

Push-in cord grip
For terminal blocks type 415
For leads with insulation max. $\varnothing 10.5 \mathrm{~mm}$
Conductor fixed with self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Material: PA, white
Weight: 2.2 g , unit: 500 pcs.
Type: 97734
Ref. No.: 535474

Starter Holders and Terminal Blocks, Accessories

Terminal blocks
Casing: PC, white, T85
Nominal rating: 450 V
Primary connection: screw terminals $2.5 \mathrm{~mm}^{2}$
Secondary connection: push-in twin terminals $1.5 \mathrm{~mm}^{2}$ (with IDC contacts: $1 \mathrm{~mm}^{2}$ ) push-in terminal $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
Base split pins for wall thickness $0.6-1.2 \mathrm{~mm}$

| Type | Ref. No. | IDC | Number of poles | Earth-contact connection | Weight (g) | Unit (pcs.) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40660 | $\mathbf{5 4 3 7 9 3}$ | no | 3 -poles | not earthed | 5.7 | 1000 |
| 40662 | $\mathbf{5 4 3 7 9 5}$ | no | 3 -poles | earth strap M4 | 8.4 | 1000 |
| 40666 | $\mathbf{5 4 3 8 0 0}$ | no | 3-poles | earth finger | 8.3 | 1000 |
| 40661 | $\mathbf{5 4 3 7 9 4}$ | yes | 3-poles | not earthed | 6 | 1000 |
| 40663 | $\mathbf{5 4 3 7 9 6}$ | yes | 3-poles | earth strap M4 | 8.7 | 1000 |
| 40667 | $\mathbf{5 4 7 8 0 1}$ | yes | epoles | earth finger | 8.6 | 1000 |

Terminal blocks with fuse holder
Material: PC, white, T70
nominal rating: 250 V
Primary connection: screw terminals $2.5 \mathrm{~mm}^{2}$
Secondary connection:
push-in twin terminals $1.5 \mathrm{~mm}^{2}$
(with IDC contacts: $1 \mathrm{~mm}^{2}$ )
push-in terminal $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
With retaining clip for fuses $5 \times 20 \mathrm{~mm}$
With integrated fuse on request
Base split pins for wall thickness $0.6-1.2 \mathrm{~mm}$

| Type | Ref. No. | IDC | Number of poles | Earth-contact connection | Weight (g) | Unit (pcs.) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40670 | $\mathbf{5 4 3 8 0 2}$ | no | 3 -poles | not earthed | 8.7 | 1000 |
| 40672 | $\mathbf{5 4 3 8 0 5}$ | no | 3 -poles | earth strap M4 | 11.5 | 1000 |
| 40676 | $\mathbf{5 4 3 8 0 9}$ | no | 3 -poles | earth finger | 14.1 | 1000 |
| 40671 | $\mathbf{5 4 3 8 0 3}$ | yes | 3-poles | not earthed | 9.0 | 1000 |
| 40673 | $\mathbf{5 4 3 8 0 6}$ | yes | 3-poles | earth strap M4 | 11.8 | 1000 |
| 40677 | $\mathbf{5 4 3 8 1 0}$ | yes | earth finger | 14.4 | 1000 |  |

Starter Holders and Terminal Blocks, Accessories

Terminal blocks
Casing: PC, grey, T85
Nominal rating: 450 V
Primary connection:
screw terminals $2.5 \mathrm{~mm}^{2}$
Secondary connection:
push-in twin terminal $1.5 \mathrm{~mm}^{2}$
(with IDC contacts: $1 \mathrm{~mm}^{2}$ ) push-in terminal $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5


Base split pins for wall thickness $0.6-1.2 \mathrm{~mm}$

| Type | Ref. No. | IDC | Number of poles | Earth-contact connection | Weight (g) | Unit (pcs.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40560 | 543770 | no | 3 -poles | not earthed | 8 | 1000 |
| 40562 | 543772 | no | 3 -poles | earth strap M4 | 8.7 | 1000 |
| 40566 | 543777 | no | 3 -poles | earth finger | 8.8 | 1000 |
| 40561 | 543771 | yes | 3 -poles | not earthed | 8.3 | 1000 |
| 40563 | 543773 | yes | 3 -poles | earth strap M4 | 9 | 1000 |
| 40567 | 543778 | yes | 3 -poles | earth finger | 9.1 | 1000 |

Terminal blocks with fuse holder
Material: PBT, grey, T70
Nominal rating: 250 V
Primary connection: screw terminals $2.5 \mathrm{~mm}^{2}$ Secondary connection:
push-in twin terminals $1.5 \mathrm{~mm}^{2}$
(with IDC contacts: $1 \mathrm{~mm}^{2}$ )
push-in terminal $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
With retaining clip for fuses $6 \times 25 \mathrm{~mm}$
With integrated fuse on request
Base split pins for wall thickness $0.6-1.2 \mathrm{~mm}$

| Type | Ref. No. | IDC | Number of poles | Earth-contact connection | Weight (g) | Unit (pcs.) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40570 | $\mathbf{5 4 3 7 8 1}$ | no | 3-poles | not earthed | 11 | 500 |
| 40572 | $\mathbf{5 4 3 7 8 3}$ | no | 3-poles | earth strap M4 | 11.7 | 50 |
| 40576 | $\mathbf{5 4 3 7 8 7}$ | no | 3-poles | earth finger | 11.8 |  |
| 40571 | $\mathbf{5 4 3 7 8 2}$ | yes | 3-poles | not earthed | 500 |  |
| 40573 | $\mathbf{5 4 3 7 8 4}$ | yes | 3-poles | earth strap M4 | 11.3 | 5 |
| 40577 | $\mathbf{5 4 3 7 8 8}$ | yes | epoles | earth finger | 12.1 | 500 |

## Built-in Rocker Switches

Built-in rocker switch 1-pole
For cut-out $16 \times 26 \mathrm{~mm}$
Casing: PC, white, T100
Contact pillar and rocker: PBT, white
Terminal: nichrome steel
Nominal rating: 6(2)/250~
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 7.2 g , unit: 500 pcs.
Type: 20200
Ref. No.: 100437



## Technical Details

## 3 <br> Components for Fluorescent Lamps

Electronic ballasts ..... 209-223
Assembly instructions for mounting and installing - Electronic ballasts ..... 210-216
DALI system information ..... 217-219
Circuit diagrams - Electronic ballasts ..... 220-223
Electromagnetic ballasts ..... 223-227
Assembly instructions for mounting and installing - Electromagnetic ballasts ..... 224-227
Circuit diagrams - Electromagnetic ballasts ..... 227
Connection terminals ..... 228
Lampholders for fluorescent lamps ..... 229
Lamp table ..... 230-232
Key to lamp designations ..... 232
Energy efficiency classification ..... 233-235
General technical details ..... 348-356
Glossary ..... 357-359

## Ballasts for fluorescent lamps

The operation of a fluorescent lamp depends on a ballast that stabilises the lamp's preheat current after connection to the mains and, in conjunction with the starter, also supplies the required lamp ignition voltage after preheating. After ignition, the ballast then serves to limit the lamp current. As fluorescent lamps are characterised by a negative characteristic current-voltage curve, lamp current stabilisation is essential with regard to both the lamp's stable operation and a long service life, which is also dependent on compliance with the starting conditions (preheat current and ignition voltage). Unfavourable starting conditions cause damage to the electrodes every time the lamp is started and thus reduce the lamp's service life. Furthermore, care should be taken to prevent crossdischarge in the electrode area during preheating, which also shortens lamp service life.

Electromagnetic (inductive) ballasts have to be operated in conjunction with starters for lamp ignition and capacitors for blind current compensation. In addition, capacitors for RFI suppression will also be required for certain circuits. Electronic ballasts do not require any additional components.

## Electronic ballasts (EB)

VS electronic ballasts are designed for mains voltages of 220 V to 240 V (exceptions are devices for the North American market where the nominal mains voltage is 120 V or 277 V ) and are used to operate fluorescent lamps at high frequencies. The lamps are ignited with an internally generated ignition voltage, thereby removing the need for an external starter. The power factor $(\lambda)>0.95$ also removes the need for compensation, unlike with electromagnetic ballasts. The only exceptions are low-output ELXs models, which attain a power factor of 0.6. Luminaires fitted with electronic ballasts are characterised by low energy consumption as they draw substantially less system power than conventional, inductive applications. This is firstly because the lamp consumes less power to achieve the same luminous flux and secondly because the internal loss of an electronic ballast only amounts to approx. $8 \%$ to $10 \%$ of the lamp's output. Furthermore, thanks to their modern circuitry, the power input of VS electronic ballasts remains constant even in the event of mains voltage fluctuations, thus ensuring permanently low energy consumption.

VS electronic ballasts permit a broad range of applications. For instance, the VS product range includes many ballast types for multiple lamp operation. These ballasts reduce installation and component costs and thus enable particularly efficient luminaires. Twin-lamp electronic ballasts permit so-called master-slave operation. The lamps of two single-lamp luminaires are operated by a twin-lamp electronic ballast that is built into the so-called master luminaire. The lamp of the slave luminaire is electrically connected to the electronic ballast.

Multi-lamp electronic ballasts also provide an interesting advantage in that several lamps of different ratings can be connected. Electronic ballasts of this kind simplify storage and logistics.

## Technical Details - Components for Fluorescent Lamps

The use of electronic ballasts makes a lighting system both more convenient and efficient to operate:

- reduced power consumption (up to $30 \%$ ) at undiminished light output
- $50 \%$ longer service life
- stabilised lamp output
- overvoltage protection
- no stroboscopic effect
- flicker-free lamp start
- no need for a starter or capacitor
- low wiring effort
- no radiated electromagnetic interference
- low self-heating due to minimal power loss
- automatic shutdown of defective lamps
- automatic restart once the lamp has been changed (except ELXe series)

Vossloh-Schwabe electronic ballasts are developed on the basis of the latest technological and component standards and are produced using state-of-the-art technology, whereby consideration is taken of our customers' quality standards in our quality assurance system.

## Assembly Instructions for Electronic Ballasts

## For mounting and installing of electronic ballasts for fluorescent lamps

## Mandatory regulations

| EN 61347-1 | Lamp controlgear - part 1: general and safety requirements |
| :--- | :--- |
| EN 61347-2-3 | Lamp controlgear - part 2-3: particular requirements for a.c. supplied <br> electronic ballasts for fluorescent lamps |
| EN 60929 | AC-supplied electronic ballasts for tubular fluorescent lamps |
| DIN VDE 0100 | Erection of low voltage installations |
| EN 60598-1 | Luminaires - part 1: general requirements and tests |
| EN 61000-3-2 | Electromagnetic compatibility (EMC) - part 3: <br> maximum values - main section part 2: maximum values for mains harmonics <br> Idevice input current up to and including 16 A per conductor) |
| EN 55015 | Maximum values and methods of measurement for RFI suppression <br> in electrical lighting installations and similar electrical appliances |
| EN 61547 | Installations for general lighting purposes - EMC immunity requirements |

## Descriptions of VS electronic ballasts (EBs)

## ELXc ballasts (warm start)

In contrast to the ELXS series, ELXc ballasts have a power factor of better than 0.95 and cover the complete capacity range.
ELXc ballasts ensure the lamp is started following a defined lamp electrode preheating period of approx. $1-2.5$ seconds using a fixed ignition voltage. This particularly gentle lamp start makes over 20,000 lamp starts possible. ELXc ballasts should be used for applications with high switching frequencies (e.g. hotels or offices) where energy savings as well as low maintenance costs are desired. The average service life of these ballasts totals 50,000 hours with a failure rate of $\leq 0.2 \%$ per 1,000 operating hours. The average life of the series ECO-Effectline: 30.000 hours and New T5 Effectline: 50.000 hours with a failure rate of $\leq 0.2 \%$ per 1,000 operating hours.

## ELXd ballasts (dimmable)

These are warm start ballasts with an additional dimming function that is controlled via an interface fitted to the ballast. The interface of these ballasts can be either analogue (1-10 Volt) or digital (DALI; PUSH); the interface enables lighting to be ideally adjusted to suit the given need. Control components can also be used as long as they comply with the respective standard (Annex to IEC/EN 60929). The power factor for these ballasts is $>0.95$ at $100 \%$ lamp operation. When using ELXd ballasts in a lighting system, an energy saving of $75 \%$ can be achieved if, for instance, the control inputs of the ballasts are coupled with movement detectors and light sensors. The average service life of these ballasts totals 50,000 hours with a failure rate of $\leq 0.2 \%$ per 1,000 operating hours.

To guarantee trouble-free operation and a long service life of the various types of electronic ballast, attention should be paid to the regulations and mounting instructions (page 228-235). In addition, the installation instructions for lighting systems must be observed when installing luminaires with electronic ballasts.

Mounting and installation instructions can be obtained from Vossloh-Schwabe on request or can be found online at www.vossloh-schwabe.com.

## Mechanical mounting

Surface Solid, flat surface for good heat dissipation required. Avoid mounting on protruding surfaces.

Mounting location
Electronic ballasts must be protected against moisture and heat.
Installation in external luminaires: water protection rate of $\geq 4$ (e.g. IP54 required)

Fastening With M4 screws in the designated holes

Heat transfer If the ballast is destined for installation in a luminaire, sufficient heat transfer must be ensured between the ballast and the luminaire casing.
Electronic ballasts should be mounted with the greatest possible clearance to heat sources or lamps. During operation, the temperature measured at the $t_{c}$ point of the ballast must not exceed the specified maximum value.

## Supplement for independent electronic ballasts

Mounting positionAny

Clearance Min. of 0.10 m from walls, ceilings, insulation
Min. of 0.10 m from other electronic ballasts
Min. of 0.25 m from sources of heat (lamp)

Surface Solid; device must not be allowed to sink into insulation materials

## Technical specifications

Operating voltage range
AC: 220 to $240 \mathrm{~V}( \pm 10 \%)$
DC: please observe the specifications on the individual product pages
Ignition time ELXe ballasts $\dagger<0.5$ seconds (instant start)

Preheat time ELXc and ELXd ballasts $\dagger=0.5$ or 1.5 to 2.5 seconds (warm start)
Leak current $\leq 0.5 \mathrm{~mA}$ per electronic ballast

## Product features

Overheating VS EBs for fluorescent lamps are not protected against overheating
Overvoltage protection
AC: up to 48 hours at UNAC $=320 \mathrm{~V}$
DC: no disorders occur with input voltages of up to UNDC 285 V .
UNDC voltages in excess of 288 V destroy the ballast.

Shutdown of defective lamps
During starting operation, the electronic ballast will detect whether a lamp is connected.
If no lamp is present, the ballast will cancel the starting operation. Deactivated lamps or interrupted electrodes are detected and lead to the high-frequency supply being
switched off after an unsuccessful ignition attempt. Changing a lamp during operation
will lead to the high-frequency supply being switched off.

## Technical Details - Components for Fluorescent Lamps

EOL effect
Up to now, it has not been possible to conclusively reproduce the end-of-life effect under laboratory conditions. However, it can be qualitatively described for fluorescent lamps as follows: when the emitter material of the cathode li.e. the filament in conventional bi-pin lamps) has been fully consumed or has otherwise lost its emitting power, the emission of electrons is hampered, which leads to a voltage drop at the cathode. Frequent cold starts accelerate active emitter loss.

Operating a lamp with a constant current (an electronic ballasts (EB) provides a nearconstant current) results in high dissipation losses that also cause the lamp base and lampholder to heat up and can even cause damage to both. This is often referred to as the EOL effect; from an electrical point of view, this is manifested in the so-called "partial rectifier effect".

The EOL cut-out ensures that a ballast is safely switched off and the lamp base does not overheat at the end of a lamp's service life.

EN 61347-2-3:2011 + AC:2011 describes three possible tests.
The first are now in widespread use and are described in more detail here.
The third test is not conducted at VS.

1. EOL Test 1 (61347-2-3:2011 + AC:2011 17.2)

Asymmetric pulse test
2. EOL Test 2 (61347-2-3:2011 + AC:2011 17.3)

Asymmetric power test
3. EOL Test 3 (61347-2-3:2011 + AC:2011 17.4)

Exposed filament test

The first two tests attempt to simulate the rectifier effect:

- Test 1 pulse switching of rectifying effect
- Test 2 by applying a DC voltage that is constantly higher than required by the lamp.

VS EBs are capable of suitably assessing the altered voltage signal in comparison to normal operation so as to meet EOL requirements.

Protection against transient mains peaks
Values are in compliance with EN 61547 (interference immunity)
$(1 \mathrm{kV}$ for AC and 0.5 kV for DC and control conductors).

## Electrical installation

Wiring The wiring between the mains, electronic ballast and lamp must comply with the respective circuit diagram. Note: with ELXe models, one side of the lamp electrode is never connected to the electronic ballast.
The electronic ballast must be earthed using a toothed washer or similar (protection class I, ignition help, compliance with $\mathrm{RFI} / \mathrm{BCl}$ standards).
To ensure compliance with RFl-suppression limits, mains conductors should not be wired in parallel to high-frequency carrying lamp conductors; maximum clearance should be ensured and all conductors marked with an * must be kept short. As a general rule, a maximum conductor length should not be exceeded when using conventional conductors (see table on page 221-223 for precise details). Luminaire must be tested for compliance with the RFI suppression limits stipulated by EN 55015.

Conductors must not exceed 3 m in length in the event of master-slave operation.
Dimmable electronic ballasts are unsuitable for master/slave operation.

## Technical Details - Components for Fluorescent Lamps

Cord grip EBs with cord grip can be used with the following conductors, for instance:

| Designation | Lead type |
| :--- | :--- |
| Mains lead | HO3V-F $3 \times 0.75 \mathrm{~mm}^{2}$ or NYM $3 \times 1.5 \mathrm{~mm}^{2}$ |
| Control lead | HO3VV-F $2 \times 0.5 \mathrm{~mm}^{2}$ |
| Mains and control lead in one lead | HO3VV-F $5 \times 0.75 \mathrm{~mm}^{2}$ |
| Lamp lead | H05V-F $4 \times 1 \mathrm{~mm}^{2}$ or $5 \times 1 \mathrm{~mm}^{2}$ |

Connection terminals for automatic luminaire wiring (ALF connections)

- Use copper (not stranded) wire
- Rquired diameter for push-in connection $0.5-1 \mathrm{~mm}^{2}$
- Stripped lead length $8-9 \mathrm{~mm}$
- Required diameter for IDC $0.5 \mathrm{~mm}^{2}$, max. $\varnothing 2 \mathrm{~mm}$ including insulation, no wire stripping required; mounting requires a special tool

Push-in terminals The integrated terminals can be used with flexible or rigid leads with a crosssection of $0.5-1.5 \mathrm{~mm}^{2}$. The stripped lead length ranges between $8.5-9.5 \mathrm{~mm}$ for a 3.5 mm terminal grid.

Error current Impulse-resistant leak-current protection must be installed. Distribute the luminaires to phases L1, L2 and L3; install tri-phase FI switches. If permissible, install FI switches with 30 mA leak current; connect no more than 15 luminaires as Fl switches can be triggered at half the leak current value.

Tri-phase connection of luminaires with EB

- Prior to operating newly installed lighting systems: check the mains voltage is appropriate to the electronic ballast's mains voltage range (AC, DC).
- The N-type conductor must be properly connected to all luminaires or ballasts.
- Conductors can only be connected or disconnected if the ballast is disconnected from the mains. Attention: N-type conductors must never be disconnected individually or as the first element.
- Insulation resistance test: from L to PE (L and N must not be connected)
- The neutral conductor must be reconnected after completion of the test.

Power factor/compensation
Luminaires with electronic ballasts do not require compensation:
power factor $\geq 0.95$.

## Technical Details - Components for Fluorescent Lamps

## Selection of automatic cut-outs

Dimensioning automatic cut-outs
High transient currents occur when an EB is switched on because the capacitors have to load. Lamp ignition occurs almost simultaneously. This also causes a simultaneous high demand for power. These high currents when the system is switched on put a strain on the automatic conductor cut-outs, which must be selected and dimensioned to suit.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B and C characteristics.

No. of electronic ballasts (see the table on pages 229-231)
The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by $20 \%$ for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m of conductor [ $2.5 \mathrm{~mm}^{2}$ ] from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of ballasts by 10\%.

EB output voltage Electronic ballasts bear the information "UOUT" on their type plates. All subsequently connected components must be designed for this EB output voltage. When using T5 lamps, any components connected to the output side of the EB must be approved for a voltage of $\geq 430 \mathrm{~V}$ (especially lampholders). This also applies to dimmable T5 EBs.

Lamps and dimmed operation
For lighting systems with dimmable electronic ballasts, Vossloh-Schwabe recommends that fluorescent lamps always be replaced as a full complement to maintain uniform lighting levels and colour impressions. New lamps must be burnt in at maximum brightness for approx. 100 hours.
Without restrictions, VS electronic ballasts can be used to operate ECO T5 fluorsecent lamps (except for with types ELXC 135.856 and ELXc 235.857) and T8 fluorescent lamps. A two-lamp dimmable electronic ballast can only be used with lamps of a single lamp manufacturer. The following EBs are restricted in their suitability for dimmer operation of amalgam lamps: ELXd 118.802, 218.803, 142.806, 242.807.

Dimming interface
DC 1-10 V according to EN 60929 with power source 0.5 mA (protected in the event of mains voltage connection); designed to enable connection of control and regulation units. Dimming range: 3-100\% of lamp power

DALI (Digital Addressable Lighting Interface) dimming interface
Polarity reversible dimmer interface - protected in accordance with EN 60929 given mains voltage supply - for connecting control devices that work according to the standard digital protocol. Dimming range: 1-100\% of the lamp's rating

Potential interference with $\operatorname{IR}$ systems
Operating lamps at frequencies of 20 to 50 kHz can cause interference with infrared systems (remote controls, sound transmission, personal pager systems). Countermeasures: optical filters, switching to infrared systems with higher carrier frequencies (over 400 kHz ).

## Electromagnetic Compatibility (EMC)

Vossloh-Schwabe's electronic ballast range was developed in accordance with valid
EMC standards (interference, interference immunity and mains harmonics) and specially designed to ensure safe compliance with the limiting values.
It is assumed that that any remarks regarding conductor wiring and conductor length in the instructions for installing electronic ballasts in luminaires or for independent ballasts will be observed.

Vossloh-Schwabe electronic ballasts are also tested in commercially available luminaires in addition to the CISPR 30 sample luminaires.

Mains harmonics: the maximum values laid down in EN 61547 (Interference Immunity) are satisfied.

## Additional information

Information on the installation of electronic ballasts for optimising EMC
To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic ballasts:

- Conductors between the EB and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference). High-potential lamp conductors must be kept as short as possible, in particular with tubular lamps. Lamp conductors of this kind are labelled with an * in the wiring diagram on the type plate (see page 221-223).
- Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another. The distance between HF and mains conductors should be as large as possible, ideally $>5 \mathrm{~cm}$. (This prevents the induction of interference between the mains and lamp conductors.)
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
- Devices must be properly earthed. EBs require secure contacts to the luminaire casing or must be earthed using a PE connection. This PE connection should be effected using an independent conductor to achieve better dissipation of the leak current. EMC improves at frequencies greater than 30 MHz .
- The mains conductor must not be laid too close to the EB or the lamp (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another to avoid inducing interference between mains and HF conductors.
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Temperature Reference point temperature tc
The safe operation of electronic ballasts is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point - $t_{c}$ max. - on all EB casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this tc point. This point is determined by testing the convertor during normal, IEC-standardised operation at the specified ambient temperature ( $t_{a}$ ), which is also indicated on the type plate. As both the design-related ambient temperature and the ballast's inherent heat, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the tc point under real installation conditions.

Ambient temperature $t_{a}$
The ambient temperature - as specified on every EB - denotes the permissible temperature range within the luminaire.

## Technical Details - Components for Fluorescent Lamps

Reliability and service life
If the max. temperature at the $t_{c}$ reference point (as specified on the type plate and the technical documentation of the ballast) is not exceeded, the defined service life can be expected to be achieved, assuming a switching cycle of 165 minutes on and 15 minutes off. See page 211 for service life details regarding the various electronic ballast families.

Emergency lighting
All Vossloh-Schwabe EBs that are suitable for DC voltage operation can be used in emergency lighting systems. Consideration must, however, be taken of system requirements.

## VS Dimmable Electronic Ballasts

Vossloh-Schwabe's range of electronic ballasts is rounded off by dimmable ballasts for fluorescent lamps The standardised interfaces " $1-10 \mathrm{~V}$ " and "DALI" are used for this purpose. Coupled with sensors, electronic ballasts fitted with a " $1-10 \mathrm{~V}$ " interface make it easy to create intelligent luminaires and room lighting systems, whereby the luminaires are "programmed" via the wiring to the control units, i.e. via the hardware.

The digital interface "DALI" (Digital Addressable Lighting Interface) constitutes a further development of the " $1-10 \mathrm{~V}$ " analogue interface. This digital interface was jointly developed by leading manufacturers of electronic ballasts in order to create a uniform standard for the lighting industry. The uniform interface and telegram definition dictates the function of a DALI operating device or DALI consumer and ensures exchangeability of operating devices made by various manufacturers.

Each VS DALI ballast is additionally fitted with the so-called PUSH function. The data input DA (DALI \& PUSH) is used as a control input for both signal structures, with the exception of devices featuring separate inputs. When used as a DALI ballast, control is effected via the DALI protocol; when used as a PUSH ballast, control is effected via a push key and is achieved via current flow times of differing duration.

Due to the working principle involved, dimming compact fluorescent lamps causes a negligible drop in colour temperature. However, sudden larger changes in the dimmer setting can temporarily cause greater variation in colour temperature. The dimmer function is optimised to minimise this subjective visual change in colour temperature when the dimmer setting is suddenly subjected to larger change.

VS DALI electronic ballasts are characterised by the following performance feature

- Two-strand, potential-free, polarity-independent control input
- Dimmer curve analogue to the light sensitivity of the human eye
- Addressing options: total system, group-wise or individually
- Scene memory
- Feedback in the event of defective lamps

These features ensure a number of advantages for lighting systems

- No group wiring needed
- Each DALI ballast can be individually addressed
- No need for scene memory modules
- Synchronised scene transitions
- Operating devices provide reports on lamp status
- Simple integration into facility management systems


## 1-10V

PUSH

> VS DALI electronic ballasts provide the convenience of a bus system that is both easy to install and operate.

DALI and PUSH must not be used at the same time!

## Switching mains voltage

 to the DALI conductors within a DALI system will lead to the destruction of both the DALI power supply and the DALI master!
## Technical Details - Components for Fluorescent Lamps

## PUSH function characteristic

- Just one key for dimming and ON/OFF
- Polarity- and phase-independent control
- Control input with large working voltage range
- Suitable for multi-layer control
- Fully DC-compatible - no functional restrictions during DC operation
- After disconnection from the primary voltage the ballast will reproduce the last stored lighting leve
- Soft start
- Automatic recognition of DALI and PUSH signals

PUSH operating voltage ranges during control signal input

| EB type | ELXd 118.705, ELXd 218.707, ELXd 142.709, ELXd 242.711 | All other DALI/PUSH ballasts |
| :--- | :--- | :--- |
| AC | $220-240 \mathrm{~V} \pm 10 \%$ | $10-230 \mathrm{~V}$ |
| DC | $198-264 \mathrm{~V}$ | - |
|  | Failing to observe these working voltage ranges can lead to non-recognition of the signals; exceeding the maximum <br> voltages can lead to the destruction of the data inputs. |  |

PUSH control signals (key activation)

| Short push | (80 ms < $\dagger$ < 460 ms ) | ( $0 \mathrm{~ms}<\mathrm{t}<500 \mathrm{~ms}$ ) |
| :---: | :---: | :---: |
|  | Is used to switch between ON/OFF lighting states. After the device is switched on, the last selected lighting level is restored and the next dimming direction will be upwards. |  |
| Long push | (460 ms < t < 10 s ) | ( $500 \mathrm{~ms}<\mathrm{t}$ < $\infty$ ) |
|  | Is used to dim upwards or downwards; a long push will change the dimming direction. Thus, a long push will reverse the dimming direction until the upper or lower limit is reached. If the light was off, a long push will switch it on and the dimmer will start at the lowest light intensity. |  |
| Push to synchronise | ( $\dagger>10 \mathrm{~s}$ ) | long - short - long |
|  | Light is dimmed to the preset factory level and the next dimming direction will be upwards. | Starting situation: luminaires are switched off, The "long - short - long" combination first switches the lamp on, then off and finally on again, after which it gets gradually brighter. The EBs will be synchronised again after this procedure. |
| Synchronisation | Any 1-key dimmer that does not feature a central control module (as each ballast will have its own controls) can develop asynchronous behaviour (e.g. children might play with the key). The system will then be out of sync, i.e. some lamps will be on, others off or the dimming direction will differ from lamp to lamp. |  |
|  | Two methods of synchronisation can be used: <br> - Push the key for more than 10 seconds, after which the light will be dimmed to a preset level and the next dimming direction will be upwards. <br> - Start with a long push of the key so that all lamps are switched on. Follow with a short push to turn the system off. The system will now be resynchronised. |  |

## Technical Details - Components for Fluorescent Lamps

## Wiring examples for PUSH function

Note
Not permissible: N-type conductors must not be used as PUSH potentials for multi-phase systems. Example: if the PUSH key is not activated, the series connection of the internal resistors of the DA inputs will approach the delta voltage of 400 V (voltage between L2 and L3) (Fig. 1).


Fig. 1
N conductor must not be used as a PUSH potential


Fig. 2
Standard application for T5 and T8 lamps


Fig. 3
Standard application for TC lamps

## General information on PUSH and DALI

Mains voltage and interface conductors must not be wired in parallel to the lamp conductors so as to avoid capacitive bridging of the mains filter.

If more than one device is operated with a single key during PUSH operation, asynchronous behaviour can occur, which will require manual resynchronisation using the method described. Should this be unacceptable, a DALI control module will have to be used instead. It is recommended not to control more than four devices using a single key.

When using dimmable devices, new lamps should generally be burnt in for at least 100 hours at full brightness before they are dimmed. This process can become necessary again should the lamps be physically relocated (e.g. transport).

After initial operation of a DALI system (address assignment, luminaire allocation, group formation, scene settings) it is recommended to disconnect the primary voltage of the DALI control units at the circuit breaker for at least 3 seconds and then to reconnect it. The devices will detect this disconnection from the mains and store the settings.

DALI devices with a PUSH function must be operated with a control module (DALI control module or key pad with PUSH function). DALI devices with a PUSH function must not be operated with an open or bridged DALI/PUSH input.

To ensure the ballast does not distort and misinterpret signals when operated in PUSH mode, connected PUSH buttons must not feature a control lamp.

## Technical Details - Components for Fluorescent Lamps

## Circuit diagrams for Vossloh-Schwabe electronic ballasts

The circuit diagrams shown here are wiring examples for Vossloh-Schwabe electronic ballasts, whereby the number and configuration of the contacts differ. See the table on page 221-223 for details.


[^61]
## Technical Details - Components for Fluorescent Lamps

Explanation of circuit diagrams for Vossloh-Schwabe electronic ballasts (see page 220)

| Electronic | ballasts | Lamp | Electronic ballasts |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Max. lead length |  | Operation frequency$\mathrm{kHz}$ | Output voltage Uout V | $\begin{array}{\|c} \hline \text { THD } \\ \\ \% \\ \hline \end{array}$ | Possible quantity of |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ref. No. | Type | Quantity | Term | minal | $\begin{aligned} & \text { als } \\ & \hline \end{aligned}$ |  |  |  |  | 8 | 9 |  | 11 | 12 | 13 | 14 | 15 | hot* $(\mathrm{m} / \mathrm{pf})$ | cold $(\mathrm{m} / \mathrm{pf})$ |  |  |  | $\begin{aligned} & \mathrm{EB} / \mathrm{al} \\ & \mathrm{~B} \\ & (10 \mathrm{~A}) \end{aligned}$ | $\begin{aligned} & \text { utomatic } \\ & \left\lvert\, \begin{array}{l} B \\ (16 A) \\ \hline \end{array}\right. \end{aligned}$ | $\begin{aligned} & c \text { cutouts } \\ & \left\lvert\, \begin{array}{l} C \\ (10 \mathrm{OA}) \end{array}\right. \end{aligned}$ | $\begin{array}{\|l} \text { ts } \\ \mid(16 A) \\ \hline \end{array}$ |
| ELXc |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 183039 | ELXc 424.223 | 3 | $x^{*}$ | $x^{*}$ | - | x | $x$ | x | $x$ | - | - | $x$ | x | - | - | - | - | 1/100 | 2/200 | 44 | 400 | < 10 | 9 | 14 | 14 | 22 |
|  |  | 4 | $x^{*}$ | $x^{*}$ | - | x | $\times$ | $x$ | x | $\times$ | $\times$ | $\times$ | x | - | - | - | - | 1/100 | 2/200 | 44 | 400 | < 10 | 9 | 14 | 14 | 22 |
| 183040 | ELXC 226.878 | 1 | $\times$ | $\times$ | - | - | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 45 | 300 | < 10 | 11 | 18 | 18 | 30 |
|  |  | 2 | $\times$ | x | x | x | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 45 | 300 | < 10 | 11 | 18 | 18 | 30 |
| 183108 | ELXc 226.878 | 1 | $\times$ | $\times$ | - | - | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 45 | 300 | < 10 | 11 | 18 | 18 | 30 |
|  |  | 2 | $\times{ }^{\text {x }}$ | x | x | $x$ | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 45 | 300 | < 10 | 11 | 18 | 18 | 30 |
| 183109 | ELXc 414.227 | 3 | $x^{*}$ | $x^{*}$ | x | x | x | x | x | $x$ | $x^{*}$ | x* | - | - | - | - | - | 1/100 | 2/200 | 45 | 350 | < 15 | 7 | 12 | 12 | 20 |
|  |  | 4 | $x^{*}$ | $x^{*}$ | X | x | x | x | x | x | $x^{*}$ | $x^{*}$ | - | - | - | - | - | 1/100 | 2/200 | 45 | 350 | < 15 | 7 | 12 | 12 | 20 |
| 183110 | ELXc 424.228 | 3 | $x^{*}$ | $x^{*}$ | x | x | $\times$ | x | x | $\times$ | $x^{*}$ | $x^{*}$ | - | - | - | - | - | 1/100 | 2/200 | 47 | 350 | < 15 | 7 | 12 | 12 | 20 |
|  |  | 4 | $x^{*}$ | $x^{*}$ | x | x | x | x | $\times$ | $\times$ | $x^{*}$ | $x^{*}$ | - | - | - | - | - | 1/100 | 2/200 | 47 | 350 | < 15 | 7 | 12 | 12 | 20 |
| 183111 | ELXc 228.229 | 1 | $x^{*}$ | $x^{*}$ | x | x | x | x | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 47 | 350 | < 15 | 9 | 15 | 15 | 25 |
|  |  | 2 | $x^{*}$ | $x^{*}$ | x | x | x | x | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 47 | 350 | <20 | 9 | 15 | 15 | 25 |
| 183112 | ELXc 328.230 | 2 | $x^{*}$ | $x^{*}$ | X | x | $\times$ | x | $x$ | $\times$ | $x^{*}$ | x* | - | - | - | - | - | 1/100 | 2/200 | 45 | 350 | < 15 | 7 | 12 | 12 | 20 |
|  |  | 3 | $x^{*}$ | $x^{*}$ | x | x | x | $\times$ | x | $\times$ | $x^{*}$ | x* | - | - | - | - | - | 1/100 | 2/200 | 45 | 350 | < 15 | 7 | 12 | 12 | 20 |
| 183113 | ELXc 135.231 | 1 | x* | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 47 | 400 | < 15 | 11 | 18 | 18 | 30 |
| 183114 | ELXc 235.232 | 2 | $\times$ | X | $x^{*}$ | $x^{*}$ | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 46 | 400 | < 15 | 9 | 15 | 15 | 25 |
| 183115 | ELXc 239.233 | 1 | $x^{*}$ | $x^{*}$ | x | x | x | x | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 47 | 350 | < 15 | 7 | 12 | 12 | 20 |
|  |  | 2 | $x^{*}$ | $x^{*}$ | x | x | x | $\times$ | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 47 | 350 | < 15 | 7 | 12 | 12 | 20 |
| 183116 | ELXc | 1 | x* | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 47 | 250 | < 15 | 9 | 15 | 15 | 25 |
| 183117 | ELXc 249.235 | 2 | $\times$ | x | $x^{*}$ | $x^{*}$ | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 47 | 350 | < 15 | 7 | 12 | 12 | 20 |
| 183118 | ELXc 254.236 | 1 | $x^{*}$ | $x^{*}$ | x | $x$ | $\times$ | x | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 48 | 350 | < 15 | 7 | 12 | 12 | 20 |
|  |  | 2 | $x^{*}$ | $x^{*}$ | x | x | x | x | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 48 | 350 | $<15$ | 7 | 12 | 12 | 20 |
| 183119 | ELXc 180.237 | 1 | $x^{*}$ | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 46 | 350 | < 15 | 9 | 15 | 15 | 25 |
| 183122 | ELXc 114.238 | 1 | $x^{*}$ | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 380 | < 20 | 8 | 17 | 17 | 28 |
| 183123 | ELXC 128.239 | 1 | $x^{*}$ | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 380 | <20 | 8 | 17 | 17 | 28 |
| 183124 | ELXc 214.240 | 2 | $\times$ | $x$ | x | x | $x^{*}$ | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 380 | < 20 | 8 | 17 | 17 | 28 |
| 183125 | ELXc 228.241 | 2 | $\times$ | $\times$ | $x$ | $x$ | $x^{*}$ | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 380 | < 20 | 4 | 7 | 7 | 12 |
| 183126 | ELXc 414.242 | 4 | $x^{*}$ | $x^{*}$ | x | x | $\times$ | x | x | $\times$ | $x^{*}$ | x* | - | - | - | - | - | 1/100 | 2/200 | 45 | 430 | <20 | 4 | 7 | 7 | 12 |
| 183127 | ELXC 118.243 | 1 | $x^{*}$ | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 390 | <20 | 8 | 17 | 17 | 28 |
| 183128 | ELXC 136.244 | 1 | $x^{*}$ | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 390 | <20 | 8 | 17 | 17 | 28 |
| 183129 | ELXc 158.245 | 1 | $x^{*}$ | $x^{*}$ | x | $x$ | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 390 | <20 | 4 | 7 | 7 | 12 |
| 183130 | ELXc 218.246 | 2 | $x^{*}$ | $x^{*}$ | x | x | $\times$ | x | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 390 | <20 | 8 | 17 | 17 | 28 |
| 183131 | ELXc 236.247 | 2 | $x^{*}$ | $x^{*}$ | x | x | x | x | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 390 | <20 | 4 | 7 | 7 | 12 |
| 183132 | ELXC 258.248 | 2 | $x^{*}$ | $x^{*}$ | x | x | $x^{*}$ | $x^{*}$ | x | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 390 | <20 | 2 | 5 | 5 | 8 |
| 183133 | ELXC 418.249 | 4 | $x^{*}$ | $x^{*}$ | x | x | $\times$ | $\times$ | $\times$ | $\times$ | $x^{*}$ | x* | - | - | - | - | - | 1/100 | 2/200 | 45 | 390 | <20 | 4 | 7 | 7 | 12 |
| 183134 | ELXc 118.879 | 1 | $x^{*}$ | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 380 | <20 | 8 | 17 | 17 | 28 |
| 183135 | ELXC 126.880 | 1 | $x^{*}$ | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 380 | <20 | 8 | 17 | 17 | 28 |
| 183136 | ELXc 218.881 | 2 | $x^{*}$ | $x^{*}$ | x | x | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 380 | <20 | 4 | 7 | 7 | 12 |
| 183137 | ELXC 226.882 | 2 | $x^{*}$ | $x^{*}$ | x | x | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 380 | <20 | 4 | 7 | 7 | 12 |
| 188093 | ELXc 135.856 | 1 | $x^{*}$ | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 44 | 330 | < 10 | 11 | 18 | 18 | 30 |
| 188094 | ELXc 235.857 | 2 | $x^{*}$ | $x^{*}$ | x | x | $\times$ | $x^{*}$ | $\mathrm{x}^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 330 | < 10 | 9 | 15 | 15 | 25 |
| 188095 | ELXc 149.858 | 1 | $x^{*}$ | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 28 | 330 | < 10 | 11 | 18 | 18 | 30 |
| 188140 | ELXc 140.862 | 1 | $x^{*}$ | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 250 | < 10 | 11 | 18 | 18 | 30 |
| 188142 | ELXc 154.864 | 1 | $x^{*}$ | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 34 | 300 | < 10 | 9 | 15 | 15 | 25 |
| 188144 | ELXc 180.866 | 1 | $x^{*}$ | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 45 | 300 | < 10 | 9 | 15 | 15 | 25 |
| 188438 | ELXc 414.868 | 3 | $x^{*}$ | $x^{*}$ | - | x | x | x | x | - | - | x | x | - | - | - | - | 1/100 | 2/200 | 45 | 400 | < 10 | 7 | 12 | 12 | 20 |
|  |  | 4 | $x^{*}$ | $x^{*}$ | - | x | x | x | x | $\times$ | $\times$ | $\times$ | x | - | - | - | - | 1/100 | 2/200 | 45 | 400 | $<10$ | 7 | 12 | 12 | 20 |
| 188589 | ELXc 128.869 | 1 | $x^{*}$ | $x^{*}$ | $x$ | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 54 | 450 | < 10 | 11 | 18 | 18 | 30 |
| 188590 | ELXc 128.869 | 1 | $x^{*}$ | $x^{*}$ | x | x | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 54 | 450 | < 10 | 11 | 18 | 18 | 30 |
| 188595 | ELXc 336.214 | 3 | x | x | x | x | x | $x$ | $x^{*}$ | x* | - | - | - | - | - | - | - | 1/100 | 2/200 | 70 | 370 | < 10 | 6 | 11 | 11 | 18 |
| 188616 | ELXc 240.863 | 2 | $x^{*}$ | $x^{*}$ | x | - | x | x | x | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 46 | 360 | $<15$ | 7 | 12 | 12 | 20 |
| 188617 | ELXc 249.859 | 2 | $x^{*}$ | $x^{*}$ | x | X | x | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 43 | 480 | < 10 | 7 | 12 | 12 | 20 |
| 188618 | ELXc 254.865 | 2 | $x^{*}$ | $x^{*}$ | x | - | x | x | x | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 43 | 390 | < 10 | 7 | 12 | 12 | 20 |
| 188619 | ELXc 280.538 | 2 | $x^{*}$ | $x^{*}$ | X | x | x | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 50 | 420 | < 10 | - | 10 | - | 10 |
| 188643 | ELXc 242.837 | 2 | X | x | X | x | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 43 | 440 | < 15 | 7 | 12 | 12 | 20 |
| 188680 | ELXc 155.378 | 1 | x | x | $x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 47 | 250 | < 15 | 7 | 12 | 12 | 20 |
| 188681 | ELXc 155.378 | 1 | X |  | x* | $x^{*}$ | - | - | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 47 | 250 | < 15 | 7 | 12 | 12 | 20 |

## Technical Details - Components for Fluorescent Lamps

| Electronic ballasts |  | Lamp Quantity | Electronic ballasts |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Max. lead length |  | Operation frequency | Output voltage Uout V | $\begin{gathered} \text { THD } \\ \% \\ \hline \end{gathered}$ | Possible quantily of |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ref. No. | Type |  |  | $\begin{array}{l\|l\|} \hline \text { minals } \\ \|2\| l \mid \end{array}$ |  | $\|4\|$ |  | $\|6\| 7$ | $7$ |  |  |  |  |  |  |  | 15 | hot* <br> (m/pf) | cold <br> (m/pf) |  |  |  | $\begin{aligned} & \mathrm{EB} / \mathrm{au} \\ & \mathrm{~B} \\ & (1 \mathrm{OA}) \\ & \hline \end{aligned}$ | tomatic B $\qquad$ | cut-ou C $\qquad$ $(10 \mathrm{O})$ | C $(16 A)$ |
| ELXc |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 188698 | ELXc 213.870 | 1 | x $\times$ | $\times$ - | - - | $-{ }^{\text {x }}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 42 | 250 | <20 | 11 | 18 | 18 | 30 |
|  |  | 2 | $\times$ | $\times$ x | $\times \times$ | $x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 42 | 250 | <20 | 11 | 18 | 18 | 30 |
| 188699 | ELXC 218.871 | 1 | $\times \times$ | $\times$ - | - | $-x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 35 | 350 | < 12 | 11 | 18 | 18 | 30 |
|  |  | 2 | $\times{ }^{\text {x }} \times$ | $\times \times$ | $\times \times$ | $x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 35 | 350 | < 12 | 11 | 18 | 18 | 30 |
| 188700 | ELXc 142.872 | 1 | $\times$ | $\times$ | - | $-x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 44 | 480 | < 15 | 11 | 18 | 18 | 30 |
|  |  | 2 | $\times{ }^{\text {x }} \times$ | $\times \times$ | $\times \times$ | ${ }^{*}$ | $x^{*} x^{*}$ | ${ }^{*}$ | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 44 | 480 | < 15 | 11 | 18 | 18 | 30 |
| 188704 | ELXc 136.207 | 1 | $\times$ | $\times$ - | - | $-x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | - | - | 48 | 350 | < 20 | 11 | 18 | 18 | 30 |
| 188705 | ELXc 236.208 | 2 | $\times{ }^{\text {x }}$ | $\times \times$ | $\times \times$ | $x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | - | - | 45 | 250 | <20 | 11 | 18 | 18 | 30 |
| 188706 | ELXc 158.209 | 1 | $\times$ | $x$ | - | $-x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | - | - | 33 | 250 | <20 | 9 | 15 | 15 | 25 |
| 188707 | ELXc 258.210 | 2 | $\times$ | $\times$ x | $\times \times$ | $\times{ }^{\text {x }}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | - | - | 48 | 350 | < 20 | 7 | 12 | 12 | 19 |
| 188712 | ELXC 213.870 | 1 | $\times$ | $\times$ | - | $-x^{*}$ | $x^{*} x^{*}$ | $x^{*}-$ | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 42 | 250 | < 20 | 11 | 18 | 18 | 30 |
|  |  | 2 | $\times{ }^{\times}$ | $\times \times$ | $\times \times$ | $x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 42 | 250 | <20 | 11 | 18 | 18 | 30 |
| 188713 | ELXc 218.871 | 1 | $\times{ }^{\text {x }}$ | $\times$ - | - | $-x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 35 | 350 | < 12 | 11 | 18 | 18 | 30 |
|  |  | 2 | $\times{ }^{\text {x }} \times$ | $\times \times$ | $\times \times$ | $\times x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 35 | 350 | < 12 | 11 | 18 | 18 | 30 |
| 188714 | ELXC 142.872 | 1 | $\times$ | $\times$ | - | $-x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 44 | 480 | < 15 | 11 | 18 | 18 | 30 |
|  |  | 2 | $\times$ | $\times$ | $\times$ | $x x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 44 | 480 | < 15 | 11 | 18 | 18 | 30 |
| 188744 | ELXc 418.204 | 3 | $x^{*} \times$ | ${ }^{*}$ | $x$ | $\times$ | $\times \mathrm{x}$ | $\times$ | $\times$ | - | - | $\times \times$ | $\times$ | - | - | - | - | 1/100 | 2/200 | 44 | 480 | < 10 | 7 | 12 | 12 | 20 |
|  |  | 4 | $x^{*} \times$ | $x^{*}$ - | - x | $\times \mathrm{x}$ | $\times \mathrm{x}$ | $\times \mathrm{x}$ | $\times \times$ | $\times$ | $\times{ }^{-1}$ | x | $\times$ | - | - | - | - | 1/100 | 2/200 | 44 | 480 | < 10 | 7 | 12 | 12 | 20 |
| 188912 | ElXc 136.216 | 1 | $\times$ | $\times$ - | - - | $-x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | 1/75 | 1.5/100 | 47,5 | 430 | <20 | 17 | 28 | 28 | 46 |
| 188913 | ELXc 236.217 | 2 | $\mathrm{x}^{*} \times$ | $x^{*}$ | $\times \times$ | $x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | 1/75 | 1.5/100 | 45 | 430 | < 10 | 17 | 28 | 28 | 46 |
| 188914 | ELXc 158.218 | 1 | $x$ | $\times$ x | - | $-x^{*}$ | $x^{*} x^{*}$ | ${ }^{*}$ | - | - | - | - | - | - | - | - | - | 1/75 | 1.5/100 | 34 | 430 | < 10 | 17 | 28 | 28 | 46 |
| 188915 | ELXc 258.219 | 2 | $\mathrm{x}^{*} \times$ | $x^{*}$ | $\times$ x | ${ }^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | - | 1/75 | 1.5/100 | 52 | 430 | < 10 | 17 | 28 | 28 | 46 |
| 188921 | ElXc 135.220 | 1 | $x^{*} \times$ | $x^{*}$ | $\times$ | $\times$ - | - | $-$ | - | - | - | - | - | - | - | - | - | 1/100 | 2/150 | 41 | 300 | < 10 | 11 | 18 | 18 | 30 |
| 188922 | ELXc 235.221 | 2 | $\times \times$ | $\times \quad \times$ | $\times \times$ | $\times \times$ | ${ }^{*}$ | $\mathrm{x}^{*} \times$ | x* | - | - | - | - | - | - | - | - | 1/100 | 2/150 | 41 | 300 | < 10 | 11 | 18 | 18 | 30 |
| ELXd |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 183059 | ELXd 235.735 | 2 | $x^{*}$ | x+ | $\times$ | $\times \times$ | x* | $x^{*} \times$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 2/200 | 42 | 300 | < 5 | 10 | 17 | 18 | 28 |
| 188329 | ELXX 124.600 | 1 | $\times$ | $\times$ - | - | $-{ }^{x}$ | - $x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 76-120 | 430 | < 10 | 17 | 28 | 28 | 46 |
| 188330 | ElXd 224.601 | 2 | $\times$ | $\times \times$ | $\times{ }^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 53-120 | 430 | < 10 | 17 | 28 | 28 | 46 |
| 188331 | ELXd 139.602 | 1 | $\times{ }^{\times} \times$ | $\times$ x | - - | - - | $x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 85-120 | 430 | < 10 | 17 | 28 | 28 | 46 |
| 188332 | ELXX 154.603 | 1 | $\times{ }^{\text {x }} \times$ | $\times$ - | - - | - | $-x^{*}$ | $x^{*}{ }^{*}{ }^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 83-120 | 430 | < 10 | 17 | 28 | 28 | 46 |
| 188333 | ElXd 254.604 | 2 | $\times$ | $\times$ | $\times{ }^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 44-120 | 430 | < 10 | 8 | 13 | 13 | 21 |
| 188334 | ElXd 180.605 | 1 | $\times{ }^{\text {x }} \times$ | $\times$ - | - - | - | $-x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 91-120 | 430 | < 10 | 12 | 19 | 19 | 31 |
| 188335 | ELXd 249.606 | 2 | x $\times$ | $\times$ x | - | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 44-120 | 430 | < 10 | 8 | 13 | 13 | 21 |
| 188336 | ElXd 124.607 | 1 | $\times{ }^{\times}$ | $\times$ - | $-{ }^{x}$ | $--$ | $x^{*}$ | $x^{*}{ }^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 76-120 | 430 | < 10 | 17 | 28 | 28 | 46 |
| 188337 | ElXd 224.608 | 2 | $\times{ }^{\text {x }} \times$ | $\times \times$ | $\times$ | $x^{*} \mathrm{x}^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 53-120 | 430 | < 10 | 17 | 28 | 28 | 46 |
| 188338 | ElXd 139.609 | 1 | $\times$ | $\times$ - | $-$ | $--$ | $x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 85-120 | 430 | < 10 | 17 | 28 | 28 | 46 |
| 188339 | ElXd 239.610 | 2 | $\times$ | $\times$ | $x^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 53-120 | 430 | < 10 | 17 | 28 | 28 | 46 |
| 188340 | ElXd 154.611 | 1 | $\times$ | $\times$ - | - - | - | $-x^{*}$ | $x^{*}{ }^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 83-120 | 430 | < 10 | 17 | 28 | 28 | 46 |
| 188341 | ELXX 254.612 | 2 | $\times{ }^{\times} \times$ | $\times \times$ | - | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 44-120 | 430 | < 10 | 8 | 13 | 13 | 21 |
| 188342 | ElXd 180.613 | 1 | $\times$ | $\times$ - | $-$ | - - | $x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 91-120 | 430 | < 10 | 12 | 19 | 19 | 31 |
| 188343 | ElXd 249.614 | 2 | $\times$ | $\times \times$ | $x x^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - - | - | 1/100 | 1.5/150 | 44-120 | 430 | < 10 | 8 | 13 | 13 | 21 |
| 188350 | ElXd 239.621 | 2 | x ${ }^{\text {x }}$ | x $\mathrm{x}^{\text {x }}$ | $x x^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $\mathrm{x}^{*} \mathrm{x}^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 53-120 | 430 | < 10 | 17 | 28 | 28 | 46 |
| 188431 | ELXd 226.801 | 2 | x $\times$ | $\times \mathrm{x}$ | $x \times$ | $x^{*}$ | $x^{*} x^{*}$ | ${ }^{*}$ | - | - | - | - | - | - | - | - | - 0 | 0.5/50 | 0.75/75 | 50-90 | 470 | < 10 | 7 | 12 | 12 | 20 |
| 188490 | ELXX 226.801 | 2 | $\times$ | $\times$ | $x$ x | $\times{ }^{*}{ }^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - 0. | 0.5/50 | 0.75/75 | 50-90 | 470 | < 10 | 7 | 12 | 12 | 20 |
| 188549 | ElXd 218.803 | 2 | $\mathrm{x}^{*} \times$ | $x^{*}$ | $\times$ x | $\times$ | $x x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 0.5/50 | 0.75/75 | 60-99 | 300 | < 10 | 11 | 18 | 18 | 30 |
| 188550 | ElXd 242.807 | 2 | $\mathrm{x}^{*} \times$ | $x^{*}$ | $\times \times$ | $\times \times$ | $x x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - 0.5 | 0.5/50 | 0.75/75 | 45-95 | 400 | < 10 | 7 | 12 | 12 | 20 |
| 188564 | ELXd 118.802 | 1 | $\times$ | $\times$ | - | $-x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | 0.5/50 | 0.75/75 | 60-105 | 400 | < 10 | 11 | 18 | 18 | 30 |
| 188565 | ELXX 142.806 | 1 | $\times$ | $\times$ - | - | $-x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | 0.5/50 | 0.75/75 | 40-95 | 400 | < 10 | 11 | 18 | 18 | 30 |
| 188597 | ElXd 324.623 | 3 | $-{ }^{-}$ | $x^{*} x^{*}$ | $x^{*}$ | - | - | - | - | $x^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | 0.5/50 | - | 67-120 | 430 | < 10 | 8 | 13 | 13 | 21 |
| 188598 | ELXd 424.624 | 4 | $-{ }^{-}$ | $x^{*} \mathrm{x}^{*}$ | $x^{*} x^{*}$ | x* | x* | - | $-{ }^{-}$ | $x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | $x^{*}$ | 0.5/50 | - | 45-120 | 430 | < 10 | 8 | 13 | 13 | 21 |
| 188600 | ELXd 324.626 | 3 | $\times$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*} \times$ | $x^{*}$ | - | - | - | x | $x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | $x^{*}$ | 0.5/50 | - | 67-120 | 430 | < 10 | 8 | 13 | 13 | 21 |
| 188602 | ELXX 424.628 | 4 | $\times$ | $\mathrm{x}^{*} \mathrm{x}^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*} \mathrm{x}^{*}$ | $x^{*} x^{*}$ | x* | x* | - | $-{ }^{\text {x }}$ | $x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ | x* | 0.5/50 | - | 45-120 | 430 | < 10 | 8 | 13 | 13 | 21 |
| 188604 | ElXd 280.630 | 2 | $\times{ }^{\times}$ | $x$ x | $x{ }^{*}{ }^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*} \times$ | $x^{*}$ | - | - | - | - | - | $-$ | $-$ | - | 1/100 | 1.5/150 | 44-120 | 430 | < 10 | 5 | 9 | 9 | 15 |
| 188605 | ElXd 280.631 | 2 | $\times$ | x $\times$ | $\times{ }^{*}$ | $x^{*} x^{*}$ | $x^{*} x^{*}$ | $x^{*} \mathrm{x}^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 1/100 | 1.5/150 | 44-120 | 430 | < 10 | 5 | 9 | 9 | 15 |
| 188694 | ElXd 118.802 | 1 | $\times$ | $\times$ - | - | $-x^{*}$ | $x^{*} x^{*}$ | $x^{*}-$ | - | - | - | - | - | - | - | - | - | 0.5/50 | 0.75/75 | 60-105 | 400 | < 10 | 11 | 18 | 18 | 30 |
| 188695 | ELXX 142.806 | 1 | $\times$ | $\times$ - | - | $-x^{*}$ | $x^{*} x^{*}$ | $x^{*}$ - | - | - | - | - | - | - | - | - | - | 0.5/50 | 0.75/75 | 40-95 | 400 | < 10 | 11 | 18 | 18 | 30 |
| 188696 | ElXd 218.803 | 2 | $x^{*} \times$ | $x^{*} \times$ | $x$ x | $x$ x | x $x^{*}$ | $x^{*} \times$ | $x^{*}$ | - | - | - | - | - | - | - | - | 0.5/50 | 0.75/75 | 60-99 | 300 | < 10 | 11 | 18 | 18 | 30 |
| 188697 | ElXd 242.807 | 2 | $x^{*} \times$ | $x^{*} \times$ | $\times \mathrm{x}$ | $\times$ | $\times{ }^{*}$ | $x^{*}{ }^{*}$ | $x^{*}$ | - | - | - | - | - | - | - | - | 0.5/50 | 0.75/75 | 45-95 | 400 | < 10 | 7 | 12 | 12 | 20 |
| 188717 | ELXd 135.823 | 1 | $x^{*} \times$ | ${ }^{*} \times$ | $\times$ x | $\times$ - | $-{ }^{\times}$ | $-{ }^{*}$ | $-$ | - | - | - | - | - - | - - | - | - | 1/75 | 1.5/100 | 45 | 420 | < 10 | 30 | 50 | 30 | 50 |

## Technical Details - Components for Fluorescent Lamps



## Electromagnetic ballasts

Electromagnetic (inductive) ballasts are active components that in conjunction with starters preheat the lamp electrodes, supply the ignition voltage and stabilise lamp currents during operation. Series or parallel capacitors are required to compensate blind current.

For installation in luminaires, consideration must be taken of the mains voltage and mains frequency, the dimensions and maximum thermal values as well as any potential noise generation. To fulfil these special requirements, Vossloh-Schwabe provides a large variety of different ballasts.

VS magnetic ballasts have been optimised with regard to their magnetic fields and loads so that usually so that noise cannot usually be perceived. However, the luminaire design can cause magnetic vibrations to affect large areas. When designing luminaires, it might therefore be necessary to fit a concertina section or grooves to prevent vibrations from spreading and thus from noise being generated.

The service life of an inductive ballast is mainly determined by the material chosen for the winding insulation. The maximum winding temperature denotes the temperature (tw) that the insulation will withstand for a period of 10 years given continuous operation under rated conditions. This maximum winding temperature must not be exceeded in real conditions to ensure the ballast can achieve its full service life. The winding temperature of the ballast that is measured in the luminaire is made up of the ambient temperature of the luminaire, the thermal conditions within the luminaire and the power loss of the ballast. The $\Delta t$ marking on the ballast type plate provides a measure of the power loss of the ballast. In addition to this, the power loss of ballast-lamp circuits is measured in accordance with EN 50294. This test method forms the basis for the CELMA energy classification of ballasts and is also applied in European Regulation 245/2009/EG "Definition of eco-design requirements regarding fluorescent lamps without an integrated ballast, high-pressure discharge lamps as well as ballasts and luminaires in their operation and the invalidation of Directive 2000/55/EC" (see pages 233-235 for further details).

As a result of their design features, inductive ballasts cause leak current that is discharged via the earth conductor of the luminaire. The maximum permissible leak current for protection class I luminaires is 1 mA , a value of which all Vossloh-Schwabe electronic ballasts fall clearly short. Values of max. 0.1 mA are measured per electromagnetic ballast. However, as these values accumulate with the number of installed ballasts, this should be taken into account when dimensioning the Fl protective switch.

## Starters for fluorescent lamps

As mentioned above, the operation of fluorescent lamps also requires starters in addition to ballasts. A distinction is made between glow starters, which are also available with automatic cut-outs, and electronic starters. The correct choice of voltage and power range is crucial. Starters are available for 220-240 V and for 110-127 V mains voltage. The latter are also required for twin-lamp operation (e.g. $2 \times 18 \mathrm{~W}$ at 230 V).

Operating SL-series VS ballasts (100-127 V) depends on the use of a $220-240 \mathrm{~V}$ starter as these operating devices are high-reactance transformers that supply higher voltages to the lamp. Starters should only be used with starter contacts with a hardness value of at least HB 100.

## Assembly Instructions for Electromagnetic Ballasts

For mounting and installing of electromagnetic ballasts for fluorescent lamps

## Mandatory regulations

DIN VDE 0100 Erection of low voltage installations

EN 60598-1 Luminaires - part 1: general requirements and tests
EN 61347-1 Operating devices for lamps - part 1: general and safety requirements

EN 61347-2-8 Operating devices for lamps - part 2-8: special requirements for ballasts
for fluorescent lamps

EN $60921 \quad$ Ballasts for fluorescent tube lamps - performance requirements
EN 50294 Methods for measuring the total input power of ballast-lamp circuits

EN 55015 Maximum values and methods of measurement for RFI suppression in electrical lighting installations and similar electrical appliances

EN 61000-3-2 Electromagnetic Compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics
(device input current up to and including 16 A per conductor)
EN 61547 Installations for general lighting purposes - EMC immunity requirements

## Technical specifications

Operating voltage range
VS ballasts can be operated at the specified mains voltage within a tolerance range of $\pm 10 \%$

Leak current $\leq 0.1 \mathrm{~mA}$ per ballast

| Error current | Impulse-resistant leak-current protection must be installed. Distribute the luminaires to phases L1, L2 and L3; install tri-phase FI switches. If permissible, install FI switches with 30 mA leak current; connect no more than 15 luminaires as Fl switches can be triggered at half the leak current value. |
| :---: | :---: |
| Power factor | Inductive ballasts: $\lambda \geq 0.5$ |
|  | Parallel-compensated ballasts: $\lambda \geq 0.85$ |

## Technical Details - Components for Fluorescent Lamps

## Compensation VS recommends the use of parallel capacitors owing to their technical advantages and power balance.

Possible interference with IR systems
Are not known to occur

## Mechanical mounting

Mounting position
Any

Mounting location
Ballasts are designed for installation in luminaires or comparable devices.
Independent ballasts do not need to be installed in a casing.

Fastening $\quad$ Preferably using screws $\varnothing 4 \mathrm{~mm}$

Maximum temperatures
The stipulated winding temperature (tw 130, tw 140 and tw 150, respectively) must not be exceeded during normal operation. The corresponding maximum values $\left(232{ }^{\circ} \mathrm{C}, 248^{\circ} \mathrm{C}\right.$ and $264^{\circ} \mathrm{C}$, respectively) must be observed during anomalous operation. These values must be checked by measuring resistance during operation.

## Temperature increase

The lamp current flowing through the ballast generates a power loss that leads to an increase in winding temperature. The $\Delta t$ values for normal and abnormal operation provide
a measure of this temperature increase. The $\Delta t$ values are ascertained using standardised connections for measurement and are provided on the ballast type plate in Kelvin.

Example: $\Delta t=55 \mathrm{~K} / 140 \mathrm{~K}$ :
The first $\Delta t$ value indicates the temperature increase for normal operation at the lamp's operating current. The second value, 140 K in this case, denotes the temperature increase of the winding that results from the current that flows when the lamp's discharge path is short-circuited. The current that flows in this state is the preheat current through the lamp's electrodes.

## Electromagnetic compatibility (EMC)

Interference Interference voltage measurements have to be taken at the connection terminals for luminaires with magnetic ballasts as these are systems that operate with lamp voltages of under 100 Hz . These low-frequency interference voltages are generally not critical with magnetic ballasts.

Interference immunity
Thanks to the robust design and choice of materials, magnetic ballasts provide a high degree of interference immunity and are not impaired by admissible mains power interference.

## Mains Harmonics

After every zero crossing of the lamp current, fluorescent lamps experience a re-ignition peak as the lamps go out for a brief (imperceptible) moment. These re-ignition peaks generate mains harmonics that are smoothed by the ballast's impedance. The right design, i.e. determining the operating point of the magnetic ballast, ensures mains harmonics are limited to the maximum values permitted by EN 61000-3-2. VS electromagnetic ballasts all comply with the stipulated maximum values.

## Technical Details - Components for Fluorescent Lamps

## Selection of automatic cut-outs for VS electromagnetic ballasts

Dimensioning automatic cut-outs
When a ballast is switched on, high transient current peaks occur due to parasite capacitances that can accumulate with the number of luminaires. These high system switch-on currents put a strain on the automatic conductor cut-outs. For this reason, only surge-current-proof automatic cut-outs should be used for lighting systems.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B and C characteristics.

No. of ballasts The following values are meant as guidelines only and may vary depending on the respective lighting system. The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by $20 \%$ for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m of [ $2.5 \mathrm{~m}^{2}$ ] conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of ballasts by $10 \%$. The values quoted in the following tables are guidelines and can be affected by systemspecific factors.

Possible number of ballasts connected to automatic cut-outs for compact fluorescent lamps (single lamp operation)

| Lamp output <br> W | $10 \mathrm{~A}(\mathrm{~B})$ | $16 \mathrm{~A}(\mathrm{~B})$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Inductive | Parallel compensation | Inductive | Parallel compensation |
| $5 / 7 / 8 / 9 / 10 / 11 / 13$ | 50 | 90 | 80 | 130 |
| $18($ TC-L $)$ | 27 | 32 | 43 | 51 |
| $18($ TC-D $)$ | 40 | 65 | 65 | 110 |
| 24 | 25 | 32 | 40 | 51 |
| 26 | 27 | 32 | 43 | 51 |
| 36 | 23 | 32 | 37 | 51 |

Possible number of ballasts connected to automatic cut-outs for tubular and U-shaped fluorescent lamps (single lamp operation)

| Lamp output <br> W | $10 \mathrm{~A}(\mathrm{~B})$ | $16 \mathrm{~A}(\mathrm{~B})$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Inductive | Parallel compensation | Inductive | Parallel compensation |
| $4 / 6 / 8 / 10$ | 50 | 90 | 80 | 130 |
| 13 | 45 | 80 | 70 | 115 |
| $15 / 18 / 20$ | 27 | 32 | 43 | 51 |
| $30 / 36 / 38 / 40$ | 23 | 32 | 37 | 51 |
| $58 / 65$ | 15 | 20 | 22 | 32 |
| 70 | 13 | 18 | 20 | 30 |

## Technical Details - Components for Fluorescent Lamps

## Reliability and service life

Provided the specified maximum values for the winding temperature are complied with, a service life of 10 years can be expected. Failure rate: $\leq 0.025 \% / 1,000$ hours

## Electrical installation

Connection terminals (combination terminals)

- Use copper (not stranded) wire
- Required diameter for push-in connection $0.5-1 \mathrm{~mm}^{2}$
- Stripped lead length 8 mm
- Required cross-section for IDC zone $0.5 \mathrm{~mm}^{2}$; max. $\varnothing 2 \mathrm{~mm}$ including Insulation, no wire stripping required; mounting requires a special tool

Push-in terminals The integrated terminals can only be used with rigid leads.
Rigid leads: $0.5-1.5 \mathrm{~mm}^{2}$. The stripped lead length totals 8 mm .
Wiring The wiring between the mains, ballasts and lamps must comply with the respective circuit diagram.

Circuit diagrams for the operation of fluorescent lamps with Vossloh-Schwabe electromagnetic ballasts


Inductive single circuit


Inductive tandem circuit


Parallel-compensated single circuit with
high-reactance transformer


Parallel-compensated single circuit


Parallel-compensated tandem circuit


Parallel-compensated tandem circuit with high-reactance transformer

## Connection terminals

In the interest of ensuring firm contacts and long component service life, Vossloh-Schwabe uses only top-quality materials for plastic or metal parts during the production of connection terminals. These quality features apply to both Vossloh-Schwabe's luminaire connection terminals as well as to the terminals fitted to ballasts and lampholders.

## Notes on connection terminals on electronic ballasts

Vossloh-Schwabe electronic ballasts are fitted with installation-friendly push-in connectors. In addition, many models for linear fluorescent lamps are also available with IDC terminals (for solid conductors $0.5 \mathrm{~mm}^{2}$ ) and supplementary push-in terminals (for solid conductors $0.5-1 \mathrm{~mm}^{2}$ ), stripped length $8-9 \mathrm{~mm}$. IDC terminals permit automated luminaire wiring and testing using the ALF system and are thus particularly efficient.

## Notes on connection terminals on electromagnetic ballasts

Standard issue Vossloh-Schwabe electromagnetic ballasts are fitted with installation-friendly IDC/push-in terminals (combination terminals) or push-in terminals. The terminals are designed for use with solid conductors with cross-sections of $0.5-1 \mathrm{~mm}^{2}$ (combination terminals) or up to $1.5 \mathrm{~mm}^{2}$ (push-in terminals) and are approved for current loads of up to 6 A (combination terminal) and 16 A (push-in terminal). The lead stripping length totals 7-9 mm for push-in terminals; leads do not need to be stripped for IDC terminals. On request, many ballasts can also be provided with screw terminals (current load up to 16 A) for conductor cross-sections of 0.5 to $2.5 \mathrm{~mm}^{2}$.

## Notes on connection terminals on lampholders

Vossloh-Schwabe usually equips lampholders for T and TC lamps as well as starter lampholders with installation-friendly push-in terminals for solid conductors of $0.5-1 \mathrm{~mm}^{2}$. Most lampholders are fitted with twin push-in terminals and thus permit through-wiring. The required lead stripping length amounts to $8-9 \mathrm{~mm}$ for all types.

## IDC terminals

In order to fully exploit the vast potential for rationalisation offered by automated wiring and testing with the ALF system, a totally new component family was developed that is equipped with the VDE-tested IDC terminal technology. This technology has already been used very successfully on a large scale in other branches of industry. This connection technology dispenses with the stripping of conductors that is required for the push-in, screw or crimping methods. The tried-and-tested IDC terminal technology has created the foundation for efficient automation as it ensures both high connection quality and rapid contacting. Components equipped in this fashion make it possible to through-wire several terminals with a single conductor. This constitutes a further economic advantage as it significantly reduces the required conductor lengths. Furthermore, this design principle makes it possible to use adapters to simply and reliably make electrical contact from above for a VDE-compatible final luminaire inspection.

## ALF connection

Height: 12 mm
Release by fwisitng and pulling the conductor at the same time


1. Insert release tool above the conductor
2. Pull out the conductor


Stripping the conductor for push-in terminal $0.5-1 \mathrm{~mm}^{2}$ : $8-9$ mm


IDC/Push-in terminal for electromagnetic ballasts


Stripping the conductor for push-in terminal 0.5-1 $\mathrm{mm}^{2}$ : $7-9 \mathrm{~mm}$


## Technical Details - Components for Fluorescent Lamps

## Lampholders for Fluorescent Lamps

## Lampholders for compact fluorescent lamps

Vossloh-Schwabe produces the majority of lampholders for TC lamps using PBT, a thermoplastic material. This highly heat-resistant material is responsible for the T 140 temperature rating. Leading lamp manufacturers also use PBT for the lamp bases they produce. This material harmonisation in conjunction with fatigue-free, stainless steel lamp mounting springs ensures a permanently secure lamp fit.

## Lampholders for double-ended fluorescent lamps

VS lampholders for T lamps are characterised by a number of technical features that guarantee a high degree of reliability and safety. The heat-resistant PBT rotor with which most VS lampholders are fitted is a recognised trademark. In addition to the lampholders with the field-tested large rotor, VS also provides a new generation of lampholders featuring innovative "Rotoclic" rotor technology. This new VS technology constitutes a further milestone in the development of highly heat-resistant rotor systems.

Among the special features of this new technology is a T 140 temperature rating thanks to a front plate made entirely of PBT as well as a clearly audible click when the lamp is inserted or replaced. As a result, the motion of turning the lamp from "replacement" to "operating" position is aided acoustically.

In addition to this, VS produces a further series of lampholders with a rotor-like function, whose front plates are also made of highly heat-resistant PBT and have similarly been given a T 140 temperature rating.

The maximum permissible temperature at the back of all lampholders is $T_{m} 110^{\circ} \mathrm{C}$. Another key feature common to all VS lampholders is a highly effective support for the lamp pin that reliably prevents any base pin deflection, even with older lamps, and guarantees a durable and firm contact.

## Push-through lampholders

Push-through lampholders are inserted from below through a cut-out in the luminaire casing and are secured by lateral catches. This type of lampholder is frequently used in luminaires on which the lampholder remains visible from the outside, e.g. in so-called strip lighting. The electrical leads are laid beneath the sheet metal level. Luminaire directive EN 60598-1 Para. 8.2 must be observed with regard to the luminaire.

## Push-fit lampholders

This lampholder type, which is frequently found in surface-mounted ceiling and built-in luminaires, is pushed into the luminaire casing from above. The lampholder foot should protrude by no more than 4 mm to match the usual height of the spacing cams in the luminaire casing. These lampholders are mostly wired above the luminaire casing to the side of the lampholder. However, there are also lampholders on which the wiring runs through the lampholder foot, with the leads laid beneath the luminaire casing.

## Built-in lampholders

This design is also predominantly used for recessed ceiling and surface-mounted luminaires. However, unlike push-fit lampholders, built-in lampholders are usually fitted at the ends of the luminaire boxes. In addition to the usual fixing with split pins attached to the rear, there are also countless versions with fixing clips, push-fit studs or screw-in holes, which are also available with spring-loaded length compensation. Built-in lampholders offer luminaire designers a wealth of scope regarding the choice of lamp position in relation to the reflector. This enables great variation in light distribution as the lampholder does not dictate the distance of the centre of the lamp from the metal casing.

## Surface-mounted lampholders

The fastening system of surface-mounted lampholders usually consists of screws or rivets above a fixing level, along which the wiring is also laid. As this type of installation is usually too costly nowadays for large unit numbers, these lampholders are used almost exclusively for special applications, e.g. displays or illuminated advertisements.

VS lampholders for the UL market and UL approved leads are available for all common lamp types. Further information can be found at www.unvlt.com.


Push-through lampholder


Push-fit lampholder


## Built-in lampholder



## Surface-mounted

 lampholder

## Lamp Table - Fluorescent Lamps

| Lamp type/lamp base | Base | Output (W) | Max. length (C) acc. to IEC |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | G24q-1 | $\begin{aligned} & 10 \\ & 13 \end{aligned}$ | $\begin{array}{r} 95 \\ 130 \end{array}$ |  |  |  |
|  | G24q-2 | 18 | 140 |  |  |  |
|  | G24q-3 | 26 | 160 |  |  |  |
|  | GX24 ${ }^{-1}$ | 13 | 90 |  |  |  |
|  | GX24q-2 | 18 | 110 |  |  |  |
|  | GX24q-3 | $\begin{aligned} & 26 \\ & 32 \end{aligned}$ | $\begin{aligned} & 130 \\ & 145 \end{aligned}$ |  |  |  |
|  | GX24q-4 | 42 | 155 |  |  |  |
|  | GX24q-5 | 57 | 191 |  |  |  |
|  | GX24q-6 | 70 | 219 |  |  |  |
| $\square_{c}^{T C \cdot D}$ | G24d-1 | $\begin{array}{r} 8 \\ 10 \\ 13 \end{array}$ | $73 *$95130 |  |  |  |
|  | G24d-2 | 18 | 140 |  |  |  |
|  | G24d-3 | 26 | 160 |  |  |  |
| TC.T EX24d-1 | GX24d-1 | 13 | 90 |  |  |  |
|  | GX24d-2 | 18 | 110 |  |  |  |
| $\cdots$ c- | GX24d-3 | 26 | 130 |  |  |  |
| $\stackrel{\text { TC-S }}{\square}$ | G23 | $\begin{gathered} 5 \\ 7 \\ 9 \\ 11 \\ \hline \end{gathered}$ | 85115145215 |  |  |  |
|  | 2G7 | $\begin{array}{r} 5 \\ 7 \\ 9 \\ 11 \\ \hline \end{array}$ | 85115145215 |  |  |  |
|  | 2G8-1 | 60 85 120 | $\begin{aligned} & 167 \\ & 208 \\ & 285 \end{aligned}$ |  |  |  |
| TC-TEL GR14q-1 |  |  | A | B | C | D |
|  | GR14 ${ }^{-1}$ | $\begin{aligned} & 14 \\ & 17 \end{aligned}$ | $\begin{array}{r} 99.7 \\ 121.7 \end{array}$ | $\begin{aligned} & 120 \\ & 142 \end{aligned}$ | $\begin{array}{\|l} 126.6 \\ 148.6 \end{array}$ | $\begin{aligned} & 41^{*} \\ & 41^{*} \end{aligned}$ |
| TC-DD |  |  | A | B |  |  |
|  | GR8 | $\begin{aligned} & 16 \\ & 28 \end{aligned}$ | $\begin{aligned} & 138 \\ & 205 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 141 \\ 207 \\ \hline \end{array}$ |  |  |
|  | GR10q | $\begin{aligned} & 10 \\ & 16 \\ & 21 \\ & 28 \\ & 38 \end{aligned}$ | 92 138 138 205 205 | 95 141 141 207 207 |  |  |
|  | GRY10q-3 | 55 | 205 | 205* |  |  |
|  | GRZ10d | 18 | 137 | 141* |  |  |
|  | GRZ10† | 30 | 202 | 206* |  |  |
|  | 2G10 | $\begin{aligned} & 18 \\ & 24 \\ & 36 \end{aligned}$ | $\begin{aligned} & 122 \\ & 165 \\ & 217 \end{aligned}$ |  |  |  |
|  | 2G11 | $\begin{aligned} & 18 \\ & 24 \\ & 34 \\ & 36 \\ & 40 \\ & 55 \\ & 80 \\ & \hline \end{aligned}$ | $\begin{aligned} & 225 \\ & 320 \\ & 533 * \\ & 415 \\ & 535 \\ & 535 \\ & 565 \end{aligned}$ |  |  |  |

* not included in IEC standard (non-committal specifications)


## Lamp Table - Fluorescent Lamps



## Lamp Table - Fluorescent Lamps

| Lamp type/lamp base | Base | Output (W) | $\varnothing$ D (mm) | A (mm) |
| :---: | :---: | :---: | :---: | :---: |
|  | 2GX13 | $\begin{aligned} & 22 \\ & 40 \\ & 55 \\ & 60 \end{aligned}$ | $\begin{aligned} & \hline 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$ | $\begin{aligned} & 230.0 \\ & 305.0 \\ & 305.0 \\ & 379.0 \end{aligned}$ |
|  | G10q | $\begin{aligned} & 22 \\ & 32 \\ & 40 \\ & 60 \end{aligned}$ | $\begin{aligned} & 29 \\ & 29 \\ & 29 \\ & 30 \end{aligned}$ | $\begin{aligned} & 215.9 \\ & 304.8 \\ & 406.4 \\ & 408.8^{*} \end{aligned}$ |
|  | 2G13-92 | $\begin{aligned} & 18 \\ & 36 \\ & 58 \end{aligned}$ | $\begin{aligned} & 26 \\ & 26 \\ & 26 \end{aligned}$ | $\begin{aligned} & 304^{*} \\ & 566,601^{*} \\ & 566,759^{*} \end{aligned}$ |
|  |  |  |  | * Not yet included in IEC standard (non-committal specifications) |

Tube lengths of plastic and glass protective tube

| $\varnothing D(\mathrm{~mm})$ | Length $\mathrm{L}(\mathrm{mm})$ |
| :--- | :--- |
| $38^{ \pm 0.5}$ | $\mathrm{~L}=\mathrm{A}-2 \mathrm{O}^{ \pm 1}$ |
| $50^{ \pm 0.8}$ | $\mathrm{~L}=\mathrm{A}-30^{ \pm 1}$ |



## Key to lamp designations

| TC-S | Tube Compact-Single |
| :--- | :--- |
| TC-SEL | Tube Compact-Single Electronic |
| TC-D | Tube Compact-Double |
| TC-DEL | Tube Compact-Double Electronic |
| TC-T | Tube Compact-Triple |
| TC-TEL | Tube Compact-Triple Electronic |
| TC-Q | Tube Compact-Quad |
| TC-QEL | Tube Compact-Quad Electronic |
| TC-DD | Tube Compact-Double D-Shape |
| TC-L | Tube Compact-Long |
| TC-F | Tube Compact-Flat |
| T2 (T7) | Tube $\varnothing 2 / 8^{\prime \prime}(7 \mathrm{~mm})$ |
| T5 (T16) | Tube $\varnothing 5 / 8^{\prime \prime}(16 \mathrm{~mm})$ |
| T8 (T26) | Tube $\varnothing 8 / 8^{\prime \prime}(26 \mathrm{~mm})$ |
| T12 (T38) | Tube $\varnothing 12 / 8^{\prime \prime}(38 \mathrm{~mm})$ |
| T-U | Tube, U -Shape |
| T-R | Tube, Ring-Shape |
| T-R5 (T-R16) | Tube, Ring-Shape $\varnothing 5 / 8 "(16 \mathrm{~mm})$ |

## Technical Details - Components for Fluorescent Lamps

## Energy efficiency classification

Together with the amendments in Commission Regulation (EU) 2015/1428 dated 25. August 2015, Commission Regulation (EU) 245/2009 dated 18. March 2009 implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to defining ecodesign requirements for fluorescent lamps without integrated ballast, high-pressure discharge lamps and for ballasts and luminaires needed for their operation, and repealing Directive 2000/55/EC of the European Parliament and of the Council (official title), has created a legal framework in the EU that defines fundamental requirements for operating efficient lighting technology products.

Although the Regulation predominantly applies to general lighting, it is also product-orientated and thus independent of any specific application. The efficiency and performance requirements (specifications governing performance features) apply to fluorescent lamps without integrated ballast, high-pressure discharge lamps as well as ballasts and luminaires needed to operate these lamps.

## Technical Details - Components for Fluorescent Lamps

## Energy efficiency classification

The following table taken from Regulation 245/2009/EC provides an overview of (1st- and 2nd-stage) ballast requirements, ordered according to efficiency values:

| Lamp data |  |  |  |  | Ballast efficiency (Plamp/PInput) (non-dimmable ballasts) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Nominal output W | ILCOS-Code | Typical rating |  |  |  |  |  |  |
|  |  |  | $\begin{aligned} & 50 \mathrm{~Hz} \\ & \mathrm{~W} \end{aligned}$ | $\left\lvert\, \begin{aligned} & \mathrm{HF} \\ & \mathrm{~W} \end{aligned}\right.$ | A2 BAT $\%$ | $\begin{aligned} & \text { A2 } \\ & \% \end{aligned}$ | $\begin{aligned} & \text { A3 } \\ & \% \end{aligned}$ | $\begin{aligned} & \mathrm{B} 1 \\ & \% \end{aligned}$ | $\begin{aligned} & \text { B2 } \\ & \% \end{aligned}$ |
| T8 | 15 | FD-1 5-E-G1 3-26/450 | 15 | 13.5 | 87.8 | 84.4 | 75.0 | 67.9 | 62.0 |
|  | 18 | FD-1 8-E-G1 3-26/600 | 18 | 16 | 87.7 | 84.2 | 76.2 | 71.3 | 65.8 |
|  | 30 | FD-30-E-G1 3-26/900 | 30 | 24 | 82.1 | 77.4 | 72.7 | 79.2 | 75.0 |
|  | 36 | FD-36-E-G 13-26/1200 | 36 | 32 | 91.4 | 88.9 | 84.2 | 83.4 | 79.5 |
|  | 38 | FD-38-E-G 1 3-26/1050 | 38.5 | 32 | 87.7 | 84.2 | 80.0 | 84.1 | 80.4 |
|  | 58 | FD-58-E-G13-26/1500 | 58 | 50 | 93.0 | 90.9 | 84.7 | 86.1 | 82.2 |
|  | 70 | FD-70-E-G13-26/1800 | 69.5 | 60 | 90.9 | 88.2 | 83.3 | 86.3 | 83.1 |
| $\overline{T C-L}$ | 18 | FSD-18-E-2G11 | 18 | 16 | 87.7 | 84.2 | 76.2 | 71.3 | 65.8 |
|  | 24 | FSD-24-E-2G1 1 | 24 | 22 | 90.7 | 88.0 | 81.5 | 76.0 | 71.3 |
|  | 36 | FSD-36-E-2G1 1 | 36 | 32 | 91.4 | 88.9 | 84.2 | 83.4 | 79.5 |
| $\overline{\text { TC-F }}$ | 18 | FSS-18-E-2G10 | 18 | 16 | 87.7 | 84.2 | 76.2 | 71.3 | 65.8 |
|  | 24 | FSS-24-E-2G10 | 24 | 22 | 90.7 | 88.0 | 81.5 | 76.0 | 71.3 |
|  | 36 | FSS-36-E-2G10 | 36 | 32 | 91.4 | 88.9 | 84.2 | 83.4 | 79.5 |
| $\overline{T C-D / ~}$ | 10 | $\begin{aligned} & \text { FSQ-10-E-G24q=1 } \\ & \text { FSQ-10--G24d=1 } \end{aligned}$ | 10 | 9.5 | 89.4 | 86.4 | 73.1 | 67.9 | 59.4 |
| TC-DE | 13 | $\begin{aligned} & \text { FSQ-1 3-E-G24q=1 } \\ & \text { FSQ-13--G24d=1 } \end{aligned}$ | 13 | 12.5 | 91.7 | 89.3 | 78.1 | 72.6 | 65.0 |
|  | 18 | $\begin{aligned} & \text { FSQ-18-E-G24q=2 } \\ & \text { FSQ-18-l-G24d=2 } \end{aligned}$ | 18 | 16.5 | 89.8 | 86.8 | 78.6 | 71.3 | 65.8 |
|  | 26 | $\begin{aligned} & \text { FSQ-26-E-G24q=3 } \\ & \text { FSQ-26-IG24d=3 } \end{aligned}$ | 26 | 24 | 91.4 | 88.9 | 82.8 | 77.2 | 72.6 |
| TC-T/ | 13 | $\begin{aligned} & \text { FSM-1 3-E-GX24q=1 } \\ & \text { FSM-1 } 3--G X 24 d=1 \end{aligned}$ | 13 | 12.5 | 91.7 | 89.3 | 78.1 | 72.6 | 65.0 |
| $\overline{T C-T E ~}$ | 18 | FSM-18-E-GX24q=2 FSM-18--GX24d=2 | 18 | 16.5 | 89.8 | 86.8 | 78.6 | 71.3 | 65.8 |
|  | 26 | $\begin{aligned} & \text { FSM-26-E-GX24q=3 } \\ & \text { FSM-26-IGX24d=3 } \end{aligned}$ | 26.5 | 24 | 91.4 | 88.9 | 82.8 | 77.5 | 73.0 |
| TC-DD/ | 10 | $\begin{aligned} & \text { FSS-10-E-GR10q } \\ & \text { FSS-10-L/P/H-GR10q } \end{aligned}$ | 10.5 | 9.5 | 86.4 | 82.6 | 70.4 | 68.8 | 60.5 |
| TC-DDE | 16 | FSS-16-E-GR 10q FSS-16--GR10q FSS-10-L/P/H-GR10q | 16 | 15 | 87.0 | 83.3 | 75.0 | 72.4 | 66.1 |
|  | 21 | $\begin{aligned} & \text { FSS-2 1-E-GR10q } \\ & \text { FSS-2 1-GR10q } \\ & \text { FSS-2 1-L/P/H-GR10q } \end{aligned}$ | 21 | 19 | 89.4 | 86.4 | 79.2 | 73.9 | 68.8 |
|  | 28 | $\begin{aligned} & \text { FSS-28-E-GR10q } \\ & \text { FSS-28-IGR10q } \\ & \text { FSS-28-L/P/L-GR10q } \end{aligned}$ | 28 | 26 | 89.7 | 86.7 | 81.3 | 78.2 | 73.9 |
|  | 38 | $\begin{aligned} & \text { FSS-38-E-GR10q } \\ & \text { FSS-38-L/P/L-GR10q } \end{aligned}$ | 38.5 | 36 | 92.3 | 90.0 | 85.7 | 84.1 | 80.4 |
| $\overline{\mathrm{TC}}$ | 5 | FSD-5-HG23 FSD-5-E-2G7 | 5.4 | 5 | 72.7 | 66.7 | 58.8 | 49.3 | 41.4 |
|  | 7 | FSD-7--G23 FSD-7-E-2G7 | 7.1 | 6.5 | 77.6 | 72.2 | 65.0 | 55.7 | 47.8 |
|  | 9 | FSD-9--G23 FSD-9-E-2G7 | 8.7 | 8 | 78.0 | 72.7 | 66.7 | 60.3 | 52.6 |
|  | 11 | FSD-1 1--G23 FSD-1 1-E-2G7 | 11.8 | 11 | 83.0 | 78.6 | 73.3 | 66.7 | 59.6 |
| T5 | 4 | FD-4-E-G5-16/150 | 4.5 | 3.6 | 64.9 | 58.1 | 50.0 | 45.0 | 37.2 |
|  | 6 | FD-6-E-G5-16/225 | 6 | 5.4 | 71.3 | 65.1 | 58.1 | 51.8 | 43.8 |
|  | 8 | FD-8-E-G5-16/300 | 7.1 | 7.5 | 69.9 | 63.6 | 58.6 | 48.9 | 42.7 |
|  | 13 | FD-1 3-E-G5-16/525 | 13 | 12.8 | 84.2 | 80.0 | 75.3 | 72.6 | 65.0 |
| T9-C | 22 | FSC-22-E-G10q-29/200 | 22 | 19 | 89.4 | 86.4 | 79.2 | 74.6 | 69.7 |
|  | 32 | FSC-32-E-G10q-29/300 | 32 | 30 | 88.9 | 85.7 | 81.1 | 80.0 | 76.0 |
|  | 40 | FSC-40-E-G10q-29/400 | 40 | 32 | 89.5 | 86.5 | 82.1 | 82.6 | 79.2 |

## Lamp types

$\square \square \square^{8}$

## 18



## TC-L



## TC-F



## TC-D/TC-DE



TC-T/TC-TE


TC-DD/TC-DDE


TC
$\square \square \square$
T5

## Technical Details - Components for Fluorescent Lamps

| Lamp data |  |  |  |  | Ballast efficiency (Plamp/PInput) (non-dimmable ballasts) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Nominal | ILCOS-Code | Typical rating$\begin{array}{l\|l} 50 \mathrm{~Hz} & \mathrm{HF} \\ \mathrm{~W} & \mathrm{~W} \\ \hline \end{array}$ |  |  |  |  |  |  |
|  | output <br> W |  |  |  | $\begin{aligned} & \text { A2 BAT } \\ & \% \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { A2 } \\ & \% \end{aligned}$ | $\begin{aligned} & \text { A3 } \\ & \% \end{aligned}$ | $\begin{aligned} & \mathrm{B} 1 \\ & \% \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{B} 2 \\ & \% \end{aligned}$ |
| T2 | 6 | FDH-6-L/P-W4.3x8.5d-7/220 |  | 5 | 72.7 | 66.7 | 58.8 | - | - |
|  | 8 | FDH-8-L/P-W4.3×8.5d-7/320 |  | 7.8 | 76.5 | 70.9 | 65.0 | - | - |
|  | 11 | FDH-1 1-L/P-W4.3x8.5d-7/420 |  | 10.8 | 81.8 | 77.1 | 72.0 | - | - |
|  | 13 | FDH-13-L/P-W4.3x8.5d-7/520 |  | 13.3 | 84.7 | 80.6 | 76.0 | - | - |
|  | 21 | FDH-2 1-L/P-W4.3x8.5d-7 |  | 21 | 88.9 | 85.7 | 79.2 | - | - |
|  | 23 | FDH-23-L/P-W4.3x8.5d-7 |  | 23 | 89.8 | 86.8 | 80.7 | - | - |
| $\overline{\text { T5-E }}$ | 14 | FDH-14-L/P-G5-16/550 |  | 13.7 | 84.7 | 80.6 | 72.1 | - | - |
|  | 21 | FDH-21-L/P-G5-16/850 |  | 20.7 | 89.3 | 86.3 | 79.6 | - | - |
|  | 24 | FDH-24-L/P-G5-16/550 |  | 22.5 | 89.6 | 86.5 | 80.4 | - | - |
|  | 28 | FDH-28-L/P-G5-16/1150 |  | 27.8 | 89.8 | 86.9 | 81.8 | - | - |
|  | 35 | FDH-35-L/P-G5-16/1450 |  | 34.7 | 91.5 | 89.0 | 82.6 | - | - |
|  | 39 | FDH-39-L/P-G5-16/850 |  | 38 | 91.0 | 88.4 | 82.6 | - | - |
|  | 49 | FDH-49-L/P-G5-16/1450 |  | 49.3 | 91.6 | 89.2 | 84.6 | - | - |
|  | 54 | FDH-54-L/P-G5-16/1150 |  | 53.8 | 92.0 | 89.7 | 85.4 | - | - |
|  | 80 | FDH-80-L/P-G5-16/1150 |  | 80 | 93.0 | 90.9 | 87.0 | - | - |
|  | 95 | FDH-95-L/P-G5-16/1150 |  | 95 | 92.7 | 90.5 | 84.1 | - | - |
|  | 120 | FDH-120-L/P-G5-16/1450 |  | 120 | 92.5 | 90.2 | 84.5 | - | - |
| T5-C | 22 | FSCH-22-L/P-2GX13-16/225 |  | 22.3 | 88.1 | 84.8 | 78.8 | - | - |
|  | 40 | FSCH-40-L/P-2GX13-16/300 |  | 39.9 | 91.4 | 88.9 | 83.3 | - | - |
|  | 55 | FSCH-55-L/P-2GX13-16/300 |  | 55 | 92.4 | 90.2 | 84.6 | - | - |
|  | 60 | FSCH-60-L/P-2GX13-16/375 |  | 60 | 93.0 | 90.9 | 85.7 | - | - |
| $\overline{\text { TC-LE }}$ | 40 | FSDH-40-L/P-2G11 |  | 40 | 91.4 | 88.9 | 83.3 | - | - |
|  | 55 | FSDH-55-L/P-2G 11 |  | 55 | 92.4 | 90.2 | 84.6 | - | - |
|  | 80 | FSDH-80-L/P-2G 11 |  | 80 | 93.0 | 90.9 | 87.0 | - | - |
| $\overline{\text { TC-TE }}$ | 32 | FSMH-32-L/P-GX24q=3 |  | 32 | 91.4 | 88.9 | 82.1 | - | - |
|  | 42 | FSMH-42-L/P-GX24q=4 |  | 43 | 93.5 | 91.5 | 86.0 | - | - |
|  | 57 | $\begin{aligned} & \text { FSM6H-57-L/P-GX24q=5 } \\ & \text { FSM8H-57-L/P-GX24q=5 } \end{aligned}$ |  | 56 | 91.4 | 88.9 | 83.6 | - | - |
|  | 70 | $\begin{aligned} & \text { FSM6H-7O-L/P-GX24q=6 } \\ & \text { FSM8H-7O-L/P-GX24q=6 } \end{aligned}$ |  | 70 | 93.0 | 90.9 | 85.4 | - | - |
|  | 60 | FSM6H-60-L/P-2G8=1 |  | 63 | 92.3 | 90.0 | 84.0 | - | - |
|  | 62 | FSM8H-62-L/P-2G8=2 |  | 62 | 92.2 | 89.9 | 83.8 | - | - |
|  | 82 | FSM8H-82-L/P-2G8=2 |  | 82 | 92.4 | 90.1 | 83.7 | - | - |
|  | 85 | FSM6H-85-L/P-2G8=1 |  | 87 | 92.8 | 90.6 | 84.5 | - | - |
|  | 120 | $\begin{aligned} & \text { FSMOH-12O-L/P-2G8 }=1 \\ & \text { FSM8H-120-L/P-2G8 }=1 \end{aligned}$ |  | 122 | 92.6 | 90.4 | 84.7 | - | - |
| TC-DD | 55 | FSSH-55-L/P-GR10q |  | 55 | 92.4 | 90.2 | 84.6 | - | - |

At the very latest, the following energy efficiency formula for ballasts will be introduced to coincide with the 3rd stage:

```
If Plamp }\leq5\textrm{W
EBbFL = 0.71
If 5W < Plamp < 100 W BbFl = Plamp/(2*sqrt (PLamp/36)+38/36*PLamp + 1)
If PLamp }\geq100\textrm{W}\quadEBbFL=0.9
```

The following limiting values must be observed:

| $\eta$ Ballast | Energy efficiency classes |
| :--- | :--- |
| $\geq$ EBbFL | A2 and A1BAT |
| $\geq 1-0.75 *(1-E B b F L)$ | A2 BAT |

The graph illustrates the difference between Classes A2, A1 BAT and A2 BAT
(BAT = best available technology)


## T9-C

$\square \square \square^{2}$
T2
$\square \square \square$

## T5-E



## T5-C



## TC-LE



TC-TE


## TC-DD

$\qquad$


## SYSTEMOPTIMISING COMPENSATION



## PARALLEL CAPACITORS

Capacitors are designed to compensate inductive reactive current of discharge lamps in $50 / 60 \mathrm{~Hz}$ networks when operated with electromagnetic ballasts. As required by utility companies, capacitors serve to compensate the reactive current generated by the respective ballast. A power factor of $\lambda \geq 0.9$ is achieved.

In addition, capacitors can also be used to compensate or generate phase displacements. Careful selection of the raw materials as well as special thermal treatment of the capacitor coil guarantee a long servicelife and stable capacitance.

## Parallel capacitors

Technical details for parallel capacitors
General technical details
348-356
Glossary
357-359

## Parallel Connected <br> Capacitors with <br> Break-action <br> Mechanism

Capacitors type B

Casing: aluminium
Filling material: based on vegetable oil
Fastening: male nipple
with nut and washer included
Discharge resistance
Overpressure protection
On request further capacities or connectors

A Push-in twin terminals $0.5-1 \mathrm{~mm}^{2}$


B Double spade connector $6.3 \times 0.8$ acc. to IEC 61210


## Parallel Connected Capacitors with Break-action Mechanism

Capacitors type B

| Ref. No. | Capacity <br> $\mu \mathrm{F}$ | Temperature range ${ }^{\circ} \mathrm{C}$ | Drawing | $\begin{aligned} & \varnothing \text { (D) } \\ & \mathrm{mm} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Length (L) } \\ & \mathrm{mm} \\ & \hline \end{aligned}$ | Male nipple/ length (mm) | Weight <br> g | $\begin{aligned} & \text { Unit } \\ & \text { pcs. } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 250 V, 50/60 Hz |  |  |  |  |  |  |  |  |
| 536378 | 2.0 | -40 to 100 | A | 25 | 63 | M8x10 | 85 | 100 |
| 536379 | 4.0 | -40 to 100 | A | 25 | 63 | M8×10 | 80 | 100 |
| 536380 | 6.0 | -40 to 100 | A | 25 | 63 | M8×10 | 80 | 100 |
| 536381 | 8.0 | -40 to 100 | A | 25 | 63 | M8×10 | 85 | 100 |
| 551645 | 9.0 | -40 to 100 | A | 30 | 78 | M8×10 | 95 | 100 |
| 536382 | 10.0 | -40 to 100 | A | 30 | 78 | M8x 10 | 90 | 100 |
| 536383 | 12.0 | -40 to 100 | A | 30 | 78 | M $8 \times 10$ | 90 | 100 |
| 536384 | 13.0 | -40 to 100 | A | 30 | 78 | M8x 10 | 90 | 100 |
| 536385 | 16.0 | -40 to 100 | A | 35 | 78 | M8×10 | 90 | 81 |
| 536386 | 18.0 | -40 to 100 | A | 35 | 78 | M8x 10 | 90 | 81 |
| 536387 | 20.0 | -40 to 100 | A | 35 | 78 | M8×10 | 90 | 81 |
| 536388 | 25.0 | -40 to 100 | A | 40 | 78 | M8×10 | 100 | 64 |
| 536389 | 30.0 | -40 to 100 | A | 35 | 103 | M8×10 | 100 | 81 |
| 536390 | 32.0 | -40 to 100 | A | 35 | 103 | M8×10 | 120 | 81 |
| 536391 | 35.0 | -40 to 100 | A | 40 | 103 | M8×10 | 120 | 64 |
| 536392 | 40.0 | -40 to 100 | A | 40 | 103 | M8×10 | 120 | 64 |
| 536393 | 45.0 | -40 to 100 | A | 40 | 103 | M8×10 | 150 | 64 |
| 536394 | 50.0 | -40 to 100 | A | 45 | 103 | M8×10 | 150 | 49 |
| 536395 | 55.0 | -40 to 100 | A | 45 | 103 | M8×10 | 150 | 49 |
| 536396 | 60.0 | -40 to 100 | A | 45 | 103 | M8×10 | 200 | 49 |
| 380-450 V, 50/60 Hz |  |  |  |  |  |  |  |  |
| 536397 | 13.0 | -40 to 85 | A | 35 | 103 | M8×10 | 100 | 81 |
| 536398 | 18.0 | -40 to 85 | A | 40 | 103 | M8×10 | 120 | 64 |
| 536399 | 28.0 | -40 to 85 | A | 45 | 103 | M $8 \times 10$ | 150 | 49 |
| 536400 | 32.0 | -40 to 85 | A | 45 | 103 | M8×10 | 200 | 49 |
| 536401 | 37.0 | -40 to 85 | A | 50 | 103 | M12×12 | 200 | 36 |
| 536402 | 50.0 | -40 to 85 | A | 55 | 103 | M12x12 | 250 | 36 |
| 536403 | 55.0 | -40 to 85 | B | 50 | 128 | M12x12 | 250 | 36 |
| 536404 | 60.0 | -40 to 85 | B | 55 | 128 | M12x12 | 250 | 36 |
| 536405 | 85.0 | -40 to 85 | B | 60 | 138 | M12×12 | 300 | 36 |

## Parallel Connected Capacitors 250 V, 50/60 Hz

## Capacitors type A

Casing: plastics, white or aluminium
Fastening: male nipple
with nut and washer included
Discharge resistance
Optional: thermal cut-out,
European wide patent
On request with alternative capacities, connection terminals, mounting options, casing materials or with a thermal fuse as well as versions with IDC terminal for the automatic luminaire wiring


| Ref. No. | Capacity <br> HF | Temperature range <br> ${ }^{\circ} \mathrm{C}$ | $\varnothing(\mathrm{D})$ <br> mm | Length (L) <br> mm | Male nipple/ <br> length $(\mathrm{mm})$ | Push-in <br> twin terminals | Weight <br> g | Unit <br> pcs. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Plastic casing |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 500296 | 2.0 | -40 to 85 | 30 | 53 | M8x 10 | $0.5-1 \mathrm{~mm}^{2}$ | 22 | 530 |
| 500299 | 2.5 | -40 to 85 | 30 | 53 | M8x 10 | $0.5-1 \mathrm{~mm}^{2}$ | 22 | 530 |
| 500300 | 3.0 | -40 to 85 | 25 | 57 | M8×10 | $0.5-1 \mathrm{~mm}^{2}$ | 22 | 530 |
| 500301 | 3.5 | -40 to 85 | 30 | 53 | M8×10 | $0.5-1 \mathrm{~mm}^{2}$ | 22 | 530 |
| 500302 | 4.0 | -40 to 85 | 30 | 53 | M8x 10 | $0.5-1 \mathrm{~mm}^{2}$ | 22 | 450 |
| 500303 | 4.5 | -40 to 85 | 30 | 53 | M8x 10 | $0.5-1 \mathrm{~mm}^{2}$ | 22 | 450 |
| 500304 | 5.0 | -40 to 85 | 30 | 53 | M8x 10 | $0.5-1 \mathrm{~mm}^{2}$ | 22 | 450 |
| 500305 | 6.0 | -40 to 85 | 30 | 53 | M8×10 | $0.5-1 \mathrm{~mm}^{2}$ | 22 | 450 |
| 506495 | 7.0 | -40 to 85 | 30 | 53 | M8×10 | $0.5-1 \mathrm{~mm}^{2}$ | 22 | 320 |
| 502783 | 8.0 | -40 to 85 | 30 | 69 | M8×10 | $0.5-1 \mathrm{~mm}^{2}$ | 24 | 320 |
| 504351 | 9.0 | -40 to 85 | 30 | 69 | M8×10 | $0.5-1 \mathrm{~mm}^{2}$ | 32 | 320 |
| 508667 | 10.0 | -40 to 85 | 30 | 69 | M8×10 | $0.5-1 \mathrm{~mm}^{2}$ | 32 | 320 |
| 506366 | 12.0 | -40 to 85 | 30 | 78 | M8×10 | $0.5-1 \mathrm{~mm}^{2}$ | 32 | 260 |
| 508468 | 15.0 | -40 to 85 | 30 | 93 | M $8 \times 10$ | $0.5-1 \mathrm{~mm}^{2}$ | 36 | 260 |
| 508668 | 16.0 | -40 to 85 | 30 | 93 | M $8 \times 10$ | $0.5-1 \mathrm{~mm}^{2}$ | 32 | 260 |
| 500315 | 18.0 | -40 to 85 | 35 | 93 | M8×10 | $0.5-1.5 \mathrm{~mm}^{2}$ | 36 | 190 |
| 500316 | 20.0 | -40 to 85 | 35 | 93 | M $8 \times 10$ | $0.5-1.5 \mathrm{~mm}^{2}$ | 55 | 190 |
| 500317 | 25.0 | -40 to 85 | 35 | 93 | M8×10 | $0.5-1.5 \mathrm{~mm}^{2}$ | 66 | 80 |
| 500318 | 30.0 | -40 to 85 | 40 | 93 | M8×10 | $0.5-1.5 \mathrm{~mm}^{2}$ | 72 | 100 |

Aluminium casing

| $\mathbf{5 0 0 3 1 9}$ | 32.0 | -40 to 85 | 35 | 135 | $M 8 \times 10$ | $0.5-1.5 \mathrm{~mm}^{2}$ | 110 | 50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{5 0 0 3 2 0}$ | 35.0 | -40 to 85 | 40 | 139 | $M 8 \times 10$ | $0.5-1.5 \mathrm{~mm}^{2}$ | 127 | 36 |
| $\mathbf{5 0 0 3 2 1}$ | 40.0 | -40 to 85 | 40 | 139 | $M 8 \times 10$ | $0.5-1.5 \mathrm{~mm}^{2}$ | 127 | 36 |
| $\mathbf{5 3 6 4 0 6}$ | 45.0 | -40 to 85 | 40 | 103 | $M 8 \times 10$ | $0.5-1.5 \mathrm{~mm}^{2}$ | 120 | 36 |
| $\mathbf{5 0 0 3 2 2}$ | 50.0 | -40 to 85 | 45 | 103 | $M 8 \times 10$ | $0.5-1.5 \mathrm{~mm}^{2}$ | 150 | 32 |
| $\mathbf{5 0 0 3 2 3}$ | 55.0 | -40 to 85 | 45 | 135 | $M 8 \times 10$ | $0.5-1.5 \mathrm{~mm}^{2}$ | 159 | 32 |

## Parallel Connected Capacitors with Leads 250 V, 50/60 Hz

## Capacitors type A

Casing: plastics, white
Fastening: male nipple
with nut and washer included
Discharge resistance
Fixing centres: 20 mm
Optional: thermal cut-out,
European wide patent
On request with alternative capacities, connection terminals, mounting options, casing materials or with a thermal fuse as well as versions with IDC terminal for the automatic luminaire wiring



| Ref. No. | Capacity <br> $\mu \mathrm{F}$ | Temperature range <br> ${ }^{\circ} \mathrm{C}$ | $\varnothing(\mathrm{D})$ <br> mm | Length (L) <br> mm | Male nipple/ <br> length (mm) | Lead length <br> mm | Weight <br> g | Unit <br> pcs. |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Plastic casing |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{5 5 2 7 7 4}$ | 2.0 | -25 to 85 | 25 | 57 | $M 8 \times 10$ | 150 | 22 | 400 |  |  |
| $\mathbf{5 2 6 1 6 9}$ | 4.0 | -25 to 85 | 25 | 63 | $M 8 \times 10$ | 250 | 31 | 350 |  |  |
| $\mathbf{5 2 6 1 7 0}$ | 6.0 | -40 to 85 | 28 | 54 | $M 8 \times 10$ | 250 | 22 | 320 |  |  |
| $\mathbf{5 2 6 1 7 1}$ | 8.0 | -40 to 85 | 32 | 67 | $M 8 \times 10$ | 250 | 24 | 220 |  |  |
| $\mathbf{5 2 9 6 6 5}$ | 10.0 | -40 to 85 | 32 | 67 | $M 8 \times 10$ | 200 | 32 | 280 |  |  |
| $\mathbf{5 3 6 7 4 2}$ | 12.0 | -25 to 85 | 30 | 78 | $M 8 \times 10$ | 150 | 42 | 120 |  |  |
| $\mathbf{5 2 9 6 6 6}$ | 16.0 | -25 to 85 | 35 | 73 | $M 8 \times 10$ | 200 | 52 | 120 |  |  |
| $\mathbf{5 3 6 7 4 1}$ | 20.0 | -40 to 85 | 36 | 92 | $M 8 \times 10$ | 150 | 85 | 160 |  |  |
| $\mathbf{5 0 8 4 8 4}$ | 25.0 | -25 to 85 | 40 | 93 | $M 8 \times 10$ | 250 | 89 | 80 |  |  |
| $\mathbf{5 3 6 7 4 3}$ | 30.0 | -25 to 85 | 40 | 93 | $M 8 \times 10$ | 150 | 108 | 80 |  |  |
| $\mathbf{5 2 8 5 5 4}$ | 35.0 | -25 to 85 | 45 | 94 | $M 8 \times 10$ | 250 | 173 | 60 |  |  |
| $\mathbf{5 3 6 8 1 3}$ | 40.0 | -25 to 85 | 45 | 94 | $M 8 \times 10$ | 400 | 166 | 60 |  |  |
| $\mathbf{5 2 8 5 5 5}$ | 45.0 | -25 to 85 | 50 | 94 | $M 8 \times 10$ | 250 | 167 | 50 |  |  |

## Technical Details

## 4 Capacitors for Fluorescent and Discharge Lamps

Idle current compensation ..... 243
Parallel compensation ..... 244
MPP capacitor technology ..... 244-246
Assembly instructions - Capacitors ..... 247-248
Capacitor tables ..... 249-250
General technical details ..... 348-356
Glossary ..... 357-359

## Compensation of idle current

When using magnetic ballasts a phase shift occurs between the mains voltage and the current drawn. This phase shift is expressed by the power factor $\lambda$, which generally ranges between a value of 0.3 and 0.7 with inductive circuits.

As a result of this phase shift, idle current, which does not boost the efficiency of the lighting unit, is also taken up from the power supply network in addition to real power. Power utility companies therefore require an increase of the power factor to values of over 0.85 for systems exceeding a certain rating (usually upwards of 250 W per external conductor).

Compensation capacitors are used to counteract idle current (by increasing the power factor) and can be connected either in parallel or in series.

Thanks to a power factor of approx. 0.95, electronic ballasts do not need to be operated with compensation capacitors.

## Compensation using series capacitors

Series compensation employs a so-called dual circuit (two fluorescent lamp circuits connected in parallel), whereby the capacitor, which is connected in a branch of the circuit, over compensates the inductive idle current to such an extent that it covers the idle current of both ballasts. This type of circuit is only used with fluorescent lamps. As series capacitors are dimensioned for nominal-voltage and ballast tolerances, the lamp in the capacitor branch of the dual circuit operates with a higher current and thus also with a higher rating. Apart from differences in lamp brightness, the power loss in the circuit branch with the capacitor will also be greater.

An advantage of the dual circuit is that it prevents the radiated light from flickering.

The higher current in the so-called capacitive lamp circuit causes an up to $14 \%$ increase in lamp rating and a reduction of the lamp service life by as much as $20 \%$. This goes hand in hand with substantial technical, ecological and economic disadvantages.

Series capacitors have to meet very high technical requirements to suit various aspects like temperature, nominal voltage, tolerances of the capacitance values, etc.

As defined by EC directive 2000/55/EC (European Standard EN 50294 governing the measurement of total power consumption), a series capacitor is considered to be a part of the ballast. If the system rating of the capacitive circuit containing the lamps and ballasts is then determined in line with the above definition, rating increases of up to $14 \%$ will become apparent in comparison to operation without a series capacitor. Experience has shown that this increased power consumption often means devices fall in the directive's "banned" category. It is therefore strongly advised that due consideration be given to the elevated power consumption values common to using series capacitors for compensation purposes.



## Technical Details - Capacitors for Fluorescent and Discharge Lamps

## Parallel compensation

During parallel compensation, each lamp circuit is assigned to a capacitor connected in parallel to the mains. Only one capacitor providing sufficient capacitance is needed for luminaires with several lamps. Parallel compensation does not affect current flow through a discharge lamp. The requirements placed on parallel capacitors are clearly lower than those for series capacitors.

However, parallel compensation can be subject to limitations when using audio-frequency ripple control pulses if the system operates with a connected rating of over 5 kVA and ripple control frequencies of over 300 Hz are used. The respective power utility company should be consulted for advice in such cases.

Parallel compensation is used in fluorescent lamp and high-pressure discharge lamp circuits.
As parallel compensation offers substantial advantages, this has become the accepted method in the last few years.

## Metallised polypropylene film capacitors

Metallised polypropylene film capacitors are designed to compensate the inductive idle current drawn by discharge lamps (fluorescent lamps, high-pressure mercury vapour lamps, high-pressure sodium vapour lamps and metal halide lamps with a ceramic discharge tube) in $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ grids. All Vossloh-Schwabe compensation capacitors for luminaires feature a metallised polypropylene film dielectric. Compensation capacitors help to increase the power factor to values of over $\lambda 0.85$ as required by power utility companies.

## Construction of metallised polypropylene film capacitors

VS MPP capacitors contain a low-loss metallised polypropylene film dielectric, which is produced by
 depositing a thin layer of zinc and aluminium or pure aluminium vapour onto one side of the polypropylene film. The contacts at either end of the capacitor coil are created by spraying on a layer of metal and thus guarantee a high current-carrying capacity as well as a low-inductive connection between the terminals and the coils.

All capacitors with a nominal voltage upwards of 280 V are filled with oil or resin after the coils have been inserted and then hermetically sealed. This protects the coils from environmental influences and reduces partial discharge, which contributes to a long service life and stable capacitance. The effects of partial discharge only play a minor role for capacitors with a nominal voltage of under 280 V so that these devices do not need to be filled.

Hermetically sealed, filled capacitors with an overpressure contact breaker should always be used in critical ambient conditions (high humidity, aggressive atmospheres, high temperatures), if the workload and power supply conditions are unknown as well as in situations that demand increased attention to safety.

VS MPP capacitors feature a self-healing dielectric. In the event of a dielectric breakdown in the coil (short circuit), the metal coating vaporises around the breakdown site owing to the high temperature of the transient arc that is produced. Owing to the excess pressure generated during such a breakdown, the metal vapour is pushed outwards away from the centre of the site within the space of just a few microseconds. This creates a coating-free corona around the breakdown site that completely isolates it and means the capacitor remains fully functional during a dielectric breakdown.

The self-healing properties of a capacitor can decrease with time and with constant overloading. This bears the risk of a non-healing breakdown with a permanent short circuit. Therefore self-healing must not be confused with failsafe.

Compensation capacitors are divided into two type families (A and B) in accordance with IEC 61048 A2.

- Type A capacitors defined:
"Self-healing parallel capacitors; without an (overpressure) contact breaker in the event of failure". They are referred to as unsecured capacitors.
- Type B capacitors defined:
"Self-healing capacitors for series connection in lighting circuits or self-healing parallel capacitors; with an (overpressure) contact breaker in the event of failure".
These are referred to as hermetically sealed, secured capacitors.
In accordance with the standard, the discharge resistor of both capacitor families must be capable of reducing capacitor voltage to a value of under 50 V in the space of 60 seconds after disconnection from the mains.


## Capacitors without a contact breaker, unsecured, Type A capacitors in accordance with IEC 61048 A2

IEC 61048 A2-compliant Type A capacitors are self-healing and require no short-circuit protection for normal operation.

Type A capacitors are not fitted with a specific failsafe mechanism as prescribed by the standards for Type B capacitors. Nevertheless, the requirements laid down in the standard for Type A capacitors, especially with regard to temperature and service life tests, are designed to ensure a sufficient degree of device safety and availability provided the device was correctly installed and operated under calculable and known ambient operating conditions.

Even so, in very rare cases these capacitors can still develop erratic behaviour due to overloading or at the end of the device's service life.

For that reason, Type A capacitors should only be integrated into luminaires for operation in ambient conditions that are uncritical with regard to flammable materials. Luminaires should feature protection against secondary damage inside and outside the luminaire in the event of a defect.

Temperature-protected capacitors are a further development of Type A capacitors and are fitted with a thermal fuse that is triggered by overheating as a result of electrical or thermal overloading. They are tested in accordance with IEC 61048 A2 and comply with Type A requirements. Excess temperatures cause the two wire ends of the element inside the fuse to melt into bead shapes that are fully isolated from each other by special insulation.

In $99 \%$ of all the rare cases of critical capacitor failure, this failure is preceded by a gradual increase in the loss factor, which leads to an increase in the winding temperature and thus triggers the thermal fuse.

Vossloh-Schwabe recommends that preference be given to Type A capacitors with a thermal fuse as a matter of course for reasons of safety.

Type A capacitors predominantly feature a plastic casing.

## Capacitors with a contact breaker, secured Type B capacitors in accordance with IEC 61048 A2

Self-healing capacitors do not require short-circuit protection for normal operation as they automatically regenerate after a dielectric breakdown. However, as a result of frequent self-healing caused by overloading (voltage, current, temperature) or towards the end of the capacitor's service life, overpressure can build up inside the capacitor (due to the decomposition products of the vaporised polypropylene).

In order to prevent the capacitor casing from exploding in such cases, hermetically sealed capacitors in accordance with IEC 61048 A2 (Type B capacitors) are fitted with an overpressure contact breaker. If excess pressure builds up within these capacitors, e.g. due to undue thermal loading or excessive voltages or at the end of the capacitor's service life, a concertina section opens out that causes the casing to expand lengthways. As a result, the wire contacts rupture at a predetermined breaking point, which irreversibly interrupts the current (contact breaker).

This type of overpressure-protected capacitor with a contact breaker is also referred to as a flame- and explosion-proof capacitor with a break-action mechanism.

Type B capacitors with a contact breaker are available in an aluminium casing.


## Assembly Instructions for Capacitors

For mounting and installing compensation capacitors

## Mandatory regulations

| DIN VDE 0100 | Erection of low voltage installations |
| :--- | :--- |
| EN 60598 | Luminaires - part 1: General requirements and tests |
| EN 55015 | Maximum values and testing methods for radio disturbance of electrical lighting <br> facilities and similar electrical equipment |
| EN 61000-3-2 | Electromagnetic Compatibility (EMC) - part 3: <br> maximum values - main section part 2: maximum values for mains harmonics <br> (ballast input current up to and including 16 A per conductor) |
| EN 61048 | Operating devices for lamps - capacitors for fluorescent lamp circuits and <br> other discharge lamp circuits; general and safety requirements |
| EN 61049 | Operating devices for lamps - capacitors for fluorescent lamp circuits and <br> other discharge lamp circuits; performance requirements |

## Mechanical mounting

Fastening Base screw (permissible torque):

- M8x10-5 Nm (aluminium casing)
- M8x10-2.2 Nm (plastic casing)

Mounting location

## Any

Capacitors fitted with overpressure protection require clearance of at least 10 mm above the contacts so ensure the casing can expand unhindered if the contact breaker is triggered.

Heat transfer Capacitors should be mounted with the greatest possible clearance to heat sources or lamps. During operation, the temperature measured at the tc point must not exceed the specified maximum value.
tc point The t $t_{c}$ point is defined as an arbitrary point on the surface of the capacitor, which is not specifically marked.

UV Radiation Capacitors should not be installed in an unprotected manner directly next to any sources of light, heat radiation or convection (ballasts, lamps, heating elements, etc.) as both high temperatures and constant exposure to UV radiation can lead to premature ageing. In combination with high temperatures, UV radiation or other substances and influencing factors, chemicals such as ozone and chlorine can lead to accelerated ageing and material embrittlement.

Thermal load All capacitor casings are made of flame-retardant materials. However, the potting material, oils and the winding material are flammable and consideration must be taken of this fact during installation. The thermal load of an MKP capacitor is approx. $40 \mathrm{MJ} / \mathrm{kg}$.

## Safety functions

Type A capacitors
are not fitted with any special protective functions in case of defect.
Temperature-protected capacitors are a further development of Type A capacitors and feature a thermal fuse that is triggered by excess temperatures and disconnects the capacitor from the mains.

Type B capacitors
are fitted with an overpressure contact breaker in case of defects at the end of the capacitor's service life.

Connection Parallel capacitors for fluorescent lamps:

- Casing diameter $25-30 \mathrm{~mm}$ : push-in terminals for $0.5-1 \mathrm{~mm}^{2}$ conductors and IDC terminals for H05V-U 0.5 conductors
- Casing diameter $>30 \mathrm{~mm}$ : push-in terminals for $0.5-1 \mathrm{~mm}^{2}$ conductors

Parallel capacitors for high-pressure lamps:

- Casing diameter $25-30 \mathrm{~mm}$ : push-in terminals for $0.5-1 \mathrm{~mm}^{2}$ conductors and IDC terminals for HO5V-U 0.5 conductors
- Casing diameter $>30 \mathrm{~mm}$ : push-in terminals for $0.5-1.5 \mathrm{~mm}^{2}$ conductors


## Reliability and service life

Provided the max. specified voltage and current loads, temperature, humidity and mains harmonics values are observed,

- approx. 50,000 hours for overpressure-protected parallel capacitors
- approx. 30,000 hours for parallel capacitors without overpressure protection in a plastic or aluminium casing
A 3-10\% decrease in capacitance must be expected in the course of the capacitor's service life. Failure rate: $1 \%$ per 1,000 operating hours when maximum voltage, current and temperature values are not exceeded.


## Electrical installation

Nominal voltage $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz} ; 280 \mathrm{~V}, 50 / 60 \mathrm{~Hz} ; 450 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
(dependent on type)
Capacitance tolerance

$$
\pm 10 \%( \pm 5 \% \text { dependent on type) }
$$

Temperature range
$-25 /-40^{\circ} \mathrm{C}$ to $+85 /+100^{\circ} \mathrm{C}$ (dependent on type, details see product page)

Optional thermal fuse

Relative humidity Class F for Type B capacitors: $75 \%$ annual mean, $95 \%$ peak value on 30 days Class G for Type A capacitors: 65\% annual mean, $85 \%$ peak value on 30 days

Condensation Impermissible

Technical Details - Capacitors for Fluorescent and Discharge Lamps

Capacitors for fluorescent lamp circuits

| Lamp |  | Parallel compensation capacitor ( $\mu \mathrm{F} \pm 10 \%$ at 250 V$)$ |  | Series compensation capacitor ( $\mu \mathrm{F} \pm 4 \%$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> W | Type | $\begin{aligned} & 220-240 \mathrm{~V} / 50 \mathrm{~Hz} \\ & \mu \mathrm{~F} \end{aligned}$ | $\int_{\mu F}^{220-230 \mathrm{~V} / 60 \mathrm{~Hz}}$ | $\int_{\mu \mathrm{F}}^{220 \mathrm{~V} / 50 \mathrm{~Hz}}$ | $\begin{aligned} & 230 \mathrm{~V} / 50 \mathrm{~Hz} \\ & \mu \mathrm{~F} \end{aligned}$ | $\int_{\mu \mathrm{F}}^{220 \mathrm{~V} / 60 \mathrm{~Hz}}$ |
| 4 | T | 2** | 2** | - | - | - |
| 6 | T | 2** | 2** | - | - | - |
| 8 | T | 2** | 2** | - | - | - |
| 10 | T | 2 | 2 | - | - | - |
| 13 | T | 2 | 2 | - | - | - |
| 14 | T | 4.5 | 4.5 | - | - | - |
| 15 | T | 3.5 or 4* | 3 or 4* | - | - | - |
| 16 | T | 2 | 2 | - | - | - |
| 18 | T | 4.5 or 4* | 4** | $2.9 / 440 \mathrm{~V}$ | $2.8 / 480 \mathrm{~V}$ | 2.4/440 V |
| 20 | T | 4.5 or 4 * | 4** | $2.9 / 440 \mathrm{~V}$ | $2.8 / 480 \mathrm{~V}$ | $2.4 / 440 \mathrm{~V}$ |
| 23 | T | 3.5 | 3 | - | - | - |
| 25 | T | 3.5 | 3 | - | $2.3 / 450 \mathrm{~V}$ | - |
| 30 | T | 4.5 | 4 | $3 / 420 \mathrm{~V}$ | $2.9 / 450 \mathrm{~V}$ | - |
| 36 | T | 4.5 | 4 | $3.6 / 420 \mathrm{~V}$ | $3.4 / 450 \mathrm{~V}$ | $3 / 420 \mathrm{~V}$ |
| 36-1m | T | 6.5 | - | - | - | - |
| 38 | T | 4.5 | 4 | - | - | - |
| 40 | T | 4.5 | 4 | $3.6 / 420 \mathrm{~V}$ | $3.4 / 450 \mathrm{~V}$ | $3 / 420 \mathrm{~V}$ |
| 42 | T | 6.5 | - | - | - | - |
| 58 | T | 7 | 6 | $5.7 / 450 \mathrm{~V}$ | $5.3 / 450 \mathrm{~V}$ | $4.8 / 420 \mathrm{~V}$ |
| 65 | T | 7 | 6 | $5.7 / 450 \mathrm{~V}$ | $5.3 / 450 \mathrm{~V}$ | $4.8 / 420 \mathrm{~V}$ |
| 70 | T | 6 | - | - | - | - |
| 75 | T | 6 | - | - | - | - |
| 80 | T | 9 | 8 | - | $7.2 / 420 \mathrm{~V}$ | - |
| 85 | T | 8 | 6.5 | - | $8.4 / 420 \mathrm{~V}$ | - |
| 100 | T | 10 | 9 | - | - | - |
| 115 | T | 18 | 16 | - | - | - |
| 140 | T | 14 | 14 | - | - | - |
| 160 | T | 14 | 14 | - | - | - |
| 16 | T-U | 2 | 2 | - | - | - |
| 18/20 | T-U | 4.5 or 4* | 4** | 2.9/440 V | $2.8 / 480 \mathrm{~V}$ | $2.4 / 440 \mathrm{~V}$ |
| 36/40 | T-U | 4.5 | 4 | $3.6 / 420 \mathrm{~V}$ | $3.4 / 450 \mathrm{~V}$ | $3 / 420 \mathrm{~V}$ |
| 58/65 | T-U | 7 | 6 | - | - | - |
| 22 | T-R | 5 | 4.5 | - | $3.2 / 440 \mathrm{~V}$ | - |
| 32 | T-R | 5 | 4.5 | - | $3.4 / 450 \mathrm{~V}$ | - |
| 40 | T-R | 4.5 | 4 | $3.6 / 420 \mathrm{~V}$ | $3.4 / 450 \mathrm{~V}$ | $3 / 420 \mathrm{~V}$ |
| 5/7/9/11 | TC-S | 2** | 2** | - | - | - |
| 10 | TC-D/TC-T | 2 | 2 | - | - | - |
| 13 | TC-D/TC-T | 2 | 2 | - | - | - |
| 18 | TC-D/TC-T | 2 | 2 | - | - | - |
| 26 | TC-D/TC-T | 3.5 | 3 | - | - | - |
| 10 | TC-DD | 2 | 2 | - | - | - |
| 16 | TC-DD | 2 | 2 | - | - | - |
| 21 | TC-DD | 3 | 3 | - | - | - |
| 28 | TC-DD | 3.5 | 3 | - | - | - |
| 38 | TC-DD | 4.5 | 4 | - | - | - |
| 18 | TC-L/TC-F | 4.5 or 4* | 4** | - | - | - |
| 24 | TC-L/TC-F | 4.5 | 4 | - | - | - |
| 34 | TC-L/TC-F | 4.5 | 4 | - | - | - |
| 36 | TC-L/TC-F | 4.5 | 4 | - | - | - |

*) Two lamps connected to a ballast in series **) Applies to one lamp connected to a ballast or two lamps connected in series

Technical Details - Capacitors for Fluorescent and Discharge Lamps

## Capacitors for

| Camp <br> Compensation capacitor $(\mu \mathrm{F} \pm 10 \%)$ <br> Output <br> W |  |  |  |  |  |  | Type | $220 / 230 / 240 / 252 \mathrm{~V}$ | 220 V |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $50 \mathrm{~Hz}(\mu \mathrm{~F})$ | $60 \mathrm{~Hz}(\mu \mathrm{~F})$ | $380 / 400 / 420 \mathrm{~V}$, <br> $50 \mathrm{~Hz}(\mu \mathrm{~F})$ | $380 \mathrm{~V} / 60 \mathrm{~Hz}$ <br> $60 \mathrm{~Hz}(\mu \mathrm{~F})$ |  |  |  |  |  |  |

high-pressure mercury vapour lamp circuits

| 50 | HM | 7 | 6 |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 80 | HM | 8 | 7 |  |  |
| 125 | HM | 10 | 10 |  |  |
| 250 | HM | 18 | 15 |  |  |
| 400 | HM | 25 | 25 |  |  |
| 700 | HM | 40 | 35 |  |  |
| 1000 | HM | 60 | 50 |  |  |

high-pressure sodium vapour lamp circuits

| 35 | HS | 6 | 5 |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 50 | HS | 8 | 8 |  |  |
| 70 | HS | 12 | 10 |  |  |
| 100 | HS | 12 | 10 |  |  |
| 150 | HS | 20 | 16 |  |  |
| 250 | HS | 32 | 25 |  | 2 |
| 400 | HS | 45 | 40 | 25 | 25 |
| 600 | HS | 65 | 55 | 25 |  |
| 750 | HS | 70 | 60 |  |  |
| 1000 | HS | 100 | 85 |  |  |

## metal halide lamp circuits

| 35 | HI | 6 | 5 |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 70 | HI | 12 | 10 |  |  |
| 100 | HI | 12 | 10 |  |  |
| 150 | HI | 20 | 16 |  |  |
| 250 | HI | 32 | 25 |  |  |
| 400 | HI | $35 / 45$ | $35 / 45$ |  |  |
| 1000 | HI | 85 | 75 | 37 |  |
| 2000 | HI | 125 | 125 | 37 | 60 |
| 2000 | HI |  |  | 60 | 60 |
| 2000 | HI |  |  | 60 | 100 |
| 2000 | HI |  |  | 100 |  |
| 2000 | HI |  |  |  |  |

Capacitors for low-pressure discharge lamp circuits

| Lamp |  | $\begin{aligned} & \text { Compensation capacitor }(\mu \mathrm{F} \pm 10 \%) \\ & 230 \mathrm{~V} / 50 \mathrm{~Hz} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: |
| Output | Type |  |
| W |  |  |
| 35 | LS | 20 |
| 55 | LS | 20 |
| 90 | LS | 26 |
| 135 | LS | 40 |
| 180 | LS | 40 |

## ELECTRONIC AND ELECTROMAGNETIC TRANSFORMERS



## FOR LOW-VOLTAGE

 HALOGEN INCANDESCENT LAMPSThe operating voltage of low-voltage halogen lamps is normally $12 \mathrm{~V}(6$ and 24 V are also used for special applications). As a result, transformers are required in order to connect such lamps to the normal mains supply within buildings, whereby international requirements governing building installations specify that safety transformers or converters (electronic transformers) be exclusively used for such purposes nowadays. These devices are designed in such a way as to prevent both personal injury and the outbreak of fire should the lighting system malfunction.

## Electronic converters

The following chapter provides an overview of the VS range of electronic converters that feature a whole range of advantages: light and compact, superior efficiency (approx. 95\%), short-circuit protection, integrated overheating and overload protection, soft start for longer lamp life, broad part-load range and dimmability.

## Electromagnetic safety transformers

The following chapter also provides an overview of VosslohSchwabe's range of electromagnetic transformers. The range is split into protection class II transformers and protection class I built-in transformers whose ultra-flat design make them particularly userfriendly. Lamp brightness can be regulated using conventional phase dimmers for low-voltage halogen lamps.
Electromagnetic safety transformers255-257
Technical details for incandescent lamps ..... 314-327General technical details

## Independent Electronic

## Converters - LiteLine

Electronic safety converters
for low-voltage halogen incandescent lamps 12 V
Casing: heat-resistant polyamide
Mains frequency: $50-60 \mathrm{~Hz}$
Protection against "no load" operation
Protection against short-circuit:
electronic switch-off with automatic restart
Electronically controlled overload
and temperature protection
Suitable for installation in furniture
and on combustible surfaces
Power factor: > 0.95
Efficiency: $\geq 94 \%$
Dimming: optional with phase-cutting leadingedge or phase-cutting trailing-edge dimmer


A


B


Screw terminals: $2.5 \mathrm{~mm}^{2}$
(EST 60/12.635 primary: $4 \mathrm{~mm}^{2}$ )
Quantity of screw terminals:
$1 \times 2$-poles primary
$1 \times 2$-poles secondary
C


With integrated cord grip

## Protection class II

SELV
Degree of protection: IP20
RFI-suppressed


| Type | Ref. No. | Capacity range (W) | $\begin{aligned} & \text { Voltage (V) } \\ & \text { prim. }( \pm 10 \%) \end{aligned}$ | sec. | Nominal current A | Ambient <br> temperature ta $\left({ }^{\circ} \mathrm{C}\right)$ | Casing <br> temperature tc $\left({ }^{\circ} \mathrm{C}\right)$ | Drawing | Weight <br> g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dimensions: 22x36x103.5 mm |  |  |  |  |  |  |  |  |  |
| EST 60/12.635 | 186173 | 10-60 | 220-240 | 10.2-12 | 0.258-0.260 | -20 to 45 | max. 85 | A | 70 |
| Dimensions: 28x37x128 mm |  |  |  |  |  |  |  |  |  |
| EST 70/12.380 | 186072 | 20-70 | 230-240 | 11.3-11.7 | 0.30-0.31 | -20 to 45 | max. 70 | B | 85 |
| EST 105/12.381 | 186077 | 20-105 | 230-240 | 11.2-11.7 | 0.435-0.445 | -20 to 40 | max. 85 | B | 95 |
| Dimensions: $\mathbf{3 3 \times 3 7 \times 1 8 5} \mathbf{~ m m}$ |  |  |  |  |  |  |  |  |  |
| EST 150/12.622 | 186098 | 50-150 | 230-240 | 11.2-11.6 | 0.595-0.605 | -20 to 45 | max. 85 | C | 175 |

## Super-thin Electromagnetic <br> Built-in Transformers 20-105 VA

## Shape: 28x41 mm

Electromagnetic safety transformers
for low-voltage halogen incandescent lamps 12 V
Vacuum-impregnated with polyester resin
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Protection class I
For these transformers without thermal cut-out, a slow-acting fuse should be installed in the wiring on site

B


| Safety transformers |  |  |  |  |  |  |  |  |  |  | Primary fuse <br> AT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Ref. No. | Capacity range W | $50,60 \mathrm{~Hz}$ <br> $V$ prim. $V$ sec. |  | Ambient temperature $\mathrm{ta}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$ | Drawing | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$ | Weight <br> kg |  |
| 220 V/50, 60 Hz |  |  |  |  |  |  |  |  |  |  |  |
| STr 50/12.207 | 500843 | 35-50 | 220 | 11.5 | 40/B | A | 175 | 165 | 83 | 0.73 | 0.250 |
| $\mathbf{2 3 0 ~ V / 5 0 , 6 0 ~ H z ~}$ |  |  |  |  |  |  |  |  |  |  |  |
| STr 20/12.306 | 161781 | 15-20 | 230 | 11.5 | 60/B | A | 155 | 140 | 63 | 0.55 | 0.125 |
| STr 50/12.301 | 161757 | 35-50 | 230 | 11.5 | 50/B | A | 195 | 180 | 92 | 0.80 | 0.250 |
| STr 50/12.342 | 507181 | 35-50 | 230 | 11.5 | 40/B | A | 175 | 165 | 83 | 0.73 | 0.250 |
| STr 60/12.338 | 179604 | 40-60 | 230 | 11.5 | 50/F | A | 195 | 180 | 92 | 0.80 | 0.315 |
| STr 105/12.311 | 170002 | 60-105 | 230 | 11.5 | 30/F | B | 240 | 230 | 160 | 1.33 | 0.500 |
| $\mathbf{2 4 0 ~ V / 5 0 , ~} 60$ Hz |  |  |  |  |  |  |  |  |  |  |  |
| STr 50/12.401 | 169830 | 35-50 | 240 | 11.5 | 45/B | A | 195 | 180 | 92 | 0.80 | 0.250 |
| STr 50/12.422 | 502592 | 35-50 | 240 | 11.5 | 40/B | A | 175 | 165 | 83 | 0.73 | 0.250 |
| STr 105/12.406 | 169125 | 60-105 | 240 | 11.5 | 50/H | B | 240 | 230 | 160 | 1.33 | 0.500 |
| $127 \mathrm{~V} / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |
| STr 50/12.109 | 525791 | 35-50 | 127 | 11.5 | 40/F | A | 155 | 140 | 63 | 0.55 | 0.500 |



# Super-thin Electromagnetic <br> <br> Built-in Transformers <br> <br> Built-in Transformers with Thermal Cut-out with Thermal Cut-out 20-105 VA 

 20-105 VA}

## Shape: $28 \times 41$ mm

Electromagnetic safety transformers
for low-voltage halogen incandescent lamps 12 V
Vacuum-impregnated with polyester resin
Screw terminals: 0.5-2.5 mm²
Protection class I
Temperature switch with self-holding protection
against overheating,
no primary fuse necessary


A


B


| Type | Ref. No. | Capacity range W | $\begin{aligned} & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \text { prim. } \end{aligned} \mathrm{V} \text { vec. } .$ |  | Ambient <br> temperature $\mathrm{ta}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$ | Drawing | $\mathrm{mm}$ | $\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$ |  | Weigh $\mathrm{kg}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $230 \mathrm{~V} / \mathbf{5 0 , 6 0 ~ H z}$ |  |  |  |  |  |  |  |  |  |  |
| STr 20/12.306 | 161860 | 15-20 | 230 | 11.5 | 60/B | A | 155 | 140 | 63 | 0.55 |
| STr 50/12.337 | 179444 | 35-50 | 230 | 11.5 | 50/F | A | 175 | 165 | 83 | 0.73 |
| STr 50/12.301 | 170091 | 35-50 | 230 | 11.5 | 50/B | A | 195 | 180 | 92 | 0.80 |
| STr 60/12.338 | 179608 | 40-60 | 230 | 11.5 | 50/F | A | 195 | 180 | 92 | 0.80 |
| STr 105/12.311 | 169747 | 60-105 | 230 | 11.5 | 45/F | B | 240 | 230 | 160 | 1.33 |
| $\mathbf{2 4 0 ~ V / 5 0 , ~} 60$ Hz |  |  |  |  |  |  |  |  |  |  |
| STr 50/12.401 | 169748 | 35-50 | 240 | 11.5 | 45/B | A | 195 | 180 | 92 | 0.80 |
| STr 105/12.406 | 161935 | 60-105 | 240 | 11.5 | 50/H | B | 240 | 230 | 160 | 1.33 |
| $127 \mathrm{~V} / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |
| STr 50/12.109 | 537403 | 35-50 | 127 | 11.5 | 40/F | A | 155 | 140 | 63 | 0.55 |

## Compact Electromagnetic <br> Transformers 70-300 VA

Shape: $85 \times 85 \mathrm{~mm}(200 \mathrm{VA})$ Shape: $99 \times 85 \mathrm{~mm}(300 \mathrm{VA})$

Built-in electromagnetic safety transformers for low-voltage halogen incandescent lamps 12 V Fully encapsulated transformer in a plastic casing
Mains frequency: $50-60 \mathrm{~Hz}$
Built-in primary fuse and temperature switch
Connections
primary: lead
secondary: screw terminals up to $6 \mathrm{~mm}^{2}$
Degree of protection: IP24

## Protection class II

Suitable for installation in furniture
and on combustible surfaces



| Type | Ref. No. | Capacity range W | $\begin{aligned} & \hline \text { Voltag } \\ & \text { V }-10 \\ & \text { prim. } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { AC } \\ & +6 \% \\ & \text { \|sec. } \end{aligned}$ | Ambient temperature $t_{a}$ ${ }^{\circ} \mathrm{C}$ | A <br> mm | $B$ <br> mm | Weight <br> kg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $230 \mathrm{~V} / 50,60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |
| STr 200/12.40 | 554325 | 70-200 | 230 | 12 | 40 | 85 | 70 | 2.9 |
| STr 300/12.41 | 554326 | 150-300 | 230 | 12 | 40 | 99 | 84 | 3.9 |

## LOW- AND MAINS VOLTAGE LAMPHOLDERS



## LAMPHOLDERS FOR HALOGEN INCANDESCENT LAMPS

As the tungsten-halogen cycle and the high lamp current can cause very high temperatures when operating low-voltage halogen lamps, close attention must be paid to the luminaire's thermal conditions and components must be made of high-grade materials.

## VS lampholders for low-voltage halogen lamps

The following chapter contains Vossloh-Schwabe's comprehensive range of connection elements, lampholders and accessories for safe and reliable installation in accordance with the latest regulations and developments.

## VS lampholders for mains voltage halogen lamps

The following chapter contains Vossloh-Schwabe's comprehensive range of lampholders for single-ended halogen lamps (GU/GZ10 and G9 bases), lampholders for bayonet lamps (B15d and B22d bases) as well as lampholders for double-ended tubular lamps (R7s base).
Lampholders for low-voltage halogen incandescent lamps ..... 260-267
G4, GZ4, G5.3, GX5.3, G6.35, GY6. 35 lampholders, accessories ..... 260-261
G4 lampholders, GZ4 lamp connectors ..... 261-263
Lampholders with separate mounting spring for GU4 lamps ..... 264
GX5. 3 lamp connectors ..... 265
GU5.3 lampholders ..... 265
Lampholders with separate mounting spring for GU5.3 lamps ..... 266
G6.35, GY6. 35 lampholders, GZ6. 35 lamp connectors ..... 267
G53 lamp connectors ..... 267
Lampholders for mains voltage halogen incandescent lamps ..... 268-277
B15d, BA15d lampholders ..... 268
G9 lampholders, accessories ..... 268-270
GUIO, GZ1O lampholders, accessories ..... 271-272
R7s ceramic lampholders ..... 273-275
R7s metal lampholders ..... 275
Connection boxes ..... 276
Connectors ..... 277
Technical details for incandescent lamps ..... 314-327
General technical details ..... 348-356
Glossary ..... 357-359

# G4, GZ4, G5.3, GX5.3, G6.35, GY6.35 Lampholders, Accessories 

## For low-voltage halogen incandescent lamps

The lampholders listed in this chapter permit the use of lamps with different bases. It is important to ensure that under no circumstances a lamp

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: LCP, natural, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 2.4 g , unit: 1000 pcs.
Type: 33300
Ref. No.: 109547

Cover caps
For push-fit onto lampholders type 333
External thread 20.8×2
Material: LCP, natural
Moulded thread: M10x1
Weight: 3.8 g , unit: 1000 pcs.
Type: 97255
Ref. No.: 109548

Screw rings
For components with external thread $20.8 \times 2$
Weight: $1.7 / 1.4 \mathrm{~g}$, unit: 1000 pcs.
Type: 97257
Ref. No.: 109550 PPS, black
Ref. No.: 507490 LCP, natural
with a smaller pin diameter is used
if a lamp with a larger pin diameter
has already been used.


G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: LCP, natural, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 2.6 g , unit: 1000 pcs .
Type: 33400
Ref. No.: 109674


G/GZ4, G/GX5.3, G/GY0. 35 lampholder
Casing: ceramic, cover plate: mica
T350
Nominal rating: 10/24
Contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Weight: 6.8 g , unit: 500 pcs.
Type: 32400

## Ref. No.: 100939

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: ceramic, cover plate: mica
T300
Nominal rating: 10/24
Multipoint contacts: CuNiZn
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Weight: 7.1 g , unit: 1000 pcs.
Type: 32700

## Ref. No.: 101258

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24
Multipoint contacts: CuNiZn
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing plate: zinc-coated polished steel
Fixing holes for screws M3
Weight: 8.8 g , unit: 1000 pcs.
Type: 32720
Ref. No.: 101274



## G4 Lampholders, GZ4 Lamp Connectors

## For low-voltage halogen incandescent lamps

G4 lampholder, GZ4 lamp connector
Casing: PPS, black, T240
Nominal rating: 4/24, multipoint contacts: steel
Leads: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,
Si-insulation, length: 140 mm
Option for lateral wiring
Lampholder height: 16 mm
Fixing holes for screws M3
Weight: 5.7 g , unit: 1000 pcs .
Type: 30400
Ref. No.: 530024



## Lampholders for Halogen Incandescent Lamps

G4 lampholder, GZ4 lamp connector
Casing: PPS, black, T240
Nominal rating: 4/24, multipoint contacts: steel Leads: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,

Si-insulation, length: 140 mm
Lampholder height: 12.8 mm
Fixing holes for screws M3
Weight: 5.5 g , unit: 1000 pcs.
Type: 30450
Ref. No.: 530025

G4 lampholder, GZ4 lamp connector
Casing: PPS, black, T240
Nominal rating: 4/24, multipoint contacts: steel
Leads: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,
Si-insulation, length: 140 mm
Option for lateral wiring
Lampholder height: 16 mm
For push-fit onto the lamp
Weight: 5.3 g , unit: 1000 pcs.
Type: 30460

## Ref. No.: 530026

G4 lampholder, GZ4 lamp connector
Casing: PPS, black, T240
Nominal rating: 4/24, multipoint contacts: steel
Leads: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,
Si-insulation, length: 140 mm
Option for lateral and base wiring
Lampholder height: 12.8 mm
For push-fit onto the lamp
Weight: 5.1 g , unit: 1000 pcs.
Type: 30465
Ref. No.: 530027
G4 lampholders
For push-fit into lampholder support 535267
T240
Nominal rating: 2/50
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Weight: $1.5 / 1.6 \mathrm{~g}$, unit: 1000 pcs.
Type: 30800
Ref. No.: 535146 material: LCP
Ref. No.: 535263 material: PPS
Lampholder support for G4 lampholders type 30800
Material: polyamide
Base split pins for wall thickness 0.6 mm
Weight: 0.8 g , unit: 500 pcs.
Type: 95300
Ref. No.: 535267


G4 lampholder
Casing: PPS, black, T200
Nominal rating: 2/24
Multipoint contacts: CuNiZn
Leads: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,
Si-insulation brown/blue, length: 140 mm
Push-in fixing
Weight: 4.4 g , unit: 1000 pcs.
Type: 30485
Ref. No.: 535988

G4 clip-in tube lampholder
With earth contact
Casing: PPS, black, T200
Nominal rating: 2/24
Multipoint contacts: CuNiZn
Lead: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,
Si-insulation blue, length: 140 mm
Push-in fixing
Weight: 2.7 g , unit: 1000 pcs.
Type: 30471

## Ref. No.: 108449

G4 clip-in tube lampholder
With integrated cable holder for Teflon conductor
Casing: PPS, black, T200
Nominal rating: 2/24
Multipoint contacts: CuNiZn
Leads: Cu tinned, stranded conductors $0.61 \mathrm{~mm}^{2}$, FEP-insulation brown/blue, length: 140 mm
Push-in fixing
Weight: 8.1 g , unit: 1000 pcs.
Type: 30470
Ref. No.: 520865
G4 lampholder
Casing: PPS, black, T240
Nominal rating: 4/24
Multipoint contacts: steel
Leads: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$, Si-insulation, length: 140 mm
For push-fit onto the lamp
Weight: 4.7 g , unit: 1000 pcs.
Type: 34000
Ref. No.: 507105






# Lampholders with Separate Mounting Spring for GU4 Lamps 

For low-voltage halogen incandescent lamps

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: LCP, natural, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
For cover cap (see p. 268)
Weight: 2.4 g , unit: 1000 pcs.
Type: 33300
Ref. No.: 109547

GU4 mounting spring for lamp
Material: stainless steel
For push-fit onto lampholders type 333 and 32210
Weight: 0.8 g , unit: 1000 pcs .
Type: 94095
Ref. No.: 109553


G/GZ4-, G/GX5.3, G/GY6. 35 lampholder
Casing: ceramic, cover plate: mica
T350
Nominal rating: 10/24
Contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Weight: 6.8 g , unit: 500 pcs.
Type: 32400

## Ref. No.: 100939

GU4 mounting spring for lamp
Material: stainless steel
The mounting spring has to be fastened
to the lampholder 100939.
The luminaire manufacturer is responsible
for the attachment.
Weight: 1.6 g , unit: 1000 pcs.
Type: 94071
Ref. No.: 108678


## GX5.3 Lamp Connectors

## For low-voltage halogen incandescent lamps

GX5.3 lamp connectors
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24
Multipoint contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Weight: $7.8 / 8.5$ g, unit: 500 pcs.
Type: 32600 holes for screws M3
Ref. No.: 101162
Type: 32620 threaded bushes M3
Ref. No.: 101207


## GU5.3 Lampholders

## For low-voltage halogen incandescent lamps

GU5.3 lampholder
Casing: ceramic, cover plate: mica
T350, nominal rating: 10/24
Contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws ST2.9
Mounting spring for lamp: stainless steel
Weight: 9.1 g , unit: 1000 pcs.
Type: 32480


## Ref. No.: 106457

GU5.3 lampholders
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24, multipoint contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Mounting spring for lamp: stainless steel
Weight: $11 / 12 \mathrm{~g}$, unit: 500 pcs.
Type: 32680 holes for screws M3
Ref. No.: 101248
Type: 32690 threaded bushes M3
Ref. No.: 101253


# Lampholders with Separate Mounting Spring for GU5.3 Lamps 

For low-voltage halogen incandescent lamps

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: LCP, natural, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
For cover cap (see p. 260)
Weight: 2.4 g , unit: 1000 pcs.
Type: 33300
Ref. No.: 109547

GU5.3 mounting spring for lamp
Material: stainless steel
For push-fit onto lampholders type 333
Weight: 1.1 g , unit: 1000 pcs.
Type: 94096
Ref. No.: 109554

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: ceramic, cover plate: mica
T350
Nominal rating: 10/24
Contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Weight: 6.8 g , unit: 500 pcs.
Type: 32400


Ref. No.: 100939

GU5.3 mounting spring for lamp
Material: stainless steel
The mounting spring has to be fastened
to the lampholder 100939.
The luminaire manufacturer is responsible
for the attachment.
Weight: 2 g , unit: 1000 pcs.


Type: 94060
Ref. No.: 106256


## G6.35, GY6.35 Lampholders, GZ6.35 Lamp Connectors

## For low-voltage halogen incandescent lamps

G/GY6. 35 lampholder, GZ6. 35 lamp connector
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24
Multipoint contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Lamp fixing holes: diagonal
Weight: 11 g , unit: 500 pcs.
Type: 30300
Ref. No.: 100662


## G53 Lamp Connectors

## For low-voltage halogen incandescent lamps

G53 lamp connector
Casing: PPS, black
Nominal rating: 10/24
Contacts: CuNiZn
Lead: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,
Si-insulation, length: 140 mm
Fixing hole for screw M4
Lead exit: lateral
Weight: 4.4 g , unit: 1000 pcs.
Type: 33100
Ref. No.: 107694



0

## B15d, BA15d Lampholders

For low-voltage and mains voltage halogen incandescent lamps

One-piece contact pins with screw terminals
to reduce voltage drop.
When using lampholders without cap it has to
be ensured protection from electric shock as well
as sufficient creepage distances and clearances
from live parts on the back of lampholders.

B15d, BA15d lampholders
Casing with fixing flange: zinc-coated polished steel
Insert: ceramic, T230
Nominal rating: 8/250
Fixing holes for screws M3
Weight: $15 / 16 \mathrm{~g}$, unit: 500 pcs.
Type: 78100
Ref. No.: 102923


## G9 Lampholders, Accessories

## For mains voltage halogen incandescent lamps

For luminaires of protection class II

## G9 lampholder

Casing: ceramic, cover plate: LCP, natural T300, nominal rating: 2/250
Push-in twin terminals for stranded conductors with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$ Weight: 7.5 g , unit: 1000 pcs.
Type: 33800
Ref. No.: 509357


G9 lampholder
Casing: ceramic, $\mathbf{T 3 0 0}$, nominal rating: 2/250 Leads: Cu nickel-plated, stranded conductors $0.75 \mathrm{~mm}^{2}$, double PTFE-insulation, length: 180 mm
Weight: 12.8 g , unit: 1000 pcs.
Type: 33906
Ref. No.: 532610


Metal bracket with nipple
For G9 lampholders type 338/339
Material: zinc-coated steel
Female nipple: M10x1
Weight: 7.8 g , unit: 1000 pcs.
Type: 94455
Ref. No.: 520880

Metal brackets
For G9 lampholders type 338/339
Material: zinc-coated steel
Fixing holes for screws M3
Weight: $1.5 / 3.5 \mathrm{~g}$, unit: 1000 pcs.
Type: 94457
Ref. No.: 520882
Type: 80280 with bracket $90^{\circ}$
Ref. No.: 521010

Cover cap for G9 lampholders type 338/339
Material: LCP
External thread $20.8 \times 2$
Moulded thread: MiOx
Weight: 3.2 g , unit: 1000 pcs.
Type: 97760
Ref. No.: 525583

## Screw rings

For components with external thread $20.8 \times 2$
Weight: $1.7 / 1.4 \mathrm{~g}$, unit: 1000 pcs.
Type: 97257
Ref. No.: 109550 PPS, black
Ref. No.: $\mathbf{5 0 7 4 9 0}$ LCP, natural




10

Metal screw rings
For components with external thread $20.8 \times 2$
Material: zinc-coated polished steel
Weight: $1.6 / 2 \mathrm{~g}$, unit: 1000 pcs.
Type: $93034 \varnothing 27 \mathrm{~mm}$, height: 7 mm
Ref. No.: 509110
Type: 93035 Ø 27 mm, height: 11 mm
Ref. No.: 509118

## G9 lampholder

Casing: ceramic, cover plate: LCP, natural T270, nominal rating: 2/250
Push-in twin terminals for stranded conductors with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 14.4 g , unit: 1000 pcs.
Type: 33500
Ref. No.: 502004

Cover caps for G9 lampholder 502004
Material: LCP, natural
External thread 28×2 IEC 60399
Fixing holes for screws M3
Weight: $8.7 / 4.6 \mathrm{~g}$, unit: 1000 pcs.
Type: 83310 female nipple: $\mathrm{M} 10 \times 1$
Ref. No.: 505951
Type: 97268 moulded thread: M10x1

## Ref. No.: 501942

## Screw ring

For components with external thread $28 \times 2$
Material: PPS, black
$\varnothing 34 \mathrm{~mm}$, height: 7.5 mm
Weight: 1.9 g , unit: 1000 pcs.
Type: 05202


Ref. No.: 502503

## GU10, GZ 10 Lampholders, Accessories

For mains voltage halogen incandescent lamps

GU1O, GZ10 lampholders
Casing: LCP, natural, T270, nominal rating: 2/250
Push-in twin terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 7 g , unit: 1000 pcs.
Type: 31000/31010
Ref. No.: 108979 GU1O, GZ1O lampholder
Ref. No.: 109007 GUlO lampholder


GU1O, GZ10 lampholders
For luminaires of protection class II
Casing: LCP, natural, T270, nominal rating: 2/250
Push-in twin terminals for stranded conductors with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 8 g , unit: 1000 pcs.
Type: 31020/31030
Ref. No.: 502111 GU1O, GZ1O lampholder
Ref. No.: 502112 GU1O lampholder

Cover cap for GU10, GZ10 lampholders type 310
Material: PA GF, black
Moulded thread: M1Ox1
Fixing holes for screws M3
Weight: 3.4 g , unit: 1000 pcs.
Type: 97244
Ref. No.: 109411


Cover cap for lampholders 502111/502112
External thread $32 \times 2$
Material: LCP, natural
Moulded thread: M10x1
Weight: 6 g , unit: 1000 pcs.
Type: 97320
Ref. No.: 502064




10

Screw ring
For components with external thread $32 \times 2$
$\varnothing 38.9 \mathrm{~mm}$, height: 7.5 mm
Material: PPS, black
Weight: 2.3 g, unit: 1000 pcs.
Type: 97282
Ref. No.: 502416

GU1O, GZ1O lampholders
Casing: steatite, cover plate: PPS
T240, nominal rating: 2/250
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.5-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: $13.6 / 14 \mathrm{~g}$, unit: 500 pcs.
Type: 31755/31705
Ref. No.: 535034 GU1O, GZ1O lampholder
Ref. No.: 535032 GUlO lampholder

Cover caps for lampholders type 315/317
Material: PBT GF
Front fixing holes for self-tapping
screws acc. to ISO 1481/7049-ST2.9-C/F
Cord grip: twist and block (for single-core leads)
Rear lead exit: max. $\varnothing 2.5 \mathrm{~mm}$
Weight: 6.9 g , unit: 500 pcs .
Type: 97765
Ref. No.: 536164 black
Ref. No.: 543615 grey

GU/GZ1O Lampholder set
For luminaires of protection class II
Casing lampholder: steatite, cover plate: PPS
T240, nominal value: $2 / 250$
Cover cap with cord grip: PBT GF
Leads: Cu, stranded conductors
$0.5 \mathrm{~mm}^{2}$, double FEP-insulation, length: 150 mm
Weight: 25 g , unit: 500 pcs.
Type: 31760
Ref. No. 554662


## R7s Ceramic Lampholders

## For mains voltage halogen incandescent lamps

The luminaire design must ensure protection from electric shock as well as sufficient creepage distances and clearances from live parts on the back of lampholder.

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
With fixing screw M4
Weight: 25.4 g , unit: 400 pcs.
Type: 32300

## Ref. No.: 100912

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M3/M4
Central hole for screw M4
Weight: 59.3 g , unit: 200 pcs.
Type: 32390 contact distance: 74.9 mm

## Ref. No.: 107213

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M3/M4
Central hole for screw M4
Weight: 61 g , unit: 200 pcs.
Type: 32391 contact distance: 74.9 mm

## Ref. No.: 107214

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M3/M4
Central hole for screw M4
Weight: 61.3 g , unit: 200 pcs.
Type: 32395 contact distance: 74.9 mm
Ref. No.: 107215

If the central hole on the bracket is used for fixing there must be a support within the luminaire to ensure that the bracket cannot be deformed.



10

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu , silver bulb
Nominal rating: $8 / 250$
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central hole for screw M4
Weight: 64.9 g , unit: 200 pcs.
Type: 32310 contact distance: 114.2 mm

## Ref. No.: 107195

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central threaded bush M4
Weight: 66.5 g , unit: 200 pcs .
Type: 32320 contact distance: 114.2 mm
Ref. No.: 107194

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central hole for screw M4
Weight: 65.4 g, unit: 200 pcs.
Type: 32340 contact distance: 114.2 mm

## Ref. No.: 107193

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 66.7 g, unit: 200 pcs.
Type: 32360 contact distance: 114.2 mm

## Ref. No.: 107192

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 71.3 g , unit: 200 pcs.
Type: 32380 contact distance: 114.2 mm
Ref. No.: 109497


Protection cap for R7s lampholders
For push-fit onto lampholders type 323
Protection against electrical shock
on the rear side of the lampholder
Lampholder with assembled protection cap on request
Material: LCP, natural
Weight: 0.7 g , unit: 1000 pcs.
Type: 97528
Ref. No.: 507592


## R7s Metal Lampholders

## For mains voltage halogen incandescent lamps

## R7s lampholder

Casing: Al, T300, contact pin: Ni
Nominal rating: 10/250
Lead: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 300 mm
Fixing flange
Fixing holes for screws M4
Weight: 21 g , unit: 50 pcs.
Type: 30023

## Ref. No.: 100616

R7s lampholder
Casing: Al, T300, contact pin: Cu, silver bulb Nominal rating: 10/250
Lead: Cu nickel-plated, stranded conductors
$1 \mathrm{~mm}^{2}$, PTFE-insulation, length: 300 mm
Fixing flange
Fixing holes for screws M3
Weight: 15.7 g , unit: 1000 pcs.
Type: 30523
Ref. No.: 100710

## R7s lampholder

Casing: Al, T300, contact pin: Cu, silver bulb
Nominal rating: 10/250
Lead: Cu nickel-plated, stranded conductors
1 mm², PTFE-insulation, length: 350 mm
Fixing bracket
Fixing holes for screws M4
Weight: 24.8 g , unit: 500 pcs.
Type: 30550
Ref. No.: 100720



10

## Connection Boxes

For connecting downlights in false ceilings according to standards
The luminaire manufaturer is responsible for the right choice of accessories.

Connection box
Material: PC, black
Split pins for wall thickness $0.5-1.5 \mathrm{~mm}$
With integrated 2-pole terminal block and
contact bushings: $2.5 \mathrm{~mm}^{2}$
With cord grip
Weight: 18 g, unit: 500 pcs.
Type: 85007
Ref. No.: 108940

Connection boxes
Material: PA, black
With integrated 2-pole terminal block for leads with cross-section: $0.5-2.5 \mathrm{~mm}^{2}$
Cord grip on primary side for leads
H03VV-F/H05VV-F ( $\varnothing 5-7 \mathrm{~mm}$ ) and
single-core $\varnothing$ 3-7 mm
Cord grip on secondary side for
single-core Teflon leads up to $\varnothing 3 \mathrm{~mm}$
and single-core PVC leads up to $\varnothing 2.2 \mathrm{~mm}$
Weight: $21.8 / 20.1 \mathrm{~g}$, unit: 500 pcs .
Type: 85011/85012 plastic bracket
with locking screw
Ref. No.: 54304812 V
Ref. No.: 543049230 V
Type: 85013/85014 for fixing screw
Ref. No.: 54305312 V
Ref. No.: 543054230 V

Connection boxes
With plastic bracket with locking screw
Material: PA, black
With integrated 3-pole terminal block for leads with cross-section: $0.75-4 \mathrm{~mm}^{2}$
Cord grip on primary side for leads $\varnothing 2.5-11 \mathrm{~mm}$
Cord grip on secondary side for
single-core Teflon leads up to $\varnothing 1.8 \mathrm{~mm}$ and single-core PVC leads up to $\varnothing 2.2 \mathrm{~mm}$
Weight: 28.7 g , unit: 500 pcs.
Type: 85015/85016
Ref. No.: 54305812 V
Ref. No.: 543059230 V

## Application examples for connection box



## Connectors

Modular system for various assembly options
Connectors can be delivered pre-assembled with lampholder and lead assemblies

Male and female plug
Nominal rating: 7/600
For cable: $0.3-0.9 \mathrm{~mm}^{2}$
For crimping on the end of lead
Material: brass, tinned
Weight: 0.1 g , unit: 5000 pcs.
Type: 93088 male plug
Ref. No.: 505251


Type: 93089 female plug
Ref. No.: 506807

Male and female casing
For male and female plug
For push-fit assembly
Material: PA, natural
Weight: 0.8/1 g, unit: 2500 pcs.
Type: 97355 male casing
Ref. No.: 509295 UL94V-O
Ref. No.: 508562 UL94V-2
Type: 97356 female casing
Ref. No.: 509296 UL94V-O
Ref. No.: 508563 UL94V-2



## LAMPHOLDERS MADE OF THERMOPLASTICS, METAL AND PORCELAIN



## LAMPHOLDERS FOR GENERAL-SERVICE INCANDESCENT

The general-service light bulb owes its name to its bulbous shape, which has remained almost unchanged to this day. The tungsten filament contained within the bulb's glass shell, in which there used to be a vacuum but which is nowadays more usually filled with an inert gas, begins to glow as electricity is passed through it. Despite the considerable technical progress that has been made, the typical disadvantages associated with light bulbs still remain. For instance, incandescent lamps mainly radiate heat with no more than 5-10\% light output and have a service life of approx. 1000 operating hours.

As a result of energy-efficiency regulations in the various regions of the world, the use of all-purpose incandescent lamps has been limited or even banned. Nonetheless, thanks to the many different shapes and surfaces of lamp bulbs, all-purpose incandescent lamps still have a firm place in decorative residential lighting applications and are often an important feature of luminaire designs. Retrofit lamps that comply with energy-efficiency regulations are increasingly being used as a replacement for all-purpose incandescent lamps and use the same lampholder systems found with E12/E14, E26/E27, E39/E40, B15d and B22d bases.

## VS lampholders for general-service incandescent and retrofit lamps

Depending on the operating conditions, lampholders can be made of thermoplastics, metal or porcelain. Metal lampholders are most offen used for high-grade decorative luminaires. In accordance with protection class I, metal lampholders must be included in the measures taken to earth the luminaire.

Due to their heat resistance, Edison lampholders made of porcelain are frequently used for higher-output lamps. Classic lampholder materials like metal and porcelain are increasingly being displaced by modern thermoplastics.
E 14 lampholders ..... 280-288
E14 thermoplastic lampholders, one-piece and cover caps ..... 280-284
E14 thermoplastic lampholders, three-piece ..... 285-287
E 14 metal lampholders, three-piece ..... 287-288
E 14 thermoplastic rocker switch lampholders ..... 288
E27 lampholders ..... 289-305
E27 thermoplastic lampholders, one-piece and cover caps ..... 289-293
E27 renovation kit lampholders ..... 294
E27 thermoplastic lampholders, three-piece ..... 295-297
E27 porcelain lampholders ..... 298-299
E27 metal lampholders, three-piece ..... 300
E27 thermoplastic pull-switch lampholders ..... 301-302
E27 metal pull-switch lampholders ..... 302-303
E27 thermoplastic rocker switch lampholders ..... 303-304
E27 festoon lampholders ..... 304-305
B22d lampholders, accessories ..... 305-306
Accessories for E14, E27 and B22d lampholders ..... 307-312
E40 porcelain lampholders ..... 313
Technical details for incandescent lamps ..... 314-327
General technical details ..... 348-356
Glossary ..... 357-359

## E 14 Thermoplastic Lampholders, One-piece

## For incandescent lamps with base E 14

E14 lampholders with temperature marking
T180 on request.
Brass-finished versions are available on request.

E14 lampholders, for cover caps
Plain casing
Casing: PET GF, T210, nominal rating: $2 / 250$
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST2.9-C/F
Weight: $11.3 / 11.4 \mathrm{~g}$, unit: 1000 pcs.
Type: 64001
Ref. No.: 109384 white
Ref. No.: 109383 black

E14 lampholders, for cover caps
External thread 28×2 IEC 60399
Casing: PET GF, T210, nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Weight: $12.5 / 12.2 \mathrm{~g}$, unit: 1000 pcs .
Type: 64101
Ref. No.: 109387 white
Ref. No.: 109386 black

E14 lampholders, for cover caps
External thread $28 \times 2$ IEC 60399, with flange
Casing: PET GF, T210, nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Weight: 12.7 g , unit: 1000 pcs.
Type: 64201
Ref. No.: 503924 white
Ref. No.: 503923 black

E14 lampholders, for cover caps
Profiled shape, short external thread $28 \times 2$ IEC 60399
Casing: PET GF, T210, Nominal rating: $2 / 250$
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Weight: $8.5 / 8.4 \mathrm{~g}$, unit: 1000 pcs.
Type: 64370
Ref. No.: 546456 white
Ref. No.: 546454 black


Lampholders for General-service Incandescent

E14 lampholders
Profiled shape, short external thread $28 \times 2$ IEC 60399
Casing: PET GF, T210, nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
For clipping-in
Weight: $6.6 / 6.8 \mathrm{~g}$, unit: 1000 pcs.
Type: 64360
Ref. No.: 506247 white
Ref. No.: 506249 black

E14 lampholders
Profiled shape, nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Lateral push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$
for wall thickness $0.6-1.3 \mathrm{~mm}$
Tilt of lamp axis: $6^{\circ}$
For cover cap 503579
Weight: 9.1/9.2 g, unit: 1000 pcs.
Type: 64307
Ref. No.: 108983 PBT GF, white, T180
Ref. No.: $\mathbf{5 0 9 2 6 3}$ PET GF, natural, T210
E14 lampholder
Profiled shape
Casing: PET GF, white, T210
Nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
For insertion, clipping-in or bayonet fixing
for plastic cut-out: $\varnothing 27.5 \mathrm{~mm}$
with wall thickness: 2.5 mm
Weight: 7.1 g , unit: 1000 pcs.
Type: 64308
Ref. No.: 533820
E14 lampholder
Profiled shape
Casing: PET GF, white, T250
Nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
For insertion: clipping-in for
a profiled hole with wall thickness $0.6-0.7 \mathrm{~mm}$
Weight: 9 g , packaging unit: 1000 pcs.
Type: 64314
Ref. No.: 564135





## Cover Caps

For E14 thermoplastic lampholders, one-piece

Brass-finished versions are available on request.

Cover cap for lampholders type 64307
For luminaires of protection class II
Material: PP, white
Weight: 2.4 g , unit: 1000 pcs.
Type: 97322
Ref. No.: 503579

## Cover caps

Material: PA GF
Female nipple: $\mathrm{MiOx1}$
Weight: $7.6 / 8.8 \mathrm{~g}$, unit: 1000 pcs.
Type: 85075
Ref. No.: 109110 white
Ref. No.: 109112 black

Cover caps
Material: PA GF
Moulded thread: M10x1
Rotation stop: external
Weight: 2.7 g, unit: 1000 pcs.
Type: 97636
Ref. No.: 109676 white
Ref. No.: 109677 black

## Cover caps

Material: PA GF
Moulded thread: M1Ox1
Rotation stop: external
With locking screw
Weight: 3 g, unit: 1000 pcs.
Type: 85076
Ref. No.: 400818 white
Ref. No.: 400817 black

Cover caps
Height: 19 mm
Material: PA GF
Moulded thread: M1Ox1
Rotation stop: external
Weight: 3.2/3.1 g, unit: 1000 pcs.
Type: 97705
Ref. No.: 520733 white
Ref. No.: 520734 black


Cover caps
Height: 19 mm
Material: PA GF
Moulded thread: M1Ox]
Rotation stop: external
With locking screw
Weight: 3.6/3.5 g, unit: 1000 pcs
Type: 85074
Ref. No.: 520735 white
Ref. No.: 520736 black

Cover caps
Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: internal and external
Weight: 4.3 g , unit: 1000 pcs.
Type: 97666
Ref. No.: 109119 white
Ref. No.: 109120 black

Cover caps
Material: PA GF
Profiled hole: $\varnothing 10.5 \times 8.6 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 4.4/4.3 g, unit: 1000 pcs.
Type: 97635
Ref. No.: 109122 white
Ref. No.: 109123 black

Cover cap
Material: PA GF
Profiled hole: $\varnothing 10.4$ mm
Rotation stop: internal and external
Weight: 4 g , unit: 1000 pcs.
Type: 97697

## Ref. No.: 109126 black

Cover caps
Height: 19 mm
Material: PA GF
Profiled hole: $\varnothing 10.4 \mathrm{~mm}$
Rotation stop: internal and external
Weight: 2.7 g, unit: 1000 pcs.
Type: 97708
Ref. No.: 520759 white
Ref. No.: 520760 black




Cover caps
With peg
With integrated cord grip
For leads HO3VVH2-F 2 X0. 75
Material: PA GF
Weight: 4.2/4.3 g, unit: 1000 pcs.
Type: 97000
Ref. No.: 503457 white
Ref. No.: 503458 black

## Cover cap

With male nipple: MiOx 1
With rotation stop
With integrated cord grip
For leads HO3VVH2-F 2 XO .75
Material: PA GF, white
Weight: 4.1 g , unit: 1000 pcs.
Type: 97037
Ref. No.: 508067

## Cover cap

External thread 28x2 IEC 60399
With integrated cord grip
For leads HO3VVH2-F 2X0.75
Material: PA GF, natural
Weight: 5.5 g , unit: 1000 pcs.
Type: 97427

## Ref. No.: 509340

## Cover cap

Lateral push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$
For luminaires of protection class II
Material: PA GF, white
Weight: 4.3 g , unit: 1000 pcs.
Type: 97745

## Ref. No.: 546006

## Cover cap

With central positioning stud
Material: PA GF
Fixing holes for countersunk screws $\varnothing 3 \mathrm{~mm}$
Weight: 3 g , unit: 1000 pcs.
Type: 91522
Ref. No.: 535357



## E 14 Thermoplastic Lampholders, Three-piece

## For incandescent lamps with base E14

Nominal rating: 2/250
Temperature marking: T190
Brass-finished versions are available on request.

## Inserts

Material: PET GF, black
Casing lock
Weight: 3.9/3.2 g, unit: 1000 pcs.
Type: 81095 screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$

## Ref. No.: 103424

Type: 81096 push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Ref. No.: 107716


Plain casings
Material: PET GF
Weight: 9/8.5 g, unit: 1000 pcs.
Type: 81093
Ref. No.: 103415 white
Ref. No.: 103414 black


Threaded casings $28 \times 2$ IEC 60399
Material: PET GF
Weight: 9.8/9.6 g, unit: 1000 pcs.
Type: 81109
Ref. No.: 103431 white
Ref. No.: 103430 black


With flange
Material: PET GF
Weight: 10.6/10.4 g, unit: 1000 pcs.
Type: 81120
Ref. No.: 103443 white
Ref. No.: 103442 black


## Caps

Material: PA GF
Female nipple: MiOx
Height: 13.7 mm
Weight: 6.9/7.2 g, unit: 1000 pcs.
Type: 81002
Ref. No.: 109102 white
Ref. No.: 109103 black


## Caps

Material: PA GF
Female nipple: MiOx
Height: 18.7 mm
Weight: $7 / 7.3 \mathrm{~g}$, unit: 1000 pcs.
Type: 81024
Ref. No.: 109805 white
Ref. No.: 109145 black

## Caps

Material: PA GF
Moulded thread: M10x1
Rotation stop: external
Height: 13.7 mm
Weight: $3.3 / 3.7 \mathrm{~g}$, unit: 1000 pcs.
Type: 96159
Ref. No.: 109095 white
Ref. No.: 109084 black

## Caps

Material: PA GF
Moulded thread: M1Ox1
Rotation stop: external
Height: 18.7 mm
Weight: 3.6/3.9 g, unit: 1000 pcs.
Type: 96211
Ref. No.: 109149 white
Ref. No.: 109150 black

## Caps

Material: PA GF
Moulded thread: MiOx
Rotation stop: external
With locking screw
Height: 13.7 mm
Weight: 3.7/4 g, unit: 1000 pcs.
Type: 81130
Ref. No.: 109041
white
Ref. No.: 109054 black

## Caps

Material: PA GF
Moulded thread: M10x1
Rotation stop: external
With locking screw
Height: 18.7 mm
Weight: 3.9/4.3 g, unit: 1000 pcs.
Type: 81132
Ref. No.: 109152 white
Ref. No.: 109153 black

## Caps

Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: internal
Height: 13.7 mm
Weight: 3.3 g , unit: 1000 pcs.
Type: 96004


Ref. No.: 508352 white
Ref. No.: 508353 black

## E14 Metal Lampholders, Three-piece

## For incandescent lamps with base E 14

Nominal rating: 2/250
Temperature marking: T190/T240
Type: 513 plain casing
Type: 514 threaded casing $28 \times 2$

Insert
Material: porcelain, white
Casing lock
Screw terminals: 0.5-2.5 mm²
Weight: 10.3 g , unit: 500 pcs .
Type: 83142
Ref. No.: 550375

Plain casings
Material: zinc-coated polished steel
Weight: 14.3/14.2/18.3/18.2 g
Unit: 500 pcs.
Type: 81019 insulating threaded ring: duroplastic, T190
Ref. No.: 103359 chrome-finish
Ref. No.: 103360 brass-finish


Type: 81018 insulating threaded ring: steatite, T240
Ref. No.: 507049 chrome-finish
Ref. No.: $\mathbf{5 0 7 0 5 0}$ brass-finish




Threaded casings $28 \times 2$ IEC 60399
Material: zinc-coated polished steel
Weight: 14.4/14.4/18.9/18.9 g
Unit: 500 pcs.
Type: 81022 insulating threaded ring: duroplastic, T190
Ref. No.: 103365 chrome-finish
Ref. No.: 103366 brass-finish
Type: 81017 insulating threaded ring: steatite, T240
Ref. No.: $\mathbf{5 0 7 0 5 2}$ chrome-finish
Ref. No.: $\mathbf{5 0 7 0 5 3}$ brass-finish

## Caps

Material: zinc-coated polished steel
Female nipple: $\mathrm{M1Ox} 1$
Weight: 7.2/7.1/7.9/7.8 g
Unit: 500 pcs.
Type: 80006
Ref. No.: 102946 chrome-finish
Ref. No.: 102947 brass-finish
Type: 80003 with earth terminal
Ref. No.: 102938 chrome-finish
Ref. No.: 102939 brass-finish


## E14 Thermoplastic Rocker Switch Lampholders

## For incandescent lamps with base E 14

Nominal rating: 2/250
Temperature marking: T160
Suitable casings see page 293:
Type: 81093 plain casing


Type: 81109 threaded casing $28 \times 2$
Type: 81120 threaded casing $28 \times 2$, with flange

Inserts with switch
Material: PET GF
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Weight: 7.9 g , unit: 1000 pcs.


Type: 83141
Ref. No.: 537087 switch, white
Ref. No.: 537088 switch, black

## Caps

Material: PET GF
Moulded thread: M10x1
with locking screw
Weight: 9.9 g , unit: 1000 pcs.
Type: 81100
Ref. No.: 537079 white


# E27 Thermoplastic Lampholders, One-piece 

For incandescent lamps with base E27

E27 lampholders with temperature marking
T180 on request.
Brass-finished versions are available on request.

E27 lampholders, for cover caps
Plain casing
Casing: PET GF, T210
Nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Weight: 17.4 g , unit: 500 pcs.
Type: 64401
Ref. No.: 108936 white
Ref. No.: 500810 black

E27 lampholders, for cover caps
External thread 40×2.5 IEC 60399
Casing: PET GF, T210
Nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Weight: 19.1/18.8 g, unit: 500 pcs.
Type: 64501
Ref. No.: 108965 white
Ref. No.: 109429 black

E27 lampholders, for cover caps
External thread $40 \times 2.5$ IEC 60399, with flange
Casing: PET GF, T210
Nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Weight: 21.4 g , unit: 500 pcs
Type: 64601
Ref. No.: 501358 white
Ref. No.: 501356 black

E27 lampholders, for cover caps
Profiled shape, external thread 40×2.5 IEC 60399
Casing: PET GF, T210, nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $14.8 / 14.9 \mathrm{~g}$, unit: 500 pcs.
Type: 64719
Ref. No.: 504303 white
Ref. No.: 504302 black



10

## Lampholders for General-service Incandescent

E27 lampholders, for cover caps
Profiled shape, external thread 40×2.5 IEC 60399
Casing: PET GF, T210, nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $11.4 / 11.3 \mathrm{~g}$, unit: 500 pcs.
Type: 64775
Ref. No.: 506255 white
Ref. No.: 506257 black

## E27 lampholders

Profiled shape, plain, nominal rating: 4/250
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $11.7 / 11.5 / 13 \mathrm{~g}$, unit: 500 pcs.
Type: 64785
Ref. No.: $\mathbf{5 0 6 2 6 3}$ PET GF, white, T210
Ref. No.: $\mathbf{5 0 6 2 6 5}$ PET GF, black, T210
Ref. No.: 506267 LCP, natural, T270

E27 lampholders
For cover caps type 97545/80023 (see p. 292)
Profiled shape, plain, nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $11.5 / 14.9 \mathrm{~g}$, unit: 500 pcs .
Type: 64770
Ref. No.: 108953 PET GF, natural, T210
Ref. No.: 109838 LCP, natural, T270

## E27 lampholder

For luminaires of protection class II
Profiled shape, plain
Casing: PET GF, white, T210
Nominal rating: 4/250
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Lateral fixing hole for screw M4
Tilt of lamp axis: $3^{\circ}$
Weight: 15.2 g , unit: 500 pcs.
Type: 64781

## Ref. No.: 503041

E27 lampholders
Profiled shape, plain
Casing: PET GF, T210
Nominal rating: $4 / 250$
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Lateral fixing hole for screw M4
Tilt of lamp axis: $3^{\circ}$
Weight: 13.3 g , unit: 500 pcs.
Type: 64740
Ref. No.: 108747 white
Ref. No.: 529599 natural


## Lampholders for General-service Incandescent

E27 lampholder
Profiled shape, external thread 40×2.5 IEC 60399
Casing: PET GF, natural, T210, nominal rating: 4/250 Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$ Lateral push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$ Fixing clips for wall thickness $0.4-1 \mathrm{~mm}$ Tilt of lamp axis: $12^{\circ}$
For cover cap 504615 (see below)
Weight: 14.7 g , unit: 500 pcs.
Type: 64741

## Ref. No.: 108758



## Cover Caps

For E27 thermoplastic lampholders, one-piece and for B22d thermoplastic lampholders

Cover cap for lampholder 108758 (see above) For luminaires of protection class II
Material: PA GF, white
Weight: 2.7 g , unit: 500 pcs.
Type: 97321
Ref. No.: 504615



For luminaires of protection class II
Material: PA GF, natural
Weight: 4.8 g , unit: 500 pcs.
тype: 97497

## Ref. No.: 526886

Type: 97498 fixing hole: $\varnothing 10 \mathrm{~mm}$
Ref. No.: 529464


Protection caps for E27 lampholders with
bracket with earth connection 400772 (s. p. 309
For lampholder type 64770/64785 (s. p. 290)

## Ref. No. 529464



Cover caps
Material: PA GF
Female nipple: M10x1
Weight: 9.6/9.9 g, unit: 500 pcs.
Type: 85070
Ref. No.: 109077 white
Ref. No.: 109092 black


Cover caps
Material: PA GF
Moulded thread: M1Ox1
Cross groove for rotation stop: external
Weight: 4.4/4.6 g, unit: 500 pcs.
Type: 97665
Ref. No.: 109679 white
Ref. No.: 109680 black

## Cover caps

Material: PA GF
Moulded thread: M10x1
Cross groove for rotation stop: external
With lateral hole
Weight: $4 / 4.6 \mathrm{~g}$, unit: 500 pcs.
Type: 97664
Ref. No.: 109795 white
Ref. No.: 109794 black

## Cover caps

Material: PA GF
Moulded thread: M10x1
Cross groove for rotation stop: external
With locking screw
Weight: $4.7 / 4.9 \mathrm{~g}$, unit: 500 pcs.
Type: 85077
Ref. No.: 400819 white
Ref. No.: 400820 black

## Cover caps

For E27 lampholders type 64770
Material: PA GF, black
Moulded thread: $\mathrm{M} 10 \times 1$
Cross groove for rotation stop: external
Weight: $3.1 / 3.4 \mathrm{~g}$, unit: 500 pcs.
Type: 97545

## Ref. No.: 532390

Type: 80023 with locking screw
Ref. No.: 532391

Cover caps
Material: PA GF
Profiled hole: $\varnothing 10.4$ mm
Rotation stop: internal and external
Weight: 5.7/5.9 g, unit: 500 pcs.
Type: 97698
Ref. No.: 109560 white
Ref. No.: 109184 black


Lampholders for General-service Incandescent

Cover caps
Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: external
Fixing holes for screws M4
Weight: $5.4 / 5.5 \mathrm{~g}$, unit: 500 pcs .
Type: 97511
Ref. No.: 109045 white
Ref. No.: 109062 black

## Cover caps

Conical shape
Material: PA GF
Moulded thread: M10x1
Cross groove for rotation stop: external
Weight: 8.9/8.8 g, unit: 500 pcs.
Type: 97260
Ref. No.: 109555 white
Ref. No.: 109556 black

Cover caps
Conical shape
Material: PA GF
With integrated cord grip
For leads H03VV-F $2 \times 0.5$ or
H03VV-F 2X0.75
Weight: 10.6/10.5 g, unit: 500 pcs.
Type: 83282
Ref. No.: 109159 white
Ref. No.: 109462 black

Cover cap for lampholder 102624 (see p. 299)
With cord grip for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Cord grip for luminaires of protection class II
Material: PA GF, black
Weight: $12.5 / 2.2 \mathrm{~g}$, unit: 500 pcs.
Type: 96206 cover cap

## Ref. No.: 107178

Type: 96242 cord grip
Ref. No.: 107177

Cover caps
Material: PA GF
With integrated cord grip
For leads HO3VV-F $2 \times 0.5$ or
H03VV-F 2X0.75
Weight: 6.6/5.8 g, unit: 500 pcs.
Type: 83283
Ref. No.: 504769 white
Ref. No.: 507075 black



## E27 Renovation Kit Lampholders

## For incandescent lamps with base E27

E27 renovation kit lampholders with suspension
Profiled shaped lampholder 64770 - T180
Cover cap with cord grip 532394
Nominal rating: 4/250
Lead: Cu, stranded conductors $0.75 \mathrm{~mm}^{2}$,
double PVC-insulation, length: 150 mm
Weight: $25.8 / 26.2 \mathrm{~g}$, unit: 150 pcs.
Type: 64770
Ref. No.: 564680 black, with screw terminal
Ref. No.: 564681 black, with push-in terminal


## E27 Thermoplastic Lampholders, Three-piece

For incandescent lamps with base E27
Nominal rating: 4/250
Temperature marking: T190
Brass-finished versions are available on request.

## Inserts

Material: PET GF, black
Casing lock
Weight: $5.7 / 0.1 \mathrm{~g}$, unit: 500 pcs.
Type: 83285 push-in terminals: $0.5-1.5 \mathrm{~mm}^{2}$


## Ref. No.: 103643

Type: 83011 screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Ref. No.: 103520

Plain casings
Material: PET GF
Weight: $14.5 / 14.3 \mathrm{~g}$, unit: 500 pcs.
Type: 83000

## Ref. No.: 103468 white

Ref. No.: 103467 black


Threaded casings 40×2.5 IEC 60399
Material: PET GF
Weight: 17/16.1 g, unit: 500 pcs.
Type: 83002
Ref. No.: 103484 white
Ref. No.: 103483 black




10
Threaded casings $40 \times 2.5$ IEC 60399
With flange
Material: PET GF
Weight: $16.7 / 17 \mathrm{~g}$, unit: 500 pcs.
Type: 83173
Ref. No.: 103570 white
Ref. No.: 103569 black


## Caps

Material: PA GF
Profiled hole: $\varnothing 10.5 \times 8.6 \mathrm{~mm}$
Fixing holes for screws M4
Height: 13.8 mm
Weight: $5.6 / 6 \mathrm{~g}$, unit: 500 pcs
Type: 96148
Ref. No.: 109188 white
Ref. No.: 109187 black

## Caps

Material: PA GF
Female nipple: MiOx
Height: 17 mm
Weight: $9.8 / 10.1 \mathrm{~g}$, unit: 500 pcs.
Type: 83007
Ref. No.: 109052 white
Ref. No.: 109039 black


Caps with earth terminal
Material: PA GF
Female nipple: $\mathrm{M} 10 \times 1$
Height: 17 mm
Weight: $10.7 / 11 \mathrm{~g}$, unit: 500 pcs.
Type: 83035
Ref. No.: 109098 white
Ref. No.: 109099 black

## Caps

Material: PA GF
Moulded thread: M1Ox1
Rotation stop: external
Height: 17 mm
Weight: $6.7 / 7 \mathrm{~g}$, unit: 500 pcs
Type: 96147
Ref. No.: 109195 white
Ref. No.: 109196 black

## Caps

Material: PA GF
Moulded thread: M10x1
Rotation stop: external
With locking screw
Height: 17 mm
Weight: $7.1 / 7.3 \mathrm{~g}$, unit: 500 pcs .
Type: 83293
Ref. No.: 109087 white
Ref. No.: 109074 black

## Caps

Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: internal and external
Height: 17 mm
Weight: 5.9/6.6 g, unit: 500 pcs
Type: 96154
Ref. No.: 109190 white
Ref. No.: 109191 black

## Caps

Material: PA GF
Profiled hole: $\varnothing 10.3 \mathrm{~mm}$
Rotation stop: internal and external
Height: 17 mm
Weight: $5.9 / 6.6 \mathrm{~g}$, unit: 500 pcs.
Type: 96124
Ref. No.: 109559 white
Ref. No.: 109512 black

## Caps

Conical shape
Material: PA GF
Female nipple: MIOx
Height: 19.2 mm
Weight: 14.2/15.2 g, unit: 500 pcs.
Type: 83274
Ref. No.: 109081 white
Ref. No.: 109093 black

## Caps

Conical shape
Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: internal
Height: 19.2 mm
Weight: 10.4/10.6 g, unit: 500 pcs.
Type: 96172
Ref. No.: 109060 white
Ref. No.: 109044 black





## E27 Porcelain Lampholders

For incandescent lamps with base E27

E27 lampholders, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 60.6 g , unit: 250 pcs.
Type: 62050

## Ref. No.: 102599

Type: 62010 with lamp safety catch (with spring)

## Ref. No.: 102577

Type: 62009 with lamp safety catch (with crushing)

## Ref. No.: 544605

E27 lampholder, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing pillars for screws M3
Weight: 66.3 g , unit: 250 pcs .
Type: 62015


Ref. No.: 102582

E27 lampholder, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 60.5 g , unit: 200 pcs.
Type: 62070
Ref. No.: 543304

E27 lampholder, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
With lateral fixing flange,
tilt angle: $15^{\circ}$
Spring loaded central contact
Fixing hole for screw M4
Weight: 67.6 g , unit: 200 pcs.
Type: 62415
Ref. No.: 543414

## Lampholders for General-service Incandescent

E27 lampholder, one-piece, for cover caps (see p. 291-293)
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 66.5 g , unit: 250 pcs .
Type: 62310


Ref. No.: 102624

E27 lampholder
For cover caps type 80010, 97735 and 97742
(see below)
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing holes for screw M4
Weight: 66.5 g , unit: 250 pcs.
Type: 62370
Ref. No.: 543303
Cover caps for lampholder 543303
Material: PA GF
Weight: $12.5 / 12.5 / 10 / 10 \mathrm{~g}$, unit: 500 pcs.
Type: 97735 moulded thread: M10x1,
without locking screw
Ref. No.: 536445 black
Ref. No.: 536446 white
Type: 97742 moulded thread: M10x1,
with lateral hole, without locking screw
Ref. No.: 535247 black
Type: 80010 female nipple: G3/8A


## Ref. No.: 535694 white




E27 lampholder, three-piece
Material: porcelain, white, T240, nominal
rating: $4 / 250$, screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Weight: 116/125/116/125/121.7/130.7 g
Unit: 25 pcs.
Type: 62061 female nipple: M 10 x 1
Ref. No.: 535684
Ref. No.: 535685 with earth screw
Type: 62062 female nipple: M13x1
Ref. No.: 536451
Ref. No.: 536452 with earth screw
Type: 62063 female nipple: G3/8A
Ref. No.: 534832
Ref. No.: 534833 with earth screw


10

## E27 Metal Lampholders, Three-piece

For incandescent lamps with base E27

Nominal rating: 4/250
Type: 670 plain casing
Type: 671 threaded casing $40 \times 2.5$
Temperature marking: T240


## Inserts

Material: porcelain, white
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact, casing lock
Weight: $22.8 / 23.3 \mathrm{~g}$, unit: 500 pcs.
Type: 83221
Ref. No.: 103595


Type: 83223 with earth terminal
Ref. No.: 103597

Plain casings
Material: zinc-coated polished steel
Weight: 23.5/22.9/27.1/27.1g
Unit: 500 pcs.
Type: 83218 insulating threaded ring: PPS
Ref. No.: 103582 chrome-finish
Ref. No.: 103583 brass-finish
Type: 83226 insulating threaded ring: steatite


Ref. No.: 504640 chrome-finish
Ref. No.: 504641 brass-finish

Threaded casings 40×2.5 IEC 60399
Material: zinc-coated polished steel
Weight: 24/23.1/27.3/27.6 g
Unit: 500 pcs.
Type: 83219 insulating threaded ring: PPS
Ref. No.: 103590 chrome-finish
Ref. No.: 103591 brass-finish
Type: 83227 insulating threaded ring: steatite
Ref. No.: 504643 chrome-finish
Ref. No.: 504644 brass-finish

## Caps

Material: zinc-coated polished steel
Female nipple: $\mathrm{MiOx1}$
Weight: 10.6/10.8/11.4/11.3 g
Unit: 500 pcs.
Type: 80342
Ref. No.: 103020 chrome-finish
Ref. No.: 103021 brass-finish
Type: 80343 with earth terminal
Ref. No.: 103026 chrome-finish
Ref. No.: 103027 brass-finish


## E27 Thermoplastic Pull-switch Lampholders

## For incandescent lamps with base E27

Nominal rating: 2/250
Type: 65300 plain casing, with pull cord
Type: 65308 plain casing, with draw chain
Type: 65400 threaded casing $40 \times 2.5$,
with pull cord
Type: 65408 threaded casing $40 \times 2.5$,
with draw chain

Insert with pull cord
Material: PET GF, black
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Length of cord: 250 mm
Weight: 12.3 g , unit: 500 pcs.
Type: 83146


## Ref. No.: 507802

End button for pull cord, material: PS, white
Weight: 0.8 g , unit: 500 pcs.
Type: 96010

## Ref. No.: 105144

Insert for brass chain
Material: PET GF, black
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Weight: 11.7 g , unit: 500 pcs
Type: 83147

## Ref. No.: 507803

Draw chain with end button
Material: brass, length of chain: 85 mm
Weight: 3.9 g, unit: 500 pcs.
Type: 94304
Ref. No.: 104928

Plain casings
Material: PET GF
Weight: 11.7 g , unit: 500 pcs.
Type: 96033

## Ref. No.: 105179 white

Ref. No.: 109280 black

Threaded casings 40×2.5 IEC 60399
Material: PET GF
Weight: 9.3 g , unit: 500 pcs.
Type: 96034
Ref. No.: 105185 white
Ref. No.: 109281 black




## Caps

Material: PET GF
Female nipple: $\mathrm{M1Ox1}$
Weight: 19.8/19.4 g, unit: 500 pcs.
Type: 83258
Ref. No.: 109282 white
Ref. No.: 109283 black


Ref. No.: 501351 white
Ref. No.: 501352 black
Flange rings
For pull-switch lampholders type 654
Material: PA GF
$\varnothing 60 \mathrm{~mm}$, height: 6.5 mm
Weight: 3/3.1 g, unit: 500 pcs.
Type: 08400

## E27 Metal Pull-switch Lampholders

## For incandescent lamps with base E27

Nominal rating: 2/250
Type: 55204 plain casing, with pull cord
Type: 55203 plain casing, with draw chain
Type: 55304 threaded casing $40 \times 2.5$, with pull cord
Type: 55303 threaded casing $40 \times 2.5$, with draw chain


Insert with pull cord
Material: porcelain, white
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Length of cord: 250 mm , casing lock
Weight: 28 g , unit: 500 pcs.
Type: 83006

## Ref. No.: 103504

End button for pull cord, material: PS, white
Weight: 0.8 g , unit: 500 pcs.
Type: 96010


Insert for brass chain
Material: porcelain, white
Screw terminals: 0.5-2.5 mm²
Weight: 29.4 g , unit: 500 pcs.
Type: 83008

## Ref. No.: 103515

Draw chain with end button
Material: brass, length of chain: 85 mm
Weight: 3.9 g , unit: 500 pcs .


Type: 94304
Ref. No.: 104928


Casings
Material: brass, passivated
Insulating threaded ring: PPS
Weight: 21.5/22.7 g, unit: 500 pcs.
Type: 83218 plain casing
Ref. No.: 103587
Type: 83219 threaded casing $40 \times 2.5$
Ref. No.: 103594

Cap with earth terminal
Material: brass, passivated
Female nipple: MiOx
With insulating insert
Weight: 20 g , unit: 500 pcs.
Type: 80014
Ref. No.: 102956





## Caps

Material: PA GF
Profiled hole: $\varnothing 10.4$ mm
Rotation stop: internal and external
Weight: 8.2/10.4 g, unit: 500 pcs.
Type: 96229
Ref. No.: 109200 white
Ref. No.: 109201 black


## E27 Festoon Lampholders

## For lighting chains of protection class II

Degree of protection: IP44
Type: 64710/11
The lampholders may only be operated with the
lamp pointing downwards and with a gasket.

E27 festoon lampholder
For lamps max. 40 W
Material: PBT GF, black
Nominal rating: 4/250
Blade contacts
for festoon lead H05RN H2-F 2X1. 5
To be used only with protection cap
Weight: 13.8 g , unit: 500 pcs.
Type: 83297


## Ref. No.: 109158

Protection cap
For E27 festoon lampholders
Material: PA GF, black
With ready-fitted stainless screws
Weight: 6.3 g , unit: 500 pcs.
Type: 83300 with non-removable screws
Ref. No.: 109243


Protection cap
For E27 festoon lampholders
Material: PA GF, black
With ready-fitted stainless screws
Fixing holes for screws M4
Weight: 7.2 g , unit: 500 pcs.
Type: 83301 with non-removable screws
Ref. No.: 502515

Gasket
For E27 festoon lampholders
Material: silicone
Weight: 4 g , unit: 500 pcs.
Type: 98006

## Ref. No.: 106817



## B22d Lampholders, Accessories

## For mains voltage halogen incandescent lamps

B22d lampholders
For cover caps (see p. 291-293)
Nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $12.7 / 12.3 \mathrm{~g}$, unit: 500 pcs.
Type: 64800
Ref. No.: 108748 PET GF, T180, white
Ref. No.: 544621 PET GF, T210, white


Plain casing
For B22d lampholders type 64800
For cover caps (see p. 291-293)
Threaded casing on request
Material: PA GF, white
Weight: 14.5 g , unit: 500 pcs.
Type: 96021
Ref. No.: 504749



Lampholders for General-service Incandescent

B22d lampholder
With protection flange
For cover caps type 80010, 97735
and 97742 (see below)
Casing: porcelain, white, T240
Nominal rating: 2/250
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 84.7 g, unit: 150 pcs.
Type: 64900

## Ref. No.: 535673

B22d lampholder
Casing: porcelain, white, T240
Nominal rating: 2/250
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Lateral fixing bracket
Tilt angle: $15^{\circ}$
Fixing hole for screws M4
Weight: 70 g , unit: 150 pcs .
Type: 64940
Ref. No.: 535674

Cover caps for lampholder 535673
Material: PA GF
Weight: 12.5/12.5/10/10 g, unit: 500 pcs.
Type: 97735 moulded thread: $\mathrm{M1Ox1}$,
without locking screw
Ref. No.: 536445 black
Ref. No.: 536446 white
Type: 97742 moulded thread: M10x1,
with lateral hole, without locking screw
Ref. No.: 535247 black
Type: 80010 female nipple: G3/8A
Ref. No.: 535694 white


## Accessories

For E14, E27 lampholders, one-piece and three-piece and B22d lampholders

The luminaire manufacturer is responsible for
the right choice of accessories.
Brass-finished versions are available on request.

Plastic screw rings
For E14 lampholders
with external thread $28 \times 2$ IEC 60399
Weight: 3.6/3.2/1.8/1.6 g, unit: 1000 pcs.
Type: $03210 \varnothing 43 \mathrm{~mm}$, height: 15 mm
Ref. No.: 100125 PET GF, white
Ref. No.: 109162 PA GF, black
Type: 05202 Ø 34 mm , height: 7.5 mm
Ref. No.: 107154 PET GF, white
Ref. No.: 109166 PA GF, black

Metal screw ring
For E14 lampholders
with external thread $28 \times 2$ IEC 60399
Material: zinc-coated polished steel, chrome-finish
$\varnothing 40 \mathrm{~mm}$, height: 12 mm
Weight: 4.3 g , unit: 500 pcs.
Type: 06700
Ref. No.: 100194

Front gasket
For E14 lampholders type $64305,64306,64308$,
$64313,64316,64360,64380$ and 64381
As lamp safety catch and for protection
against moisture acc. to IEC 60079-15
Material: elastomer
Weight: 1.1 g , unit: 2000 pcs.
Type: 98013
Ref. No.: 534689


Plastic screw rings
For E27 and B22d lampholders
Weight: 4.9/4.4/3.3/3 g, unit: 500 pcs.
Type: $08610 \varnothing 55 \mathrm{~mm}$, height: 15 mm


Ref. No.: 100270 PET GF, white
Ref. No.: 109285 PA GF, black
Type: $08701 \varnothing 47.8 \mathrm{~mm}$, height: 9 mm
Ref. No.: 100273 PET GF, white
Ref. No.: 109291 PA GF, black



Metal screw ring
For E27 and B22d lampholders
Material: zinc-coated polished steel, chrome-finish $\varnothing 56.5 \mathrm{~mm}$, height: 13 mm
Weight: 7 g , unit: 500 pcs.
Type: 07400

## Ref. No.: 100217

Brackets for E14 lampholders
For fastening with nipples 109249, 109247
Material: zinc-coated polished steel
Fixing holes for screws M3
Weight: 5.5/5.3/5.3 g, unit: 1000 pcs.
Type: 94068 internal bracket $90^{\circ}$

## Ref. No.: 106767

Type: 94066 external bracket $90^{\circ}$

## Ref. No.: 400671

Type: 94069 internal bracket $110^{\circ}$

## Ref. No.: 106768

Bracket $90^{\circ}$ for E14 lampholders
For fastening with nipples 109249, 109247
Material: zinc-coated polished steel
Fixing holes for screws M3
Weight: $6.2 / 8.5 / 8.5 \mathrm{~g}$, unit: 1000 pcs .
Type: 94074 external bracket $18.5 \times 33 \mathrm{~mm}$
Ref. No.: 106802 holes diagonal
Type: 94067 external bracket $24 \times 41.5 \mathrm{~mm}$
Ref. No.: 106766 holes vertical
Type: 94079 internal bracket $24 \times 41.5 \mathrm{~mm}$
Ref. No.: 506211 holes vertical
U-shaped clips
For E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
For wall thickness: $0.5-2 \mathrm{~mm}$
Weight: 3.7/4.3 g, unit: 2500 pcs.
Type: 94435

## Ref. No.: 109621

Type: 80433 with earth terminal
Ref. No.: 103087

## Base clips

For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
For wall thickness: $0.8-1.5 \mathrm{~mm}$
Weight: 3.3/4 g, unit: 2500 pcs.
Type: 94436

## Ref. No.: 109622

Type: 80474 with earth terminal
(without drawing)
Ref. No.: 400699



## Lampholders for General-service Incandescent

Brackets: $90^{\circ}, 12.5 \times 47.1 \mathrm{~mm}$
For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
Fixing hole for screw M5
Weight: $5.6 / 4.8 \mathrm{~g}$, unit: 500 pcs.
Type: 80475 with earth terminal

## Ref. No.: 400779

Type: 94444
Ref. No.: 401536

Brackets: $100^{\circ}, 22.9 \times 36.6 \mathrm{~mm}$
For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
Fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Tapped hole M4
Weight: $5.5 / 4.6 \mathrm{~g}$, unit: 1000 pcs.
Type: 80476 with earth terminal

## Ref. No.: 400772

Type: 94438
Ref. No.: 401549

Fixing bracket
For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
With slots for screws M4
Weight: 4.6 g , unit: 1000 pcs.
Type: 94450
Ref. No.: 106829

Fixing bracket: $8^{\circ}$
For E27 thermoplastic lampholders
type 64719 (see p. 289) and for B22d
thermoplastic lampholders type 648 (see p. 313)
For clicking-on onto the lampholder
Material: PA, white
Oblong hole for screw M4
Weight: 1.9 g , unit: 500 pcs.
Type: 97194
Ref. No.: 108956

Fixing brackets: $8^{\circ}, 14.5 \times 39 \mathrm{~mm}$
For E27 thermoplastic lampholders, one-piece
Material: PET GF, white
With cable holder
Oblong hole for screw M4
Weight: $3 / 3.6 \mathrm{~g}$, unit: 1000 pcs.
Type: 97750 fixing holes: $\varnothing 4 \mathrm{~mm}$
Ref. No.: 109725
Type: 97752 fixing holes for self-tapping
screws acc. to ISO 1481/7049-ST3.9-C/F
Ref. No.: 109728




10

Fixing brackets: $8^{\circ}, 14.4 \times 39 \mathrm{~mm}$
For E27 thermoplastic lampholders, one-piece
Material: PET GF, white
Oblong hole for screw M4
Weight: 1.9/4.3 g, unit: 1000 pcs.
Type: 97159 fixing holes: $\varnothing 4$ mm

## Ref. No.: 108304

Type: 97755 fixing holes for self-tapping
screws acc. to ISO 1481/7049-ST3.9-C/F
Ref. No.: 400732

Fixing bracket: $8^{\circ}, 20 \times 44.4 \mathrm{~mm}$
For E27 thermoplastic lampholders, one-piece
Material: PET GF, white
Fixing holes: $\varnothing 4$ mm
With cable holder
Oblong hole for screw M4
Weight: 3.7 g , unit: 1000 pcs.
Type: 97754
Ref. No.: 401970

## Nipples

For E14 cover caps with moulded thread: M10x1
Cross groove for rotation stop: external
For E27 caps (see p. 296-297), for fastening of brackets 106766 and 106802 (see p. 308)
Material: PA, white
Male nipple: $\mathrm{MlOx1}$, with hexagon flange
Weight: 0.5 g , unit: 1000 pcs .
Type: 09700/09703/09708
Ref. No.: 538089 length: 15 mm
Ref. No.: 109249 length: 10 mm
Ref. No.: 109247 length: 7 mm

Locking nut for thread M10x1
Material: PA GF
Weight: 0.9 g , unit: 1000 pcs.
Type: 97267
Ref. No.: 507797 white
Ref. No.: 507798 black


Cord grip with insulating socket
For E14 and E27 lampholders
Material: PA, natural
For luminaires of protection class II
For leads HO3VVH2-F 2 X0. 75
Weight: 0.6 g , unit: 1000 pcs.
Type: 97632
Ref. No.: 534097


Cable grips
For leads HO3VV-F and HO3VVH2-F $2 \times 0.5$
or 2X0.75
Material: PA
Male nipple: M10x1, length: 11 mm
With locking screw
Weight: $1.6 / 1.5 \mathrm{~g}$, unit: 1000 pcs.
Type: 09701
Ref. No.: 109248 white
Ref. No.: 109253 black

Cord grip
For E14 lampholders, three-piece,
with cap height: 19 mm
For leads HO3VVH2-F
Material: PA, black
Weight: 0.6 g, unit: 1000 pcs.
Type: 09501
Ref. No.: 106948

Cord grip
For E27 lampholders, three-piece (without switch)
For leads HO3VVH2-F
Weight: 0.9 g , unit: 1000 pcs.
Type: 09502
Ref. No.: 106949 PA, black
Insulating socket
Material: PA, transparent
Weight: 0.5 g , unit: 1000 pcs.
Type: 09705
Ref. No.: 109592
Cord grips
For leads H03VV-F 2X0.5 or
H03VV-F 2X0.75
Material: PA
Weight: 0.9/0.8/1.7/1.6 g, unit: 1000 pcs.
Type: 09606 cord grips
Ref. No.: 506026 white
Ref. No.: 506027 black
Type: 96160 screw caps
Ref. No.: 109318
white
Ref. No.: 109317 black

Cord grips
For leads H03VV-F 2 XO .5 or
H03VV-F $2 \times 0.75$
Material: PA, male nipple: $\mathrm{M} 10 \times 1$
Weight: 1/0.9/1.7/1.6 g, unit: 1000 pcs.
Type: 09607 cord grips
Ref. No.: 506024 white
Ref. No.: 506020 black
Type: 96160 screw caps
Ref. No.: 109318
white
Ref. No.: 109317 black




10

Lampholders for General-service Incandescent

Insulating socket for E14 lampholders
Material: PA, transparent
Weight: 1 g, unit: 1000 pcs.
Type: 09704
Ref. No.: 109600


## E40 Porcelain Lampholders

For incandescent lamps with base E40

Nominal rating: $18 / 500 / 5 \mathrm{kV}$
Screw terminals: $1.5-4 \mathrm{~mm}^{2}$
Spring loaded central contact

## E40 lampholders

Material: porcelain, white, T270
Oblong holes for screws M5
Weight: 224/229.3/224/229.3 g
Unit: 48 pcs
Type: 12800/12801
Ref. No.: 108208
Ref. No.: 107780
with lamp safety catch
With steel thread
Ref. No.: 532602
Ref. No.: 532603
with lamp safety catch

E40 lampholders
Material: porcelain, white, T270
Fixing bracket with slots for screws M5
Weight: 252.3/243/252.3/243 g
Unit: 48 pcs.
Type: 12810/12811
Ref. No.: 108374
Ref. No.: 108375 with lamp safety catch
With steel thread

## Ref. No.: 532604

Ref. No.: 532605 with lamp safety catch
E40 lampholders
Material: porcelain, white, T270
Fixing bracket with tapped holes
for screws M5
With lamp safety catch
Weight: 252.8 g , unit: 48 pcs .
Type: 12812
Ref. No.: 108373
With steel thread
Ref. No.: 532606


## 5



## Technical Details

## 5 Components for Incandescent Lamps

Transformers and converters for low-voltage halogen lamps ..... 315
Dimmability of VS transformers and VS converters ..... 316
Electronic converters ..... 316-320
Assembly instructions - Electronic converters ..... 317-320
Electromagnetic transformers ..... 321-325
Assembly instructions - Electromagnetic transformers ..... 322-325
Conductors for low-voltage halogen installations ..... 324-325
Lampholders for incandescent lamps ..... 325-326
Retrofit Lamps ..... 327
General technical details ..... 348-356
Glossary ..... 357-359

## Technical Details - Components for Incandescent Lamps

## Transformers and converters for low-voltage halogen lamps

Operating low-voltage halogen lamps depends on operating devices that transform the usual mains voltage of 230 V to under 24 V . Safety transformers, of either electromagnetic or electronic (converter) design, have been in almost exclusive use for several years now. The type plate of electromagnetic transformers bears the symbol for safety transformers in accordance with VDE 0570, corresponding to EN 61558 . Electronic converters are marked with the sign for Safety Extra-Low Voltage (SELV), which indicates that the product is an isolating converter whose secondary output is safe to touch even during no-load operation.

All Vossloh-Schwabe transformers are safety transformers, i.e. isolation transformers for supplying SELV (safety extra-low voltage) and PELV (protection extra-low voltage) circuits. With such systems, the voltage must not exceed a value of 50 V AC or 120 V DC (smoothed) between the conductors or a conductor and the earth conductor of a circuit that is separated from the mains by a safety transformer. The specified values apply for protected (non-touchable) voltages; 25 V AC and 60 V DC (smoothed) apply for exposed (touchable) voltages.

Depending on their design features to protect against touchable live parts, transformers and converters fall into one of two protection classes. Operating devices of protection class I are base-insulated and have a protective earth conductor connection terminal that must be connected to the protective earth conductor for safety reasons. Isolating transformers and converters of protection class II are equipped with double or reinforced insulation that protects against dangerous casing currents; these operating devices are solely available as independent operating devices (also see page 353; Protection Classes of Luminaires and Operating Devices).

Electronic converters can also be fitted with a functional earth terminal that must be connected to a functional earth to ensure compliance with EMC requirements. In addition, some electronic converters are designed in such a way that neither a protective earth conductor nor a functional earth needs to be connected.

Operating devices can also be differentiated according to the way they are used. Built-in transformers have to be installed in a permanent casing, e.g. a luminaire. In contrast, so-called independent transformers and converters can be operated independently of a luminaire. These are often found in ceiling installations; in order to prevent possible noise development, isolation transformers must be mounted in such a way as to avoid vibration transmission.

Transformers or converters bearing the MM mark can be mounted on surfaces of unknown flammability, which can be the case when mounting these devices on wooden furniture elements. Such devices comply with the temperature requirements of VDE 0710 , part 14 , of $<95^{\circ} \mathrm{C}$ during normal and $<115^{\circ} \mathrm{C}$ during abnormal operation.

Converters are labelled with a tc point. The stipulated temperature (e.g. $75^{\circ} \mathrm{C}$ ) must not be exceeded when installed so that the service life of the converter is not shortened. The temperature quoted in the triangle (e.g. 110) denotes that the surface of the converter must never (even in the event of a defect) exceed this temperature.

## Protection symbols



Safety transformer

## SELV

Safety Extra Low Voltage


Protection class II


Independent operating device


Furniture installation
Normal operation $<95^{\circ} \mathrm{C}$
Abnormal operation $<115^{\circ} \mathrm{C}$

If the maximum value of $130^{\circ} \mathrm{C}$ is not exceeded, the luminaire does not have to be tested in accordance with $\bar{F}$ conditions.
$t_{\mathrm{C}}=75^{\circ} \mathrm{C}$
Measuring point for maximum permissible casing temperature


Temperałure-protected converter (in this case $<110^{\circ} \mathrm{C}$ )

## Technical Details - Components for Incandescent Lamps

## Dimmability of VS transformers and VS converters

Electromagnetic VS transformers can be controlled using phase-cutting leading-edge dimmers. These dimmers "cut" the sinusoidal mains voltage in the negative and positive half wave at an angle in the ascending portion of this sinusoidal half wave. The higher the angle is set at the dimmer controls, the lower the effective value of the voltage and hence the lamp's output.

Electronic VS converters can be controlled using phase-cutting trailing-edge dimmers. In this case, a semiconductor ensures the predefined descending portion of the sinusoidal half wave is clipped, i.e. the voltage is reduced in reverse mode. Again, higher the angle is set at the dimmer controls, the lower the effective value of the voltage and hence the lamp's output.

Converters of the Liteline (EST 70/12.380, EST 105/12.381, EST 150/12.622 and EST 60/12.635) families can be operated using conventional phase-cutting trailing-edge and phase-cutting leading-edge dimmers.

## Electronic Converters

The safe operation of electronic converters is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point - tc max. - on all converter casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this tc point. This point is determined by testing the converter during normal, IEC-standardised operation at the specified max. ambient temperature (ta), which is also indicated on the type plate. As both the design-related ambient temperature and the converter's inherent heat generation, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the converter's tc point under real installation conditions.

Temperature-protected converters feature a further protection symbol, namely a triangle containing the maximum temperature. This symbol cerrifies that the stipulated surface temperature of the device casing will not be exceed during any operating state or in the event of a defect.

Vossloh-Schwabe electronic converters are tested in accordance with EN 61347 . Function tests are carried out in accordance with EN 61047 . VS converters can be operated without causing any inadmissible system reactions as all devices comply with EN 61000-3-2 on the limitation of mains harmonics. They also meet the EMC requirements of EN 61547 . These devices are thus also protected against mains surges (as defined in the standard) that can be caused by, for instance, inductive ballasts during combined operation of fluorescent and low-voltage halogen lamps.

In addition, all devices comply with the RFI requirements of EN 55015. As the highly effective integrated filter can only limit the unit's own interference, the secondary conductor should be kept to under 2 metres in length so as to avoid RFI interference in the lighting system.

Dimmable using phase-cutting leading-edge or trailing-edge dimmers


Dimmable using phase-cutting leading-edge dimmers


Dimmable using phase-cutting trailing-edge dimmers


Working principle of a phasecutting leading-edge dimmer
$\alpha=$ Ignition angle
$\lambda=$ Operating angle
$\mathrm{U}=$ Voltage
I = Current


Working principle of a phasecutting trailing-edge dimmer


## Assembly Instruction for Electronic Converters

For mounting and installing electronic converters for low-voltage halogen lamps

## Mandatory regulations

DIN VDE 0100 Erection of low voltage installations
EN 60598-1 Luminaires - part 1: general requirements and tests

EN 61000-3-2 Electromagnetic compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics
(device input current up to and including 16 A per conductor)
EN 55015 Maximum values and methods of measurement for RFI suppression
in electrical lighting installations and similar electrical appliances

EN 61547 Installations for general lighting purposes - EMC immunity requirements
EN 61347-1 Operating devices for lamps - part 1: general and safety requirements

EN 61347-2-2 Operating devices for lamps - part 2-2: special requirements for DC- or
AC-powered electronic converters for incandescent lamps

EN 61047 DC- or AC-powered electronic converters for incandescent lamps performance requirements

## Designations for VS converters

Designations for electronic converters are first listed by the name of the product family, which in each case reflects the visible product properties. The type designation should be read as follows:

| EST | 60 | $/ 12$ | .388 |
| :--- | :--- | :--- | :--- |
| Electronic safety transformer | Max. wattage | Lamp voltage | Serial number |

## Mechanical mounting

Mounting positionAny

Clearance Min. of 0.1 m from walls, ceilings, insulation; min. of 0.1 m from other electronic converters; min. of 0.25 m from sources of heat (lamp)

Surface Solid; device must not be allowed to sink into insulation materials

Mounting location
In dry rooms or in luminaires, cases, casings or similar in the instance
of built-in converters
Fastening Independent converters: using screws, $\varnothing 4 \mathrm{~mm}$

Heat transfer If the electronic converter is destined for installation in a luminaire, sufficient heat transfer must be ensured between the converter and the luminaire casing. During operation, the $t_{c}$ point must not exceed the specified value.

## Technical Details - Components for Incandescent Lamps

## Technical specifications

| Type |  | Operating voltage range AC | Dimmability |  | Temperature protection | Throughwiring ${ }^{3}$ | Type of automatic cut-out and number of possible VS devices |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Unsuitable for DC operation | Phasecutting trailing edge ${ }^{1}$ | Phasecutting leading edgel | Electronic control ${ }^{2}$ | Converter quantity | B (10A) | B (16A) | C (10A) | C (16A) |
| LiteLine | EST 70/12.380 | 230-240 | $\times$ | $\times$ | $\times$ | - | 28 | 45 | 28 | 45 |
|  | EST 105/12.381 | 230-240 | $\times$ | $\times$ | $\times$ | - | 20 | 32 | 20 | 32 |
|  | EST 150/12.622 | 230-240 | $\times$ | $\times$ | $\times$ | - | 14 | 23 | 14 | 23 |
| $\ldots$. Mini | EST 60/12.635 | 220-240 | $\times$ | $\times$ | x | - | 35 | 56 | 35 | 56 |

1 The dimmer is connected to the primary side between mains and converter.
It is possible to connect several converters to one dimmer (whereby the dimmer's minimum and maximum load must be observed). The dimmer-converter system should be subjected to function and noise development tests prior to installation.
2 The rating is decreased electronically in the event of overheating.
3 Distributed secondary leads are only permitted on non-metallic surfaces (RFI suppression)

## Properties of electronic converters

Overheating
Protection against overheating is provided by an electronic controller (see table above).
Short-circuit The converter will be electronically disconnected in the event of a short-circuit at the output; once the short-circuit has been eliminated, the converter will switch on again automatically.

Overload Minor overloads (<50\%) will trigger the temperature switch against overheating; major overloads (>50\%) will trigger the same reaction as for short-circuit.

Should any of the above-mentioned safety functions be triggered, disconnect the converter from the power supply, then find and eliminate the cause of the problem.

Protection against transient mains peaks
Values compliant with EN 61547 (immunity)

## Technical Details - Components for Incandescent Lamps

## Electrical installation

Conductors
Primary conductor cross-section: $\mathrm{min} .0 .75 \mathrm{~mm}^{2}$ Secondary conductor cross-section: $\mathrm{min} .0,75 \mathrm{~mm}^{2}$ for 50 W output and min. $1 \mathrm{~mm}^{2}$ for 100 W output

| Stripping |  |  |
| :---: | :---: | :---: |
| Converter | 60/12.635 | $\begin{aligned} & 70 / 12.380 \\ & 105 / 12.381 \\ & 150 / 12.622 \end{aligned}$ |
| Type of lead | All usual types of lead up to $4 \mathrm{~mm}^{2}$ | $\begin{aligned} & \mathrm{HO} 3-\mathrm{VH} 2-\mathrm{F} 2 \mathrm{XO} .75 \\ & \mathrm{HO}-\mathrm{WVH} 2-\mathrm{F} 2 \mathrm{O} 0.75 \\ & \mathrm{HO}-\mathrm{WV} \text {-F 2X0.75 } \\ & \text { H05-W-F 2X0.75 } \end{aligned}$ |
| Lead preparation |  |  |

Connections Screw terminals: max. initial torque of 0.4 Nm must not be exceeded
Secondary length
Min. 0.25 m (clearance to lamp), max. 2 m (RFI protection)

Secondary wiring
Min. 0.1 m clearance from the mains (RFI protection)

Star wiring Twist single-wire or lead wires narrowly; silicone-insulated leads are recommended

Parallel connection
Secondary-side parallel connection is inadmissible

Feed-hhrough of the mains voltage
See table on page 318
Distributed secondary leads are only permitted on non-metallic surfaces (RFI suppression)


Wiring


## Dimmability of electronic converters

Dimmed operation
VS converters can be operated with phase-cutting trailing-edge dimmers. Some converters can additionally be operated with phase-cutting leading-edge dimmers (see table on page 326). The dimmer is connected to the primary side between mains and converter. It is possible to connect several converters to one dimmer (whereby the dimmer's minimum and maximum load must be observed). The dimmer-converter system should be subjected tofunction and noise development tests prior to installation.

## Electromagnetic compatibility (EMC)

Mains Harmonics
Maximum values are observed in accordance with EN 61000-3-2.

Interference The requirements of EN 55015 must be met for luminaires with converters for operating low-voltage halogen lamps.
Vossloh-Schwabe converters are designed and manufactured to ensure these requirements are satisfied provided the installation instructions regarding the interference voltage at the connection terminals and electromagnetic interference fields up to 300 MHz are observed.

## Additional information

Wiring To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic converters:

- Conductors between the EST and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference).
- Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another. The distance between HF conductors and mains conductors should be as large as possible, ideally $>5 \mathrm{~cm}$. (This prevents the induction of interference between the mains and lamp conductors).
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
- The mains conductor must not be laid too close to the EST (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another (to avoid inducing interference between mains and HF conductors).
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Reference point temperature tc
The safe operation of electronic converters is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point - tc max. - on all converter casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this $t_{c}$ point. This point is determined by testing the converter during normal, IEC-standardised operation at the specified ambient temperature (ta), which is also indicated on the type plate. As both the design-related ambient temperature and the converter's inherent heat, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the $t_{c}$ point under real installation conditions.

Ambient temperature $t_{a}$
The ambient temperature - as specified on every converter - denotes the permissible temperature range within the luminaire or at the place of installation.

## Technical Details - Components for Incandescent Lamps

Reliability Service life of 50,000 hrs at reference point temperature $t_{c}$, whereby a switching cycle of 165 minutes on and 15 minutes off is assumed. Failure rate: $\leq 0.2 \% / 1,000$ hrs
In order to achieve the average service life, the maximum temperature ( $\mathbf{t}_{\mathbf{c}}$ max.) must not be exceeded at the $\mathrm{t}_{\mathbf{c}}$ point.

Emergency lighting
VS electronic converters cannot be used for emergency lighting purposes as they are unsuitable for DC voltage operation.

## Electromagnetic Transformers

Owing to the low internal impedance of electromagnetic transformers, high currents can occur in the event of a short-circuit on the secondary side, which can lead to the transformer being destroyed. For this reason, IEC 61558-1 differentiates between three types of transformer:

## Transformers without short-circuit resistance

These transformers require external protection to prevent excessive temperatures being generated.
At Vossloh-Schwabe, these transformers are marked with the symbol "not short-circuit proof safety transformer". To protect against current overload during overload or short-circuit operation, Vossloh-Schwabe recommends installing a fuse on the primary side. As an aid to the user, the rating of this fuse is stated on the type plate in accordance with IEC 60127. The installed primary-side fuse should be easily accessible so that it can be readily replaced at any time.

## Transformers with (limited) short-circuit resistance

These transformers feature a safery device that prevents excessive temperatures being generated.
Electromagnetic transformers with thermal cut-outs afford a limited degree of short-circuit resistance and do not need to be additionally fused. VS safety transformers of limited short-circuit resistance are designed to safely cut out in the event of overload or short-circuit, but not to restart automatically after cooling off. The transformer must first be disconnected from the mains (i.e. switched off and on) before it can be restarted. The thermal cut-outs are dimensioned to ensure that the maximum permissible winding temperature of $225^{\circ} \mathrm{C}$ (transformers of thermal class B) or $240^{\circ} \mathrm{C}(\mathrm{F})$ or $260^{\circ} \mathrm{C}(\mathrm{H})$ is not exceeded in the event of overload or short-circuit.

## Transformers with (unlimited) short-circuit resistance

These transformers are designed to ensure that fixed maximum temperatures are not exceeded in the event of overload or short-circuit.

This type of safety transformer is not in common use within the lighting industry due to the relatively large dimensions it needs to meet the overload and short-circuit requirements.

All transformers will function perfectly and meet the requirements of the standard after the overload or shortcircuit has been eliminated.

In addition to the above, there are also so-called failsafe transformers that are rendered permanently inoperative in the event of improper use, but do not pose a threat to the user or the surroundings. Vossloh-Schwabe does not provide this type of isolation transformer.

All Vossloh-Schwabe transformers are tested for compliance with the safety requirements of European standard EN 61558 regarding creepage and air clearance distances, the winding temperature and the maximum permissible ambient temperature ( $t_{a}$ ).

## Protection symbols



Non short-circuit proof safety transformer


Limited short-circuit proof safety transformer


Rated fuse value

## $t_{a} 65$

Transformer's maximum permissible ambient temperature


Thermal cutout |reset after disconnection from the mains)

## Technical Details - Components for Incandescent Lamps

EN 61558 specifies five insulation classes for electromagnetic transformers; respective testing temperatures and times are assigned to these classes. Due to the quality of the insulation materials used by VosslohSchwabe, VS transformers are only available in the three highest insulation classes $\mathrm{B}\left(120^{\circ} \mathrm{C}\right), \mathrm{F}\left(140^{\circ} \mathrm{C}\right)$ and $\mathrm{H}\left(165^{\circ} \mathrm{C}\right)$. In this case, the quoted temperature refers to the maximum permissible winding temperature during permanent operation

As luminaire casings made of plastic or sheet metal will discharge heat to varying degrees and because transformer installation conditions can differ, a transformer's winding temperature must be tested within the luminaire. The measured values will show whether the maximum temperature corresponds to the transformer's insulation class.

On request, Vossloh-Schwabe can carry out such luminaire tests to assess built-in components.

## Assembly Instruction for Electromagnetic Transformers

## For mounting and installing electromagnetic transformers for low-voltage halogen lamps

## Mandatory regulations

DIN VDE 0100 Erection of low voltage installations
EN 60598-1 Luminaires - part 1: general requirements and tests

EN 61558-1 Safety of transformers, power supply units and similar - part 1 :
general requirements and tests

EN 61558-2-6 Safety of transformers, power supply units and similar - part 2-6:
special requirements for safety transformers for general use

EN 61000-3-2 Electromagnetic compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics
(device input current up to and including 16 A per conductor)

EN 55015 Maximum values and testing methods for radio disturbance of electrical lighting facilities and similar electrical equipment

EN 61547 Installations for general lighting purposes - EMC immunity requirements

## Technical specifications

Mains voltage range

\[\)|  VS safety transformers can be operated at the specified mains voltage within  |
| :--- | :--- |
|  a tolerance range of $\pm 10 \%$ |

\]

Leak current $\quad \leq 0.1 \mathrm{~mA}$ per safety transformer
Power factor $\quad \lambda \geq 0.85$
Compensation $\quad$ Not required

## Technical Details - Components for Incandescent Lamps

## Mechanical mounting

Mounting position
Any

Mounting location
Safety transformers are designed for installation in luminaires or comparable devices. Independent safety transformers do not need to be built into a casing

Fastening Preferably using screws, $\varnothing 4 \mathrm{~mm}$

Insulation classes and maximum temperatures
In accordance with EN 61558, safety transformers are assigned to insulation classes on the basis of the insulation materials used (also called insulation material classes for this reason) in the transformers. These insulation classes also prescribe respective maximum winding temperatures that must not be exceeded during normal operation or in the event of overload or short-circuit.

Compliance with the maximum winding temperatures is tested by measuring the resistance of the transformer's copper winding.

Insulation classes for safety transformers in accordance with EN 61558-1

|  | A | E | B | F | H |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Max. winding temperature $(1.06 \mathrm{UN})$ <br> during normal operation | $100^{\circ} \mathrm{C}$ | $115^{\circ} \mathrm{C}$ | $120^{\circ} \mathrm{C}$ | $140^{\circ} \mathrm{C}$ | $165^{\circ} \mathrm{C}$ |
| Max. winding temperature in the event <br> of overload or short-circuit | $200^{\circ} \mathrm{C}$ | $215^{\circ} \mathrm{C}$ | $225^{\circ} \mathrm{C}$ | $240^{\circ} \mathrm{C}$ | $260^{\circ} \mathrm{C}$ |

## Electromagnetic compatibility (EMC)

Interference
Interference voltage measurements do not have to be taken for luminaires with magnetic safety transformers for operating low-voltage halogen lamps as these are systems with lamp voltages of under 100 Hz and it is assumed that such systems do not cause interference.

Interference immunity
Thanks to the robust design and choice of materials, magnetic safety transformers provide a high degree of interference immunity and are not impaired by admissible mains power interference.

Mains harmonics
Owing to the Ohmic resistance characteristics of low-voltage halogen lamps and the
mans povver mineremce.
low degree of distortion caused by magnetic transformers, mains harmonics remain low.

## Safety functions of VS transformers

| Load | Transformer features | With self-locking temperature protection (TS) |
| :--- | :--- | :--- |
|  | Unprotected (OS) | Protection is provided by the |
| Overheating | Is not recorded | built-in thermal switch |
| Short-circuit <br> Overload | Protection must be provided <br> by devices fitted in the luminaire <br> (fuse or thermal switch) |  |

## Should one of the safety functions be triggered, the transformer must be disconnected from the mains, the cause of the fault found and then eliminated.

## Technical Details - Components for Incandescent Lamps

## Dimmer operation

VS safety transformers can be controlled using progressively adjustable phase-cutting leading-edge dimmers for low-voltage halogen lamps.

## Reliability and service life

VS safety transformers are designed for a long service life. Provided the specified maximum values for the winding temperature are complied with during operation, a service life of 10 years can be expected. Failure rate: $<0.025 \% / 1,000$ hrs

## Electrical installation

Conductors Primary conductor cross-section: min. $0.75 \mathrm{~m}^{2}$, secondary conductor cross-section: $\min .0 .75 \mathrm{~m}^{2}$ for 50 W output and a min. of $1 \mathrm{~mm}^{2}$ for 100 W output

Connections Terminal screws: max. torque of 0.5 Nm must not be exceeded

Parallel connection
Parallel connection is admissible on the primary side, but is inadmissible on the secondary side

## Conductors for low-voltage halogen installations

As the high temperatures associated with the operation of low-voltage halogen lamps place severe demands on lampholder conductors, a skilful combination of conductor and insulation is essential. Tin-plated copper conductors with silicone insulation are recommended for temperatures of up to $180^{\circ} \mathrm{C}$ at the cable's conductor; nickel-plated copper cables with polytetrafluoroethylene (PTFE) sheathing are recommended for temperatures of up to $250^{\circ} \mathrm{C}$. Welded connections ensure the most effective heat discharge. Control measurements should be carried out if other connection types are used, e.g. crimping or plug connectors. To prevent the risk of additional heat generation, the maximum permissible current load must be observed when dimensioning the conductor cross-section. When using electromagnetic transformers, the conductor resistance causes a relatively large voltage drop. This drop in voltage is always associated with a reduction of luminous flux. For instance, an $11 \%$ drop in voltage will lead to a $30 \%$ drop in luminous flux. For this reason, care should be taken to ensure secondary conductors are kept as short as possible and conductor cross-sections are adequately dimensioned when wiring luminaires. Nevertheless, transformers should not be mounted too near the light source (> 25 cm clearance if possible) to prevent the heat generated by the lamp from raising the ambient temperature above the critical level for a transformer.

As electronic converters operate at high frequencies, consideration must be taken of the skin effect, i.e. the displacement of the electrons from the middle of the conductor to its surface. As a result, the full cross-section of the conductor is no longer used, resistance increases and thus leads to a greater drop in voltage. In addition, AC resistance, which is caused by feed line inductance, can result in an even greater voltage drop. It is therefore recommended that lamp conductors be laid closely parallel or twisted together.

Voltage losses (V) with a two-metre secondary conductor

| Working frequency | Load | Cross-section/Voltage drop |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | W | $0.75 \mathrm{~mm}^{2}$ | $1 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ |
| 50 Hz (electromagnetic transformers) | 50 | $0,38 \mathrm{~V}$ | 0.29 V | 0.2 V |
| any wiring layout | 100 | 0.74 V | 0.56 V | 0.39 V |
| 40 kHz (electronic converters) | 50 | 1.4 V | 1.25 V | 1.2 V |
| any wiring layout (loops) | 100 | 3.3 V | 3.1 V | 3 V |
| 40 kHz (electronic converters) | 50 | 0.5 V | 0.45 V | 0.35 V |
| wires twisted together or closely parallel | 100 | 1.2 V | 1 V | 0.85 V |

## Wiring



## Conductor Contacts

Pin contact ø 1


## Socket connector



Flat connector 6.3x0.8


Cable with ferrules


Cable, notched at 6 mm


Cable, bared
at $6 \mathbf{~ m m}$


## Ultrasonically welded

cable end


# Technical Details - Components for Incandescent Lamps 

## Conductors for installations with halogen lamps

All conductors must be selected to suit the luminaire conditions (see table) in terms of material, crosssection and insulation. Testing these conductors under worst case conditions is essential as the commonly occurring high temperatures considerably reduce the conductivity of the conductor and hence its cur-rent-carrying capacity.

| Insulation | Conductor <br> Material | Cross-section <br> $\mathrm{mm}^{2}$ | Mains voltage <br> V | Max. temperature <br> ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- |
| SI | Cu tin-plated (Cu vz) | 0.75 | 300 | 180 |
| FEP | Cu tin-plated (Cu vz) | 0.75 | 300 | 180 |
| PTFE | Cu nickel-plated (Cu vn) | 0.75 | 500 | 250 |
| PTFE | Cu nickel-plated (Cu vn) | 1 | 500 | 250 |
| PTFE | Ni | 1 | 500 | 250 |
| PTFE | Ni | 1.5 | 500 | 250 |

## Lampholders

## For low-voltage halogen lamps

With the exception of B15d bases, the low-voltage sector is dominated by pin bases, which are fitted with a variety of different pin distances and diameters. Apart from classic lampholders that ensure both the electrical contact and the correct positioning of the lamp, connection elements are also available. These components are solely responsible for establishing electrical contact and are used in cases where, for instance, the regulations demand that the lamp be attached to its reflector (e.g. cold-light reflector lamps with GZ4 and GX5.3 bases). Extremely high temperatures are also generated when operating low-voltage halogen lamps as a result of the tungsten-halogen cycle and high lamp currents. In addition, the respective luminaires are often of very compact design, which leads to heat accumulation and thus to high internal temperatures. The materials the lampholder is made of thus play a vital role for the luminaire's operating safety and the lamp's service life. In addition to tried-and-tested materials - ceramics for casings and mica for covers - ever more frequent use is being made of highly heat-resistant plastics like LCP (liquid crystal polymer for e.g. G4, GU4, GX5.3, GU5.3 and GY6.35 lampholders) and PPS (polyphenylene sulphide for G4 lampholders). Plastic lampholders provide clear advantages: narrow dimensional tolerances, no material fractures, low weight and clip-attachment options.

The type of contact also plays an important role. Conventional contacts are only attached to one side of the lamp pin. In contrast, additional contact points - known as multipoint contacts - lead to a reduction of current density at the point of transition from the lamp pins to the lampholder contact and with that to a decrease in temperature. These contacts provide the further advantage of ensuring superior heat dissipation from the lamp pins to the conductor. The temperature advantage of multipoint contacts in defined conditions (including welded-on conductors) can amount to as much as $100^{\circ} \mathrm{C}$. In extremely rare cases, due to the high internal pressure in the bulb, it is possible for the lamp to shatter. For reasons of fire prevention (high temperature of the glass bulb), the lamp's components must be prevented from falling out. Enclosed luminaires meet these requirements. Open luminaires, however, may only be operated using lamps with enclosed bulbs or low-pressure lamps. Lamps of this kind are suitably marked with pictograms on the lamp's packaging and in the lamp manufacturer's documentation Lamps marked with pictogram No. 1 are suitable for use with open luminaires, whereas those marked with pictogram No. 2 may only be used in enclosed luminaires.

## VS lampholders for the UL market and UL approved leads are available for all common lamp types.

Further information can be found at www.unvlt.com.

Lampholders for low-voltage halogen lamps are equipped with mounted cables or with plug-type connectors. In addition to the various lampholders contained in the catalogue, further lampholder models with various cable lengths and of various qualities as well as lampholders with plug-connected cables can be made available on request.

## Technical Details - Components for Incandescent Lamps

## Bases of the most widely used low-voltage halogen lamps



## Lampholders for mains voltage halogen lamps

A major factor in lampholder design is the lamp temperature, which is determined by the tungstenhalogen cycle, high lamp current and high wattages. Lampholder casings can be made of ceramics, metal or the ever more popular highly heat-resistant thermoplastics like PET (polyethyleneterephthalate), PPS (polyphenylene sulphide) and LCP (liquid crystal polymer). The most suitable contact materials for these temperatures are nickel, copper-nickel alloys or copper materials with sufficiently thick nickel coatings. For tubular lamps (R7s base), the standard IEC 60061-2 7005-53 prescribes the respective contact pressure of lampholder contact materials.

Although halogen lamps offer twice the service life of general-purpose light bulbs, this can only be fully realised if luminaire manufacturers observe the recommended maximum temperatures at the lamp's pinch point. There is usually a welded-on molybdenum plate at the pinch point where the lamp base pins join the lamp filament. Lamp manufacturers ascertain the pinch temperature at this point, which is generally located within the lamp's quartz glass, using specially prepared measuring lamps. The pinch temperature is a critical thermal reference point which must not be exceeded within the luminaire.

The bases of the most widely used mains voltage incandescent lamps


## Technical Details - Components for Incandescent Lamps

## Retrofit Lamps

So-called retrofit lamps have been introduced to the market thanks to LED technology. Some of these can significantly exceed the weight of the original lamp.

When using such lamps in luminaires already introduced to the market (with conventional lampholders), but also for new luminaire designs (with conventional lampholders), this can cause a greater risk with regard to disconnecting the power supply and, in addition, can lead to greater mechanical damage.

## 6-80 W EMERGENCY LIGHTING MODULES




## EMERGENCY LIGHTING

Emergency lighting systems spring to life any time normal artificial lighting systems fail. Emergency lighting is designed to ensure that work can continue without risk, that staff can safely leave any workplaces involving special hazards and that there is sufficient lighting to illuminate rescue paths/routes as well as to avoid panic situations.

As power cuts result in a risk to safety, legislation has been enacted in the form of the Health and Safety at Work Directive (Europe) and the Health and Safety at Work Acts of the individual European countries (e.g. Germany), all of which stipulate that emergency lighting must be provided. The requirements placed on emergency lighting installed in places of public assembly and public buildings are governed by supplementary directives and laws.

Vossloh-Schwabe's emergency lighting units are designed for use with T5, T8 and compact fluorescent lamps and can be operated with electromagnetic or electronic ballasts.

VS emergency lighting units are suitable for both continuous and standby circuits with a nominal operating period of 1 or 3 hours.

# 6 Emergency Lighting Modules for TC and T Lamps 

## Emergency lighting modules with self-diagnosis function

Technical details for emergency lighting modules 332-339
General technical details
Glossary

## Emergency Lighting Modules 6 to 80 W with Self-Diagnosis Function

EMXs - Emergency lighting modules
For one-, two-, three- or four-lamp operation with standard and dimmable electronic or magnetic ballasts
EB phase is switched off during emergency
operation
Short circuit protection
RoHS-compliant (excluding rechargeable batteries)
5-pin technology and therefore EMC-compliant
even during emergency operation
Suitable for protection class I
EN 61347-1, EN 61347-2-7
Suitable for systems in accordance with VDE 0108 or EN 50172
Not suitable for lamps with an integrated starter
Dimensions (LxWxH): $210 \times 31.4 \times 21.5 \mathrm{~mm}$
Fixing hole distance: 205.5 mm
Nominal voltage: $230 \mathrm{~V} \pm 10 \%, 50-60 \mathrm{~Hz}$
Ambient temperature ta: 0 to $50^{\circ} \mathrm{C}$
Unit: 25 pcs.
These VS emergency lighting modules include an automatic self-diagnosis feature that performs a two-minute function test of the device, the lamp and the battery every seven days.
In addition, the operating period is tested every
12 months with subsequent battery reactivation.

## Optical status display

- Red LED, flashing intermittently: defective lamp. The status display will be reset approx. one minute after the fault has been rectified.
- White LED, not illuminated:
if connected to the power supply, the LED must turn green after a maximum of five minutes If not, the device either has no voltage supply or the emergency lighting module is defective.
- Red LED, permanently flashing: battery capacity is too low or the battery supply line has been interrupted.
- Green LED: fully functional.


Emergency lighting module


LED


## Emergency Lighting Modules 6 to 80 W with Self-Diagnosis Function

EMXs - Emergency lighting modules

| Type | Ref. No. Module | Ref. No. Battery | Nominal operating period hrs. | Rechargeable battery type | Dimensions LxD $(\varnothing)$ of battery mm | Test function | Weight module g | Weight battery g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EMXs 180.000 | 188792 | 188823 | 1 | 4.8V 1.8Ah NiCd | $1 / 190 \times 23$ | automatic | 160 | 200 |
| EMXs 180.001 | 188793 | 188824 | 3 | 4.8V 4.5Ah NiCd | $1 / 240 \times 33$ | automatic | 160 | 490 |
| EMXs 180.002 | 188794 | 188825 | 1 | 4.8 V 1.8 Ah NiMH | $1 / 200 \times 17$ | automatic | 160 | 140 |
| EMXs 180.003 | 188795 | 188826 | 3 | 4.8 V 4.5 Ah NiMH | $2 / 450 \times 19$ | automatic | 160 | 320 |

Circuit diagrams see page 336-338

## Holders for Rechargeable Batteries for Emergency Lighting Modules

Material: PC (188828: PBT)
Type: Rechargeable Battery Holder

| Ref. No. | For rechargeable battery type | Dimensions (mm) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | a | b | c | d | e | f |
| 188827 | 4.8V 1.8Ah NiCd | 35.0 | 18.0 | 26.3 | 26.7 | 13.0 | 5.5 |
| 188828 | 4.8V 4.5Ah NiCd | 39.0 | 23.2 | 36.2 | 37.3 | 12.4 | 6.0 |
| 188829 | 4.8 V 1.8Ah NiMH | 22.5 | 15.0 | 22.8 | 22.5 | 8.0 | 4.0 |
| 188829 | 4.8 V 4.5Ah NiMH | 22.5 | 15.0 | 22.8 | 22.5 | 8.0 | 4.0 |

It is recommended to use two holders per rechargeable battery to ensure optimum hold.



Table of suitable lamp types

| Lamp type | Lamp nominal output <br> W |
| :--- | :--- |
| T8 | $15,18,32,36,58,70$ |
| T5 HE | $14,21,28,35$ |
| T5 HO | $24,39,49,54,80$ |
| T5 | $6,8,13$ |
| T-R5 (T-R 16) | $22,40,55,60$ |
| T-R (T29-R) | $22,32,40$ |
| TC-L/TC-F | $18,24,36,40,55,80$ |
| TC-DEL | $10,13,18,26$ |
| TC-TEL | $13,18,26,32,42,57,70$ |
| TC-SEL | $7,9,11$ |
| TC-DD (2D) | $10,16,21,28,38,55$ |

Luminous flux factor of lamps during emergency operation

| Lamp nominal output <br> W | Luminous flux factor* <br> $\%$ |
| :--- | :--- |
| 6 | 43.0 |
| 8 | 32.0 |
| 18 | 13.0 |
| 28 | 9.0 |
| 32 | 7.0 |
| 35 | 7.0 |
| 36 | 7.0 |
| 49 | 4.7 |
| 54 | 4.3 |
| 55 | 4.7 |
| 58 | 5.2 |
| 70 | 4.3 |
| 80 | 3.7 |
| * Theoretically defined reference values at $25^{\circ} \mathrm{C}$ ambient temperature |  |

6 Emergency Lighting Modules for TC and T Lamps
Assembly instructions for emergency lighting modules333-338
Electrical installation ..... 333-334
Emergency lighting module display ..... 335
Circuit diagrams ..... 336-338
General technical details ..... 348-356
Glossary ..... 357-359

## Technical Details - Emergency Lighting Modules for TC and T Lamps

Emergency lighting modules are designed for operation with 6 to 80 W, 4-pin fluorescent lamps.
Luminaires with integrated emergency lighting modules can be operated using a continuous or standby circuit.

| Technical specifications | EMX emergency lighting modules |
| :--- | :--- |
| Permissible mains voltage | $230 \mathrm{~V} \pm 10 \%$ |
| Permissible mains frequency | $50-60 \mathrm{~Hz}$ |
| Power consumption with standby circuit | 3 W |
| Nominal period of operation | 1 to 3 hours, depending on the type of rechargeable battery |
| Batteries | $\mathrm{NiCd}^{*}$ to $50^{\circ} \mathrm{C}$ |
| Ambient temperature | 24 hrs |
| Charging time | 1 |
| Protection class | IP20 |
| Degree of protection | CENELEC |
| Certification | EN $61347-2-7$ |
| Tested in accordance with $0108 / \mathrm{EN} \mathrm{50172}$ |  |
| Suitable for systems compliant with | Metal (zinc-plated) |
| Casing | Permissible lead length between the emergency lighting module and the lamp must not exceed two metres. |
| Installation outside the luminaire | See the table on page 331, values apply to $25{ }^{\circ} \mathrm{C}$ ambient temperature. |
| Luminous flux factors during emergency operation | Ignition in progress; the values of the colour rendering index and the luminous flux factor may deviate. |

## Assembly Instructions for Emergency Lighting Modules

## For mounting and installing of emergency lighting modules

If the emergency lighting module is integrated in the luminaire, the LED and battery have to be wired separately, i.e. not in parallel with the mains or lamp. Emergency lighting modules must be fixed in a suitable spot within the luminaire ( $4-\mathrm{mm}$ bore holes for mounting).
In the interest of maximising battery capacity and service life, care must be taken to ensure the battery is positioned at the coolest part of the luminaire. The ambient temperature of the battery must not exceed $50^{\circ} \mathrm{C}$. Emergency lighting modules must not be mounted on surfaces that ignite, melt or undergo some other thermal change at a temperature of $60^{\circ} \mathrm{C}$. Moreover, emergency lighting modules must not be operated in explosionendangered enclosed spaces.

## Electrical installation

The respective ordinances and standards valid at the place of operation must be observed for installation purposes. Emergency lighting modules and luminaires must only be installed by trained staff. Operating voltages exceed 50 V . Caution: potentially fatal hazard!

Prior to first operation of emergency luminaires, all covers must be attached. Furthermore, care must be taken to ensure that the supply voltage complies with the specifications on the type plate and the protective conductor is connected.

## 1. Fuse

2. Light switch
3. Room lighting
4. Emergency luminaires


Emergency luminaires must be connected to a direct phase to enable mains monitoring and ensure constant charge retention. This phase must be connected to the group fuse of the regular room luminaire. Emergency luminaires are generally delivered with uncharged batteries and must be connected to the mains for at least 48 hours to be fully functional or for approx. 10 minutes for mains operation in the case of a continuous circuit.

## Additional information for optimising EMC

Information on the installation of electronic ballasts for optimising EMC
To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic ballasts:

- Conductors between the EB and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference). High-potential lamp conductors must be kept as short as possible, in particular with tubular lamps. Lamp conductors of this kind are labelled with an * in the wiring diagram on the type plate.
- Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another. The distance between HF and mains conductors should be as large as possible, ideally $>5 \mathrm{~cm}$. (This prevents the induction of interference between the mains and lamp conductors.)
- The mains conductor within the luminaire must be kept short to reduce the induction of interference).
- Devices must be properly earthed. EBs require secure contacts to the luminaire casing or must be earthed using a PE connection. This PE connection should be effected using an independent conductor to achieve better dissipation of the leak current. EMC improves at frequencies greater than 30 MHz .
- The mains conductor must not be laid too close to the EB or the lamp (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another to avoid inducing interference between mains and HF conductors.
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Maintenance With regard to system maintenance and control, care must be taken to ensure compliance with any ordinances and standards governing emergency lighting at the place of installation. Prior to opening lamp covers, the following procedure must be observed:

1. Disconnect luminaires from the mains voltage.
2. Remove cover.
3. Disconnect battery from the emergency lighting module (disconnect the plug).

VS recommends connecting control LEDs to be visible on the outside of emergency luminaires to enable simple and regular control of emergency luminaires and emergency lighting modules.

## Changing batteries

Batteries need to be replaced if the operating period of luminaires falls short of 60 minutes in the case of 1 -hour operation and 180 minutes for 3 -hour operation, respectively. Emergency lighting modules have a status display for this purpose.
Spent batteries must be replaced with the manufacturer's original batteries only. Furthermore, the polarity of the batteries must be strictly observed. The battery supply lines of the emergency lighting module are marked as follows:

```
red = +; black = -
```


# Technical Details - Emergency Lighting Modules for TC and T Lamps 

## Emergency lighting module display

Normal operation is indicated by a green LED. During emergency operation or for as long as the battery remains fully discharged, the LED is off (i.e. does not glow). The LED will flash red if the battery is missing or not properly connected.

## Automatic test of emergency lighting modules

In the case of emergency luminaires with emergency lighting modules, the operational readiness of the device, the lamp and the battery is tested automatically every seven days. In addition, battery capacity is measured during a simulated loss of mains power every 12 months.
The first capacity test will be carried out seven days following initial installation or any repair work. The LED must be checked after the first self-test. A green LED indicates all is in working order, any other display indicates a problem.
The device features a two-colour LED display to indicate that the emergency luminaire is ready for use.

## Optical status display


keine Störung / no fault / pas de défaut / sin fallos / nessu difetto

Emergency luminaires merely require regular visual inspection of the status display (LED) and the luminaire itself.

| Red LED, flashing intermittently | During initial operation, a lamp recognition test is first carried <br> out. Prior to and during this test, the LED will be red and flash <br> intermittently. |
| :--- | :--- |
| White LED, not illuminated | If connected to mains power, the LED must turn green after <br> a maximum of five minutes. If not, the device has no mains <br> voltage or the emergency lighting module is defective. |
| Red LED, continuous flashing | Battery capacity is too low or the battery supply line has been <br> interrupted. The warning light will go off again as soon as the <br> problem has been rectified. |
| Green LED | Fully functional. | Fully functional.

## Notes

Vossloh-Schwabe accepts no liability for any direct, indirect or incidental damage caused by putting a device to any improper use, i.e. any use not expressly permitted by VS. Similarly, Vossloh-Schwabe accepts no liability for third-party claims arising from putting a device to any improper use, i.e. any use not expressly permitted by VS. Emergency lighting modules must not be opened or modified in any way. The components of emergency lighting modules must be replaced with original parts only.

Should emergency lighting modules be damaged in a way that suggests it cannot be operated safely, the luminaires or emergency lighting modules, respectively, must not be operated. VS reserves the right to make changes to diagrams, weights, tables of dimensions or other such details included in the catalogue or instructions for use without prior notice if such changes prove to be necessary or are made as a result of technological progress. VS emergency lighting modules are patent protected.

Any act of producing counterfeit VS products will be prosecuted according to criminal and civil law.

## Caution!

 Emergency lighting modules from VS must not be operated with amalgam lamps
## Circuit Diagrams

## For VS emergency lighting modules

Notes for wiring:

- The distance between mains lead and lead 8 should be as large as possible
- Leads 2/4/6/8 must be kept short


## Circuit diagrams - 1-lamp operation



1-lamp operation
without electronic or electromagnetic
ballast (continuous circuits)


1-lamp operation - Warm start
with electronic ballast ELXs


1-lamp operation - Instant start
with electronic ballast ELXe

Technical Details - Emergency Lighting Modules for TC and T Lamps

## Circuit diagrams - 2-lamp operation



2-lamp operation
with electromagnetic ballast


2-lamp operation - Dimming / Warm start with electronic ballast ELXd / ELXc


2-lamp operation - Dimming
with electronic ballast ELXd

## Circuit diagrams - 3-lamp operation



3-lamp operation - Warm start with electronic ballast ELXc


2-lamp operation - Warm starf with electronic ballast ELXC


2-lamp operation - Dimming with electronic ballast ELXd


2-lamp operation - Instant start with electronic ballast ELXe


3-lamp operation - Warm start
with electronic ballast ELXc

## Technical Details - Emergency Lighting Modules for TC and T Lamps

Circuit diagrams - 3-lamp operation


3-lamp operation - Dimming
with electronic ballast ELXd

## Circuit diagrams - 4-lamp operation



4-lamp operation - Warm start with electronic ballast ELXc


4-lamp operation - Dimming with electronic ballast ELXd


4-lamp operation - Instant start
with electronic ballast ELXe

## LIGHTING TECHNOLOGY COMPONENTS FOR THE UL MARKET



At the beginning of 2010, the US American sales office, VosslohSchwabe Inc., was merged with Universal Lighting Technologies, Inc., a further Panasonic subsidiary.

Universal Lighting Technologies, Inc., produces some of the world's most advanced linear fluorescent, compact fluorescent, HID, eHID, and LED solutions for commercial lighting applications.

The following pages serve to give you some idea of the highly extensive product range of VS lampholders for the UL market.

A global leader in research and development since 1947, Universal proudly features recognized and trusted brands like Universal ${ }^{\circledR}$ and Triad ${ }^{\circledR}$, with a reputation for innovations that can significantly reduce energy costs with high efficiency solutions, installer-friendly options, and greater flexibility for fixture designs.

Advanced lighting technologies such as step-dimming, $0-10 \mathrm{~V}$ analog dimming, DALI dimming and energy management systems help meet specific application and user requirements.

The EVERLINE ${ }^{\circledR}$ brand of LED products leads the industry on performance, flexibility and quality. Whether developed individually or to be part of a system, EVERLINE makes it easy to configure a full featured, high efficiency LED system.

Further information can be found at www.unvlt.com

Nashville, TN 37214
Phone: 615-316-5100
www.unvlt.com



Energy Management \& Controllable Lighting


Sign Ballasts


Linear Fluorescent Ballasts


Comapct Fluorescent Ballasts


Electronic \& Magnetic HID Ballasts


LED Systems

## Components for the UL Market

## E39 Porcelain Lampholders

## For discharge lamps with base E39 / Mogul base

Screw terminals: max. 16-12 AWG, solid conductor

## E39 lampholders

Casing: porcelain, white
Nominal rating: $2000 \mathrm{~W} / 600 \mathrm{~V} / 6 \mathrm{kV}$ pulse rating
Cylindric shape
Screw shell: brass, nickel-plated
Central contact: brass, nickel-plated
Spring loaded central contact
Screw terminals: 18-14 AWG
Fixing distance: $35 \mathrm{~mm}\left(1.378{ }^{\prime \prime}\right)$
Thread measured in inches No. 8-32 UNC (ISO)
Weight: 190 g, unit: 50 pcs.
Type: 12870/12876

## Ref. No.: 109014

Ref. No.: 109518 with lamp safety catch

## GU6.5 Lampholders

## For single-ended discharge lamps

Additional lead lengths and types on reques

GU6.5 lampholders
Casing: ceramic, cover plate: PPS
Nominal rating: $2 \mathrm{~A} / 250 \mathrm{~V} / 5 \mathrm{kV}$ pulse rating
Leads: Cu nickel-plated, stranded conductors 18 AWG,
PTFE-insulation, length: $305 \mathrm{~mm}(12$ ")
Weight: 20 g , unit: 100 pcs.
Type: 34515 fixing holes for screws M3 (\#4)

## Ref. No.: 534218

Type: 34516 threaded bushes for screws M3 (\#4)
Ref. No.: 534219

GU6.5 lampholders
Casing: ceramic, cover plate: PPS
Nominal rating: $2 \mathrm{~A} / 250 \mathrm{~V} / 5 \mathrm{kV}$ pulse rating
Leads: Cu nickel-plated, stranded conductors 18 AWG,
PTFE-insulation, length: $305 \mathrm{~mm}(12$ ")
Weight: 20 g , unit: 100 pcs.
Type: 34525 dia. 22 mm
Ref. No.: 535783


## Components for the UL Market

## GX10 Lampholders

## For single-ended discharge lamps

GXIO lampholder
Casing: steatite, cover plate: PPS
Nominal rating: 2/500/5 kV



## 2G11 Lampholders for Twin-tube 4-pin Lamps

## For Single-ended Compact Fluorescent Twin-tube 4-pin Lamps

Nominal rating: 660W/600V
Degree of protection: IP20

Quick-connect twin terminals: 18AWG solid or stranded solder-dipped (lamp circuit) Quick-connect terminals: 18AWG solid or stranded solder-dipped (starter circuit)

All products in this chapter carry a T rating of T120 acc. to UL standards (shunted versions correspond to
Circle-I requirements).

2G11 back panel or bracket mount lampholders
Casing: PBT GF, white
Lateral pivots for bracket
Rear mounting holes for self-tapping \#8 screws
Front mounting holes for \#4 screws (M3)
Weight: 12.7 g , unit: 500 pcs.
Type: 36051
Ref. No.: 101489




## G24 Lampholders for Quad-tube Lamps, GX24 Lampholders for Triple-tube Lamps

## For Single-ended Compact Fluorescent Bi-pin and 4-pin Lamps

The drawings and photos contained in this chapter only show lampholders for lamps with base G24d-1.
All T ratings in this chapter refer to IEC standards

G24, GX24 snap-in lampholders
Casing: PBT GF, white, T140 (acc. to IEC)
Nominal rating: 660 W/600 V
Quick-connect twin terminals: 18AWG (lamp circuit) For G24q, GX24q lampholders:
quick-connect terminals: 18AWG (starter circuit)
Rear split pins for wall thickness
$0.8-1.7 \mathrm{~mm}\left(0.031-0.067^{\prime \prime}\right)$
Width of split pin: $4.5 \mathrm{~mm}\left(0.177^{\prime \prime}\right)$

When mounting lampholder remember triple-tube GX24d/GX24q lamps are wider than lampholder. When using central-mounting hole provisions must be made to prevent lampholder rotation.

| Type | Ref. No. | Base | Output (W) | Weight (g) | Unit (pcs.) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 72101 | $\mathbf{5 2 8 1 1 6}$ | G24d-1/GX24d-1 | $8,10,13 / 13$ | 10.4 | 500 |
| 72102 | $\mathbf{5 2 8 1 1 7}$ | G24d-2/GX24d-2 | $18 / 18$ | 10.4 | 500 |
| 72103 | $\mathbf{5 2 8 1 1 8}$ | G24d-3/GX24d-3 | $26 / 26$ | 10.4 | 500 |
| 72111 | $\mathbf{5 2 8 1 2 0}$ | G24q-1/GX24q-1 | $10,13 / 13$ | 12.3 | 500 |
| 72112 | $\mathbf{5 2 8 1 2 1}$ | G24q-2/GX24q-2 | $18 / 18$ | 12.3 | 500 |
| 72113 | $\mathbf{5 2 8 1 2 2}$ | G24q-3/GX24q-3 | $26 / 26,32$ | 12.3 | 500 |
| 72119 | $\mathbf{5 2 8 1 2 6}$ | GX24q-3/-4* | $26,32 / 42$ | 12.3 | 500 |
| 72114 | $\mathbf{5 2 8 1 2 3}$ | $\mathbf{5 2 8 1 2 4}$ | GX24q-4 | 42 | 12.3 |
| 72115 | $\mathbf{5 2 8 1 2 5}$ | GX24q-5 | 57 | 12.9 | 500 |
| 72116 | GX24q-6 | 70 | 12.9 | 500 |  |
| Shunted Version | $\mathbf{5 2 8 1 2 8}$ | G24q-1/GX24q-1 | $10,13 / 13$ | 500 |  |
| 72111 | $\mathbf{5 2 8 1 2 9}$ | G24q-2/GX24q-2 | $18 / 18$ | 12.3 | 500 |
| 72112 | $\mathbf{5 2 8 1 3 0}$ | G24q-3/GX24q-3 | $26 / 26,32$ | 12.3 | 500 |
| 72113 | $\mathbf{5 2 8 1 3 4}$ | GX24q-3/-4* | $26,32 / 42$ | 12.3 | 500 |
| 72119 | $\mathbf{5 2 8 1 3 1}$ | GX24q-4 | 42 | 12.3 | 500 |
| 72114 | $\mathbf{5 2 8 1 3 2}$ | GX24q-5 | 57 | 500 |  |
| 72115 | $\mathbf{5 2 8 1 3 3}$ | GX24q-6 | 70 | 12.9 | 500 |

[^62]
## Components for the UL Market

## G13 Push-through Lampholders for T8, T12 Lamps

## Lampholders for fluorescent lamps T8 and T12 / Medium Bi-Pin

Nominal rating: $660 \mathrm{~W} / 600 \mathrm{~V}$
Push-in twin terminals: 18 AWG, solid or stranded conductors, tinned
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$ (0.016"-0.079")

G13 push-through lampholders for lamps T8, T12 Pin support for reliable contact
Lamp axis: 17 mm (0.67")
Weight: 5,4 g, unit: 1000 pcs.
Type: 26300/26302 with stop

## Ref. No.: 551271

Ref. No.: 551275 internally shunted
Type: 26310/26312 without stop
Ref. No.: 551272
Ref. No.: 551277 internally shunted

G13 push-through lampholders for lamps T8, T12
Pin support for reliable contact
Lamp axis: 23 mm (0.906")
Weight: 6.6 g , unit: 1000 pcs.
Type: 29100/29125 with stop
Ref. No.: 545845
Ref. No.: 545840 internally shunted
Type: 29101/29126 without stop
Ref. No.: 545849
Ref. No.: 545842 internally shunted

G13 push-through lampholders for lamps T8, T12
Pin support for reliable contact
Lamp axis: 31 mm (1.220")
Weight: 7.8 g , unit: 1000 pcs.
Type: 28700/28725 with stop
Ref. No.: 109342
Ref. No.: 109376 internally shunted
Type: 28701/28726 without stop
Ref. No.: 109343
Ref. No.: 109377 internally shunted

Casing: PC, white
(shunted versions: PBT, white)
Front plate: PBT GF, white


All products in this chapter carry a
T rating of T120 acc. to UL standards
(shunted versions correspond to
Circle-I requirements).



## Components for the UL Market

## G5 Lampholders

## Lampholders for fluorescent lamps with base G5

Nominal rating: $120 \mathrm{~W} / 600 \mathrm{~V}$
Push-in twin terminals: 18 AWG, solid or
stranded conductors, tinned
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$ (0.020"-0.059")

G5 push-through lampholders
Lamp axis: 20 mm (0.787")
Casing: PBT GF/PC, white, rotor: PBT GF, white
Weight: 4.1 g , unit: 1000 pcs.
Type: 09432/09433
Ref. No.: 545933 with stop
Ref. No.: 545935 without stop

G5 push-through lampholders
Lamp axis: 25 mm (0.984")
Casing: PBT GF/PC, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Weight: 4.5 g , unit: 1000 pcs .
Type: 09434/09435
Ref. No.: 545937 with stop
Ref. No.: 545939 without stop


G5 push-through lampholders
Lamp axis: $15 \mathrm{~mm}(0.591$ ")
Casing: PBT GF/PC, white, rotor: PBT GF, white
Weight: 3.5 g , unit: 1000 pcs.
Type: 09420/09421
Ref. No.: 505737 with stop
Ref. No.: 505739 without stop


## Technical Details

## 8 General Technical Details

General technical details ..... 349-356
Product development and product certification ..... 349-350
CE mark ..... 350
Climate and environmental protection ..... 352
Protection classes of luminaires and operating devices ..... 353
Operating devices with double or reinforced insulation for installation in protection class II luminaires ..... 353-354
Protection classes of luminaires and operating devices ..... 355
Selection of components, materials and dimensions ..... 356
Impulse voltage categories for lampholders ..... 356
Torque to be applied to screws ..... 356
Glossary357-359

## General Technical Details

## Product development and product certification

The increasingly converging world and the global markets that are being created are both placing new design demands on the sector and its technologies. Against this background, standardisation - both on a regional and international scale - is becoming more and more important in positioning new technologies and innovations on the market. Standardisation ensures the necessary degree of safety, reliability, exchangeability and cost-effectiveness.

Vossloh-Schwabe products have been developed and produced on the basis of technical innovations, internationally and regionally applicable standards and valid environmental regulations for more than 90 years. In this respect, we already take account of integrated components and materials, production methods and technologies, comprehensive environmental aspects as well as a product's energy efficiency during the development phase. An important entrepreneurial goal in all these years has been and continues to be to create lighting components that satisfy the requirements of our customers with regard to safety, function, longevity and cost-effectiveness.

In addition to observing valid, state-of-the-art standards, we also take consideration of the recommendations of industrial associations when developing new products.

Our cooperation in national and international committees ensures we receive early information about new or changed regulations and thus helps to guarantee future-orientated products.

In addition to undergoing internal production approval tests, mass-produced devices are also submitted to national and international testing institutes for certification. The applicable testing and assessment regulations of the testing institutes are subject to international variation. The marks of conformity shown here are therefore not valid for all the products featured in the catalogue. You will find an overview of the approval marks for the products presented in the catalogue from page 360 on. On request, we will gladly provide information about all of the existing approvals. You can also find test certificates in our online catalogue at www.vossloh-schwabe.com.

As the international IEC (International Electrotechnical Commission) standards for lighting technology are also adopted by the European Institute for Standardisation CENELEC (Comité Européen de Normalisation Electrotechnique), the European standards (EN) therefore contain the same requirements. In rare cases, national deviations are permitted. The certification (third-party testing) of VS catalogue products in accordance with EN standards is documented by the ENEC mark.

The ENEC mark (European Norms of Electrical Certification) was created in Europe as a uniform certification mark for electrotechnical products. The ENEC Agreement currently governs the following product groups:

- luminaires
- luminaire components
- energy-saving lamps
- IT equipment
- connection terminals, clips
- capacitors
- couplers
- switches for household appliances
- noise filters
- safety transformers
- tools
- consumer electronic
- batteries
- domestic appliance mobile tools
- IT products

[^63]

The cerrification of products is also expanded to include non-European manufacturers. However, certification testing for lighting equipment must be carried out by an ENEC testing institute in Europe.

At present, a total of 24 testing houses in 20 countries are signatories of the ENEC agreement (see table). Obtaining an ENEC mark for luminaire components like ballasts and ignitors also includes having the product assessed in accordance with the standards governing safety and function. Certification must be based on the EN standards listed in the Agreement.The mark documents that the product not only complies with the applicable standards, but also that ongoing production is monitored by inspectors from a testing institute and that the manufacturer operates an effective quality assurance system in accordance with the ISO 9000 standard suite (International Standards Organisation). ISO deals with the standardisation of non-electrotechnical products.

The ENEC mark is displayed with the identification number and often the logo of the testing institute, as follows:

| Identification No. | Testing Institute | Identification No. | Testing Institute |
| :--- | :--- | :--- | :--- |
| 01 | AENOR - Spain | 16 | SGS Fimko - Finland |
| 02 | SGS - Belgium | 17 | NEMKO - Norway |
| 03 | IMQ - Italy | 18 | TRI MEEI - Hungary |
| 04 | CERTIF - Portugal | 19 | ITCL - United Kingdom |
| 05 | DEKRA - Netherlands | 21 | EZÚ - Czech Republic |
| 08 | LCIE - France | 22 | SIQ - Slovenia |
| 09 | MIR-TEC - Greece | 23 | TSE - Turkey |
| 10 | VDE - Germany | 24 | TRLPTÜV - Germany |
| 11 | ÖVE - Austria | 25 | TÜV SÜD PS - Germany |
| 12 | BSI - United Kingdom | 28 | SEP - BBJ - Poland |
| 13 | Electrosuisse - Switzerland | 30 | PREDOM - OBR - Poland |
| 14 | Intertek SEMKO - Sweden |  | EVPU - Slovakia |
| 15 | UL Int'I DEMKO - Denmark |  |  |

Apart from a product's safety and performance certification, a further useful selection aid is to have a product's electromagnetic compatibility (EMC) tested by an independent test institute, particularly in the case of electronic ballasts. If the product passes the EMC test, an additional test mark is awarded, for instance the VDE EMC mark of the VDE test and certification institute in Offenbach. The EMC cerrifications for control gears are helpful for the EMC luminaire certification and could reduce time and cost for the luminaire ceritifcation.

## CE mark

EC Directives form the basis for a common European domestic market without any trade restrictions. Any products that are destined for the European market have to meet the requirements of all directives that $\square$ apply to the product in question. Compliance with the directives is documented by the CE mark on the product or in the technical documents.

This CE mark is therefore not a mark of compliance with standards (test certificate) of a testing institute, like the ENEC mark is, and can therefore not be issued by a testing institute. The CE mark must be printed on the product, the packaging or both and is not directed at the consumer, but at supervisory authorities.

## General Technical Details

The following table contains a list of key EC Directives governing lighting

| 2015/1428/EC | Directive dated 25 August 2015 that amends Directive (EC) No. 244/2009 of the Commission with regard to laying down requirements for the eco-friendly design of households lamps with unbundled light and Directive (EC) No. 245/2009 of the Commission with regard to laying down requirements for the eco-friendly design of fluorescent lamps without a builtin ballast, high-pressure discharge lamps as well as ballasts and luminaires for their operation and for annulling Directive 2000/55/EC of the European Parliament and the Committee and Directive (EU) No. 1194/2012 of the Commission with regard to the eco-friendly design of lamps with bundled light, LED lamps and associated devices. |
| :---: | :---: |
| 2014/53/EC | Requirements for radio equipment (luminaires with built-in transmitters) dated 16 April 2014 governing the harmonisation of legal regulations on retailing radio equipment on the market and to render Directive 1999/5/EC invalid. |
| 2014/35/EC | Electrical equipment designed for use within certain voltage limits (Low Voltage Directive); valid from 20.04.2016 |
| 2014/30/EC | Directive on the harmonisation of the laws of the Member States relating to electromagnetic compatibility; national laws had to take effect by 20.01.2007. Applicable to new products since 20.07.2007. (EMC Directive); valid from 20.04.2016 |
| 2012/19/EU | Directive governing the recycling of used electric and electronic devices (WEEE Directive) |
| 2012/27/EU | Energy efficiency directive that amends Directives 2009/125/EC as well as 2010/30/EU and renders Directives 2004/8/EC and 2006/32/EC invalid |
| 1194/2012/EC | Ecodesign requirements for directional lamps, light emitting diode lamps and related equipment |
| 874/2012/EC | Energy labelling of electrical lamps and luminaires |
| 2011/65/EC | Restrictions governing the use of certain hazardous substances in electrical and electronic devices. On 3 January 2015, the 2011/65/EU (RoHS 2) Directive superseded the previous 2002/95/EC (RoHS 1) Directive. Both directives are unofficially shortened to RoHS (Restriction of Hazardous Substances). |
| 347/2010/EC | Ecodesign requirements for fluorescent lamps without an integrated ballast, for high intensity discharge lamps, and for ballasts and luminaires able to operate such lamps |
| 2010/31/EC | Directive governing the total energy efficiency of buildings |
| 2010/30/EC | Indication by labelling and standard product information of the consumption of energy and other resources by energy-relared products (this directive supersedes directive 98/11/EC) |
| 859/2009/EC | Ecodesign requirements on ultraviolet radiation of noo-directional household lamps |
| 245/2009/EC | Definition of eco-design requirements regarding fluorescent lamps without an integrated ballast, high-pressure discharge lamps as well as ballasts and luminaires in their operation and the invalidation of Directive 2000/55/EC of the European Parliament and Council. |
| 244/2009/EC | Definition of eco-design requirements regarding household lamps with non-directional light. |
| 2009/125/EC | Setting of ecodesign requirements for energy-related products (ErP). This directive supersedes directive 2005/32/EC. <br> The new directive was extended and now includes all energy-consuming products. Regulations 244 and 245 remain unaffected by this change. |
| 1907/2006/EC | Specifications governing the registration, evaluation, authorisation and description of chemicals: REACH (Registration, Evaluation, Authorisation and Restriction of Chemical Substances) plus amending regulations; e.g. $348 / 2013 / E C$, latest amendment of the REACH regulation |
| 2006/95/EC | Electrical equipment designed for use within certain voltage limits (Low Voltage Directive); valid till 19.04.2016 |
| 2006/32/EC | Energy end-use efficiency and energy services a " ES Directive (Energy Service); national laws must take effect by 17.05.2008. |
| 2006/25/EC | Directive on the minimum health and safery requirements regarding the exposure of workers arising from physical agents (artificial optical radiation) |
| 2005/32/EC | Eco-design requirements for energy-using products â " EuP directive (Energy using Products). |
| 2005/20/EC | Directive regarding packaging |
| 2004/108/EC | Directive on the approximation of the laws of the Member States relating to electromagnetic compatibility; national laws had to take effect by 20.01.2007. Applicable to new products since 20.07.2007. (EMC Directive); valid till 19.04.2016 |
| 2004/40/EC | Directive on the minimum health and safety requirements regarding the exposure to the risks arising from physical agents (electromagnetic fields) |
| 2004/12/EC | Directive on packaging |
| 2003/66/EC | Directive on energy labelling of household electrical refrigerators, freezers and lamps |
| 2002/96/EC | Old electrical and electronic devices; effective since 13.08.2005; does not fall under the CE mark directive |
| 2002/91/EC | Total energy efficiency of buildings; effective since 04.01.2006; does not fall under the CE mark directive |
| 2001/95/EC | Directive on general product saferly |
| 1999/05/EC | Requirements for radio-controlled systems and telecommunications equipment as well as reciprocal acknowledgement of their conformity (R\&TTE = Radio Equipment and Telecommunications Terminal Equipment) dated 9 March 1999. Also applies to luminaires with built-in transmitters. |
| 1998/11/EC | Energy rating of household lamps; effective since 14.06. 1999 |
| 1994/62/EC | Directive on packaging |
| 93/68/EWC | CE marking directive |

Ecodesign requirements on ultraviolet radiation of non-directional household lamps
ention of eco-desian requirements regarding fluorescent lamps without an integrated ballast, high-pressure discharge lamps as well as ballasts
Definition of eco-design requirements regarding household lamps with non-directional light.
Setting of ecodesign requirements for energy-related products (ETP). This directive supersedes directive 2005/32/EC
The new directive was extended and now includes all energy-consuming products. Regulations 244 and 245 remain unaffected by this change.
Specifications governing the registration, evaluation, authorisation and description of chemicals:
EACH (Registration, Evaluation, Authorisation and Restriction of Chemical Substances
olus amending regulations; e.g. 348/2013/EC, latest amendment of the REACH regulation

2006/95/EC
2006/32/EC
Energy end-use efficiency and energy services â" ES Directive (Energy Service); national laws must take effect by 17.05.2008
2006/25/EC
Directive on the minimum health and safety requirements regarding the exposure of workers arising from physical agents (artificial optical radiation)
Co-design requirements for energy-using products â " EuP directive (Energy using Products).
Directive on the approximation of the laws of the Member States relating to electromagnetic compatibility; national laws had to take effect by 20.01 . 2007. Applicable to new products since 20.07.2007. (EMC Directive); valid till 19.04.2016
2004/40/EC
Directive on the minimum healh and safety requirements regarding the exposure to the risks arising from physical agents (electromagnetic fields)
Directive on packaging
Directive on energy labelling of household electrical refrigerators, freezers and lamps
Old electrical and electronic devices; effective since 13.08.2005; does not fall under the CE mark directive
Total energy efficiency of buildings; effective since 04.01.2006; does not fall under the CE mark directive
Directive on general product safety
 R\&IIE = Radio Equipment and Telecommunications Terminal Equipment) dated 9 March 1999. Also applies to luminaires with builtin transmitters.
1998/11/EC

93/68/EWC
CE marking directive

## General Technical Details

Manufacturers are obliged to keep conformity declarations as well as test and production documentation ready for presentation.

The documents must be retained for a period of 10 years after the product was last marketed.

Vossloh-Schwabe operating devices all bear the CE mark; the respective conformity declaration and production documentation are available for inspection. As a consequence, all luminaires that are equipped with properly installed VS components and for which the assembly instructions were observed meet the legal requirements.

## Climate and environmental protection

The European Union adopted a number of EU Directives that are designed to reduce the $\mathrm{CO}_{2}$ output. Essentially, these objectives can be grouped into three categories:

- requirements placed on new products,
- requirements placed on buildings and
- revision of existing installations.

The requirements placed on new products are governed by the ErP framework directive (Energyrelated $\mathbf{P r o d u c t s )}$ together with the so-called implementation directives, which envisage the setting of special energy requirements for lamps (minimum $1 \mathrm{~m} / \mathrm{W}$ requirements), operating devices (minimum efficiency ratings) and luminaires (minimum energy efficiency requirements) for all lighting technologies. The directive on energy efficiency requirements regarding ballasts for fluorescent lamps is integrated into the implementation directives.

The requirements for buildings (EPBD: Energy Performance of Buildings) are specify targets for the maximum permissible primary output of lighting. In so doing, a calculation method is employed that will stipulate the permissible maximum electrical output values of the lighting system using a reference procedure.

With regard to the revision of existing installations the EU member states are called upon to set up national action plans (Energy Service Directive) that show which measures can be used to achieve the targeted $\mathrm{CO}_{2}$ reductions.

In addition to the climate protection requirements, a number of directives were also produced to cover waste reduction and recycling, specifically the WEEE (Waste of Electrical and Electronic Equipment) and
RoHS (Restriction of the use of certain Hazardous Substances) directives. These directives regulate the disposal and reduction of waste and the use of hazardous substances.

As a result of the REACH system (Registration, Evaluation, Authorisation and Restriction of Chemical Substances) only registered chemical substances can now be brought onto the market. The principle is: no data, no market.

As operating devices and lampholders are constituent parts of luminaires, these components are to be disposed of along with the luminaire; separate disposal is not provided for.

## Protection classes of luminaires and operating devices

The electric shock protection that luminaires and control gears are fitted with provides dual protection, which prevents any danger in the event of a technical defect. With regard to safety, the simultaneous occurrence of two errors can be taken into account in certain circumstances, e.g. given a street luminaire with two lamp casings, one of which is used to house the ballast that operates the lamp. This also applies to low-voltage LED lighting systems.

Luminaires and operating devices of protection class I provide protection against electrical shock solely using the base insulation and the safe connection of all exposed conductive parts to an earth conductor. Thus, should the base insulation fail, no exposed conductive parts can become live.

Luminaires and operating devices of protection class II provide protection against electrical shock using both the base insulation and an additional or reinforced insulation. Protection class II products do not feature a connection to a protective earth conductor. The mounting conditions do not ensure any additional degree of protection, either.

In special cases with Protection Class II luminaires, it can be permissible to connect a protective conductor or a function protection conductor, as follows:

- for EMC reasons - in such cases, it can be necessary to connect a function protection conductor to remain within EMC limiting values. The component manufacturer's specifications regarding the individual operating devices must be observed during the construction of the luminaire. If an operating device is marked as containing a function protection conductor, the creepage and air clearance distances of the operating device connection must comply with the requirements of protection class II (reinforced or additional insulation);
- as an ignition aid for lamps - connecting a function protection conductor can be necessary as a capacitive ignition aid for lamps. In such cases the creepage and air clearance distances around the ignition aid within the luminaire and the function protection conductor connection terminal have to comply with the requirements of protection class II (reinforced or additional insulation). The ignition behaviour of a lamp should be agreed with the manufacturer in these cases;
- when wiring the protective conductor from the luminaire to another device. This is an installation point of the protective conductor and creepage and air clearances must comply with the respective requirements laid down in the luminaire standard as well as any requirements regarding reinforced or additional insulation.
Functional earth connections of control gear or Protection Class II luminaires must always feature double or reinforced insulation since no technical safery requirements exist for functional earth.

Operating devices with double or reinforced insulation for installation in protection class II luminaires

Protection class II specifications have to be met by the luminaire along with its installed operating device. Both protection class I and class II ballasts can be installed. The design of the luminaire must be adapted to suit. This means that if a protection class | ballast is installed in a protection class || luminaire, the design of the luminaire has to be correspondingly sophisticated to ensure the creepage and air clearance distances can be met. On the other hand, using a protection class II ballast, only available as an independent ballast nowadays, will in most cases result in a need for too much technical effort and thus in high costs. Against this background, the standards contain special requirements for ballasts destined for installation in protection class II luminaires.

These "double or reinforced insulation ballasts" and respective protection class || lampholders permit technically and cost-effective construction of protection class II luminaires.


Connection terminal for the protective earth conductor Protection class I


Connection of the function protection conductor (will drop in future)

## $\stackrel{\perp}{\overline{1}}$

General symbol for an earth connection


Protection class II reinforced insulation

Protection class III
$\square$


## General Technical Details

Protection class III luminaires provide protection against electrical shock by using Safety Extra Low Voltage (SELV). Luminaires of protection class III are not permitted to generate higher voltages than the Safety Extra Low Voltage (SELV).

The following table (X1), which has been taken from the luminaire standard EN 60598-1, provides an overview of the insulation coordination between the various types of built-in electronic ballasts and the types of insulation found in luminaires.

| Operating gear |  | Necessary insulation between active parts and exposed conductive parts |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Insulation between LV supply and the secondary circuit | Output voltage | Protection class I Insulation of exposed, earthed and conductive parts | Protection class II Insulation of an exposed, conductive part or more as one with potential equalisation | Protection class II <br> Insulation of more than one exposed, conductive part without potential equalisation |
| None | Uout > LVSupply | Basic insulation suitable for Uout | Double or reinforced insulation suitable for Uout | Double or reinforced insulation suitable for Uout |
|  | Uout $\leq$ LVSupply | Basic insulation suitable for Uout | Double or reinforced insulation suitable for Uout | Double or reinforced insulation suitable for LVSupply |
| Basic | Voltage > ELV | Basic insulation suitable for Uout | Additional insulation suitable for <br> Uout plus LVSupply | Insulation must satisfy the higher requirement of a) or b) <br> a) Additional insulation suitable for Uout plus LVSupply <br> b) Double or reinforced insulation suitable for UOUT |
|  | ELV (FELV) | Basic insulation suitable for Uout | Additional insulation suitable for Uout plus LVsupply | Additional insulation suitable for Uout plus LVSupply |
| Double or reinforced | Voltage > ELV | Basic insulation suitable for Uout | Basic insulation suitable for Uout | Double or reinforced insulation suitable for Uout |
|  | ELV (SELV) | Basic insulation suitable for Uout | Basic insulation suitable for Uout | Basic insulation suitable for Uout |
|  |  | also see requirement of IEC 60598-1, sections 8, 10 and 11 |  |  |

## General Technical Details

## Protection classes of luminaires and operating devices

IEC 60529 (EN 60529) defines protection classes for enclosures of casings. The IP Code (International Protection Code) describes the level of protection provided against accidental contact and penetration by foreign bodies as well as protection against water. The first number stands for protection against foreign bodies, the second stands for protection against water. These specifications are important with particular regard to built-in or mounted luminaires as the provisions governing protection against accidental contact provide the basis for the insulation system for components and conductors (also see luminaire standard EN 60598-1).

To comply with the IP requirements, the installation instructions supplied by the luminaire and/or operating device manufacturer(s) must be observed.

| Number | $\mathbf{l}$ st Number |  | 2nd Number |
| :--- | :--- | :--- | :--- |
|  | Protection against <br> contact | Protection against <br> foreign bodies | Protection against water |
| 0 | Protected against contact <br> with the back of the hand | Protected against solid foreign <br> bodies $\varnothing \geq 50 \mathrm{~mm}$ | Protected against vertically dripping water |
| 1 | Protected against finger <br> contact | Protected against solid foreign <br> bodies $\varnothing \geq 12 \mathrm{~mm}$ | Protected against diagonally dripping <br> water (angle of $15^{\circ}$ from above) |
| 2 | Protected against contact <br> with tools <br> with wire | Protected against solid foreign <br> bodies $\varnothing \geq 2.5 \mathrm{~mm}$ | Protected against diagonal water spray <br> up to an angle of $60^{\circ}$ from above |
| 3 | Protected against contact <br> with wire | Protected against dust <br> Protected against contact <br> with wire | Dust-tight |

If any components like ballasts or conductors of built-in or mounted luminaires (e.g. wall-mounted luminaires) are accessible to accidental contact, they must comply with the requirements of the two safety levels stipulated for these components. Luminaire construction must be in line with these conditions, which can mean that, for instance, conductors have to feature additional or reinforced insulation.

For lampholders the compliance with the two safety levels is proved by conducting a special voltage test.
European standard EN 50102 "Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK code)" introduces an IK code, analogous to the IP degree of protection of electrical control gear, that was also adopted as a national standard in France, e.g. with the French standard NF EN 50102. Testing is carried out using a pendulum hammer that, in accordance with the IK code, must be dropped from a certain height with respective weights attached to exert the specified impact energy. The table details impact energy values for luminaires (IKOO to IK10).

| IK Code | Energy <br> Nm or Joule | IK Code | Energy <br> Nm or Joule |
| :--- | :--- | :--- | :--- |
| IK00 | 0.0 | IK06 | 1 |
| IK01 | 0.14 | IK07 | 2 |
| IKO2 | 0.2 | IK08 | 5 |
| IK03 | 0.35 | IK09 | 10 |
| IK04 | 0.5 | IK10 | 20 |
| IK05 | 0.7 |  |  |

## General Technical Details

## Selection of components, materials and dimensions

The documentation provided by Vossloh-Schwabe is carefully researched. Technical advice is given to the best of our knowledge. The details on the product or the type plate are binding in every case.

Any manipulation of VS products or product packaging is illegal and violates registered trademark rights. Manipulations can negatively influence or destroy technical properties and can possibly result in secondary damage. Vossloh-Schwabe does not accept any liability for manipulated products and cannot be held responsible for any secondary damage.

Manufacturers of luminaires and lighting systems remain responsible for the selection of suitable luminaire components, e.g. operating devices and lampholders, and component materials just as for their safe and correct installation in line with luminaire and system setup regulations.

Particular attention should be paid to the following:

- temperature measurements and temperature limits
- compliance with creepage and air clearance distances and insulation thicknesses
- selection of components to suit their operating conditions and degree of strain
(e.g. voltage, current, mechanical loading, UV radiation)
- protection against contact and safe protective earth conductor connections
- resistance to corrosion

The product drawings without tolerances are contained in this catalogue only feature nominal dimensions. For space and simplicity reasons, the full dimensions and particularly the associated tolerances cannot be shown. For detailed information resp. details of luminaire design, please request our in-depth dimensional assembly drawings.

All VS products comply with the relevant standards and are developed and produced using the latest technological expertise.

To ensure safe luminaire production we do not recommend reusing dismantled lampholders.
Impulse voltage categories for lampholders

| Lampholder | Standard | Impulse voltage category |
| :---: | :---: | :---: |
| E14: $250 \mathrm{~V} / 2 \mathrm{~A}$ | IEC 60238 / VDE 0616-1 | 2 |
| E27: $250 / 500 \mathrm{~V} / 4 \mathrm{~A}$ |  | 2 |
| E40 |  | 2 |
| Starters: $250 \mathrm{~V} / 2 \mathrm{~A}$ | IEC 60400 / VDE 0616-3 | 2 |
| Fluorescent lamps $250 \mathrm{~V} / 500 \mathrm{~V} / 2 \mathrm{~A}$ | IEC 60400 / VDE 0616-3 | 2 |
| Halogen lamps and other lamps | IEC 60838-1 / VDE 0616-5 | 2 |
| Bayonet fifting | IEC 61184 / VDE 0616-2 | 2 |

## Torques for screws

With regard to lampholders secured with screws, we recommend using a torque of around $80 \%$ of the value stipulated in DIN EN 60598-1

| Nominal diameter of the screw's outside thread <br> mm | Torque (Nm) for screws with a head in acc. <br> with DIN EN 60598-1 |
| :--- | :--- |
| to 2.8 | 0.40 |
| $<2.8$ to 3.0 | 0.50 |
| $<3.0$ to 3.2 | 0.60 |
| $<3.2$ to 3.5 | 0.80 |
| $<3.6$ to 4.1 | 1.20 |
| $<4.1$ to 4.7 | 1.80 |
| $<4.7$ to 5.3 | 2.00 |
| $<5.3$ to 6.0 | 2.50 |


| A | A type, B type capacitors | The requirements of the safety standard for capacitors differentiates between capacitor types; A type capacitors stand for plastic can capacitors; B type capacitors stand for aluminium can capacitors. |
| :---: | :---: | :---: |
|  | AG DALI | International working group under the umbrella of ZVEl (the German Electrical and Electronic Manufacturers' Association) in support of DALI (Digital Addressable Lighting Interface). |
|  | Analogue interface 1-10 V | Bipolar interface of dimmable operating devices with a built-in constant current source. |
|  | Average service life | Specified service life of electronic operating devices with a failure rate per unit of time. |
| B | Ballast | Device that is connected in between the voltage supply and one or more discharge lamps and serves the purpose of igniting the lamps and limiting lamp current during operation. |
|  | Ballast-Lumen Factor (luminous flux factor of a ballast) | The ratio of luminous flux emitted by a reference lamp when operated with a particular production ballast to the luminous flux emitted by the same lamp when operated with its reference ballast. |
| C | Capacitive circuit (series compensation) | Circuit of an inductive ballast with a capacitor connected in series. |
|  | CE Mark | European regulation governing all products that are introduced to the market. Products must comply with the respective EC directives. |
|  | CELMA | Association of European component and luminaire manufacturers (Committee of E.E.C. Luminaires Components Manufacturers Associations). |
|  | CENELEC | European committee for electronic standardisation (Comité Européen de Normalisation Electrotechnique). |
|  | CISPR | International special commission for radio interference (Comité International Spécial des Perturbations Radioélectriques). |
|  | Colour rendering index (CRI) $\mathbf{R a}_{\mathbf{a}}$ | Index to determine the degree of deviation from a viewed body colour (with 8 standardised test colours) under a given type of lighting. $R_{a}=100$ denotes a light source that causes no distortion of any colour. Lower $R_{a}$ values denote light sources with less positive colour rendition properties. |
|  | Compensated circuit (parallel compensation) | Circuit of an inductive ballast with a capacitor between phase and neutral conductor. |
|  | Compensation capacitors | The power factor can be increased to a value of 0.9-0.98 by using compensation capacitors. |
|  | Conformity declaration | Documentation for an operating device or a luminaire regarding compliance with European directives; this documentation is for submission to national supervisory authorities (e.g. regulation authority for telecommunications and post (Reg. TP) or trade supervisory authorities). |
|  | Convertors | Electronic convertor (electronic conversion of mains voltage in extra-low voltage) to generate operating voltage for low-voltage halogen lamps. |
|  | Creepage and air clearance distances | Regulation minimum distances between voltage-carrying components of different polarity or between voltage-carrying components and the accessible casing surfaces (air clearance: shortest distance through air; creepage distance: shortest distance across a surface). |
|  | Cross discharge | Discharge in the lamp electrode region during preheating. |
| D | DALI | Digital interface for controlling dimmable electronic operating devices (Digital Addressable Lighting Interface). |
|  | $\Delta t$ | Increase in the winding temperature during the operation of a ballast the ballast is mounted on 75 mm high wooden blocks and its temperature is measured at an ambient temperature of $25^{\circ} \mathrm{C}$. |
|  | $\Delta$ tan | Temperature increase during short-circuit operation (e.g. defective starter, defective lamp). |
|  | DIAL | German institute for applied lighting technology (Deutsches Institut für Angewandte Lichttechnik), Lüdenscheid, Germany. |
|  | DKE | German electrotechnical commission of the DIN and VDE. |
|  | Driver | Name commonly given to ballasts used for operating LED modules. |
| E | EC directives | Regulations (laws) of the European Community that have to be transposed into national laws within a prescribed period of time. |
|  | Efficiency | Ratio of power output in relation to power input. |
|  | ELC | European Lamp Companies Federation |
|  | EMC | Electromagnetic compatibility |
|  | EMF | Electromagnetic fields |
|  | ENEC agreement | Agreement between the European testing institutes for issuing the European test mark. |
|  | ENEC mark | Marking for a device that complies with the European standards and that was tested by a testing institute that is a part of the ENEC agreement (European Norms of Electrical Certification). |
|  | Energy classification EEI | CELMA system to determine energy classes for ballasts for fluorescent lamps (Energy Efficency Index). |
|  | Error current | Current that is caused by a fault in the insulation of a device or via creepage or air clearance distances. |
|  | Error current protection swi | Evaluates the magnitude of the error current and switches the circuit off if a predefined maximum value is reached. |
| F | Feed-through of mains voltage | The possibility of connecting two lamps to a single terminal so that an electrical connection can be made to another device. |
|  | FELV | Functional extra-low voltage without adequate protection from accidental contact with higher voltages in other parts of the same circuit. |
|  | FEP capacitors | Flame- and explosion-proof capacitors with a contact breaker. |
|  | FGL | Promotion Society for Good Lighting (Fördergemeinschaft Gutes Licht - ZVEI). |
|  | Function protection conductor | It may be necessary to connect a "function protection conductor" to ensure compliance with the EMC requirements or as a starting aid for lamps; VS operating devices are suitably marked. |

Current that is caused by a fault in the insulation of a device or via creepage or air clearance distances.
Error current protection switch Evaluates the magnitude of the error current and switches the circuit off if a predefined maximum value is reached
Feed-through of mains The possibility of connecting two lamps to a single terminal so that an electrical connection can be made to another device.
voltage
Functional extra-low voltage without adequate protection from accidental contact with higher voltages in other parts of the
same circuit.

| I | IDC terminal (ALF terminal) | IDC-type connection terminal (Insulation Displacement Connection) for automatic luminaire fabrication (ALF terminal). |
| :---: | :---: | :---: |
|  | IEC | International Electrotechnical Commission |
|  | ILCOS lamp designation system | International IEC marking system for lamps. |
|  | Illuminance Ev | Illuminance (Ev) is the total luminous flux ( $\Phi$ ) incident on a horizontal, vertical or angled illuminated surface (per unit area). The unit is lux $\left[\mid \mathrm{x}=\mathrm{Im} / \mathrm{m}^{2}\right]$, with luminous flux in [ lm$]$ and area in [ $\mathrm{m}^{2}$ ]. Illuminance Ev forms the basis for all lighting calculations and designs. |
|  | Impedance | Impedance is a conductor's apparent resistance to an alternating current. |
|  | IMQ | Italian institute for quality marking; at the same time, the mark of conformity with standards \|lstituto Italiano del Marchio di Qualitá). |
|  | Independent lamp operation | Possibility of operating a single lamp with a multi-lamp operating device after the other lamps have failed. |
|  | Independent operating device | Operating device that does not have to be installed in a casing; the safety regulations are fulfilled by the operating device itself. |
|  | Inductance | Inductance establishes the connection between the current and the magnetic flux caused by it in a conductor arrangement after taking account of all design and material fluctuations. |
|  | Inductive circuit | Operation of a fluorescent lamp with a ballast without a capacitor. |
|  | Interference | Interference signals emitted by operating devices via the mains voltage or the air. |
|  | Interference immunity | Property of an operating device to remain fully functional despite interference emitted by other operating devices. |
|  | IP numbers | Code system for marking the protection level of an operating device or a luminaire against moisture or foreign bodies entering (the first figure stands for foreign bodies and the second for moisture). |
|  | IPP technology | Generating the ignition voltage required for high-pressure lamps using the special intelligent pulse pause technology. |
| L | LBS lamp designation System | Marking system for lamps, established for Europe. |
|  | Leak current | Current of an operating device or a luminaire that is discharged via the potential compensation conductor (earth conductor). |
|  | LED (light emitting diode) | Solid state device embodying a p-n junction, emtting optical radiation when excited by an electric current. |
|  | LED light engine | Functional unit consisting of an LED module and control gear. The LED light module and the control gear can be used separately in two different casings or combined as a single unit. |
|  | LED module | Unit supplied as a light source. In addition to one or more LED's it may contain other components, e.g. optical, electrical, mechanical and/or electronic. |
|  | Light colour | Perceived colour of the light radiated by a lamp. |
|  | LightingEurope | An industry association consisting of European lamp, component and luminaire manufacturers as well as national lighting associations in Europe. LightingEurope is the successor organisation of CELMA and ELC (European Lamp Companies). LightingEurope represents the interests of the European lighting industry. |
|  | Light intensity distribution curve | Represents the spatial distribution of the light intensity of light sources. |
|  | LiTG | German Association for Lighting Technology (Deutsche Lichttechnische Gesellschaft) |
|  | Luminance L | Luminance $L$ is the luminous intensity density of an area that emits or reflects light with a certain emission angle. The unit of luminance $L$ is $\left[\mathrm{cd} / \mathrm{m}^{2}\right]$ and is the photo-technical measure that corresponds to the subjective perception of the level of brightness of a light source or an object, while luminous flux $\Phi$, luminous intensity I and illuminance E are not visible, i.e. not sensed by the human eye. Light only becomes visible when it hits an object that it is either reflected by or penetrates in a diffused manner. Objects of different levels of brightness therefore only seem to be darker or brighter at same illuminance because they reflect the light differently. |
|  | Luminous efficiency / efficiency | Ratio of luminous flux to power input (lm/W). |
|  | Luminous flux $\Phi$ (photon radiation) | Luminous flux $\Phi$ is the radiated/emitted light power in lumen [lm] of a light source, a unit of measurement for the number of light photons emitted in all directions. Luminous flux is the photometrical light output perceived by the human eye. |
|  | Luminous intensity I | Luminous intensity I in [cd] is decisive for characterising of a source of light and is defined as a quotient of the emitted luminous flux $\Phi$ and the radiated area of the solid angle $\Omega$. Luminous intensity I is thus the focused luminous flux $\Phi$ within the radiated solid angle $\Omega$. Today's LEDs can reach a luminous intensity of more than $\mathrm{I}=10 \mathrm{~cd}$. The luminous intensity value depends on the viewing angle, i.e. the luminous intensity of an LED chip in a $30^{\circ}$ reflector will be higher than that of an identical LED chip in a $60^{\circ}$ reflector. This is because a $60^{\circ}$ reflector results in the same luminous flux $\Phi$ having to illuminate a larger area. |
| M | Mains harmonics | Mains current distortions by higher-frequency currents. |
|  | Master/slave circuit | Operating several lamps in different luminaires with one ballast. |
|  | $\boldsymbol{\mu F}$ | Unit of capacitance (microfarad) |
|  | MPP capacitors | Metallised polypropylene film dielectric capacitors. |
| P | Parallel-compensated circuits | Circuit of an inductive ballast with a capacitor between phase and neutral conductor (connected in parallel to the lamp circuit). |
|  | Part load range | Variable load range up to the maximum rated load. |
|  | PelV | Protective extra-low voltage with adequate protection from accidental contact with higher voltages in other parts of the same circuit. |
|  | Phase-cutting leadingedge control | In accordance with the defined angle, voltage regions are suppressed of the positive and negative sinusoidal oscillations of the mains voltage in an upwards direction starting with the voltage zero crossing. |
|  | Pinch temperature | This is measured at a defined point of the lamp base; the permissible maximum values are internationally determined. |
|  | Polyester resin impregnation | High-grade vacuum impregnation with polyester resin. |
|  | Power factor | Ratio of true power to apparent power (total power). Lambda ( $\lambda$ ) expresses the power factor for non-sinusoidal currents and voltages. In contrast, $\cos \varphi$ (phi) expresses the power factor for sinusoidal currents or voltages. |
|  | Pulse Ignition | Generation of the ignition voltage for high-pressure lamps with the help of ballasts (ballast insulation must match the ignition voltage). |
|  | PUSH | Key-operated bipolar interface of VS electronic ballasts for controlling the brightness of connected lamps. |


| R | Reference ballast | Special ballast that is either inductive for lamps operated with mains voltage or ohmic for lamps operated at high frequencies. Reference ballasts are designed to deliver comparable values for testing ballasts, selecting reference lamps and testing mass-produced lamps under standardised conditions. |
| :---: | :---: | :---: |
|  | Reference lamp | When used in combination with a suitable reference ballast, reference lamps provide key electrical data that are close to the target values laid down in the lamp standards. |
| S | Safety transformer | Isolation transformer for supplying circuits with safety extra-low voltages. |
|  | SELV | Safety extra-low voltage. |
|  | Short-circuit-proof | Short-circuit-proof operating devices do not pose a safety risk if a short-circuit occurs at the output of the operating device; a difference is made between operating devices offering limited and unlimited protection against short-circuit; in the case of operating devices with limited short-circuit protection, an additional mechanism has to be installed. |
|  | Solid angle $\Omega$ | Solid angle $\Omega$ is the area within a sphere that is pervaded by the light emitted by a light source. The steradian (sr) is the unit of measure for solid angle, whereby $1 \mathrm{sr}=65.5^{\circ}$. This describes a cone with its peak in the light source and a beam spread angle of $65.5^{\circ}$. A whole solid angle is expressed as $4 Л \mathrm{sr}=12.56 \mathrm{sr}$. |
|  | Standards | VS products comply with the regulations of the following European standards: <br> - Electronic ballasts for fluorescent lamps: EN $61347-1$, EN $61347-2-3$, EN 60929 , EN 55015, EN 61547 , EN $61000-3-2$, IEC 62493 <br> - Electronic ballasts for high-pressure discharge lamps: EN 61347-1, EN 61347-2-12, EN 55015, EN 61547, EN $61000-3-2$, IEC 62493 <br> - Electronic convertors: EN $61347-1$, EN $61347-2-2$, EN 61047 , EN 55015, EN 61547, EN $61000-3-2$, IEC 62493 <br> - Electromagnetic ballasts: EN $61347-1$, EN $61347-2-8$, EN $61347-2-9$, EN 60921 , EN 60923 , EN 50294, EN 55015, EN 61547 , EN $61000-3-2$, IEC 62493 <br> - Electromagnetic transformers: EN 61558-1, EN $61558-2-6$, EN 55015, EN 61547 , EN $61000-3-2$, IEC 62493 <br> - Ignitors: EN 61347-1, EN 61347-2, EN 60927, EN 55015, EN 61547, EN 61000-3-2 <br> - Capacitors: EN 61048 , EN 61049 <br> - Lampholders: EN 60238, EN 60400, EN 60838-1, EN 611 184, EN 60399 <br> - Digital control inputs of operating devices: IEC 62386 <br> - LED: IEC 62031, IEC 61347-1, IEC $61347-2-13$, IEC 62384, IEC 61231 , IEC TR 61341 , IEC $60838-2-2$, IEC 62471(-1), EC 62471-2 <br> - EMC/EMF: EN 55015, EN 61547, EN $61000-3-2$, IEC 62493 |
|  | Stroboscopic effect | Optical illusion whereby objects appear either to be moving or stationary in contrast to their actual state when illuminated by periodically alternating light. |
|  | Superimposed ignition | Generation of the ignition voltage required for high-pressure lamps by the ignitor independent of the ballast (superimposed over the mains voltage). |
|  | System power consumption | Total power input of lamp and operating device (in watt). |
| T | ta | Ambient temperature |
|  | TALQ | Industrial consortium for the globally recognised standardisation of a management soffware interface for outdoor lighting networks. The aim is to enable the interoperability of central management systems and outdoor lighting networks made by different manufacturers. |
|  | Tandem circuit | Series connection of two fluorescent lamps using a single ballast. |
|  | tc | Maximum operating temperature of the casing at the marked measuring point. |
|  | Temperature details | The temperature details on our VS ballasts are always maximum values; these are based on the maximum voltage values given on the type plate. |
|  | The Connected Lighting Alliance | Industrial consortium that was founded by GE Lighting, Lutron, OSRAM, Panasonic, Philips, Toshiba in August 2012 for the purpose of supporting global use and distribution of wireless connectivity in lighting applications. |
|  | Thermal classes | Classification of transformers according to the degree of heat resistance offered by the insulation materials. |
|  | Thermal cut-out | Protection from overheating due to abnormal lamp conditions (rectifier effect, short-circuit and overload), with automatic restart after cooling. |
|  | Transient mains overvoltages | Voltage peaks that briefly occur and are superimposed over the mains voltage. |
|  | T rating | Rated value of the lampholder's maximum operating temperature (e.g. T130). |
|  | Tungsten-halogen cycle | In the outer, cooler part of the lamp, the halogen combines with the tungsten vapour released by the filament to form a tungstenhalogen molecule which then decomposes and deposits the tungsten on the filament. |
|  | tw | Maximum permissible winding temperature. |
| U | UL, UL approval | Underwriters' Laboratories Inc., USA; US conformity mark for safety. |
| V | VDE mark | Safety mark on the basis of the German safety standard for electrical equipment; tested by the VDE-PZI (Verband Deutscher Elektrotechniker - Prüf- und Zertifizierungsinstitut). |
| W | Winding temperature | Temperature of the copper winding in a magnetic ballast; the change in winding temperature is measured using the change of the resistance of the copper winding. |
| Z | Zhaga | Global industrial consortium that has taken on the task of standardising the interfaces needed for LED light engines. |
|  | ZVEI | Central association of the electrotechnical and electronics industry in Germany (Zentralverband Elektrotechnik- und Elektronikindustrie e.V.). |

Electronic convertors: EN $61347-1$, EN $61347-2-2$, EN 61047 , EN 55015, EN 61547 , EN 61000-3-2
IEC 62493
Electromagnetic transformers: EN 61558-1, EN 61558-2-6, EN 55015, EN 61547 , EN 61000-3-2
IEC 62493
Ignitors: EN 61347-1, EN 61347-2, EN 60927, EN 55015, EN 61547, EN 61000-3-2
Capacitors: EN 61048 , EN 61049

- IED: IEC 62031 IEC 613171 IEC 61347-213, IEC 62384 IEC

IEC 62471(-1), EC 62471-2
EMC/EMF: EN 55015, EN 61547, EN $61000-3-2$, IEC 62493
Optical illusion whereby objects appear either to be moving or stationary in contrast to their actual state when illuminated by periodically alternating light.
Generation of the ignition voltage required for high-pressure lamps by the ignitor independent of the ballast (superimposed over the mains voltage)

Ambient temperature
Industrial consortium for the globally recognised standardisation of a management software interface for outdoor lighting networks. The aim is to enable the interoperability of central management systems and outdoor lighting networks made by different

Series connection of two fluorescent lamps using a single ballast
Maximum operating temperature of the casing at the marked measuring point.
The temperature details on our VS ballasts are always maximum values; these are based on the maximum voltage values given the type plate. purpose of supporting global use and distribution of wireless connectivity in lighting applications.
Classification of transformers according to the degree of heat resistance offered by the insulation materials.
Protection from overheating due to abnormal lamp conditions (rectifier effect, short-circuit and overload), with automatic restart


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 100064 | 02120 | 200 | 1,3 |
| 100069 | 02150 | 200 | 1,3,33 |
| 100082 | 02525 | 76 | 1 |
| 100086 | 02543 | 76 | 1 |
| 100096 | 02574 | 75 | 1 |
| 100098 | 02575 | 76 | 1 |
| 100125 | 03210 | 307 | - |
| 100194 | 06700 | 307 | - |
| 100217 | 07400 | 308 | - |
| 100270 | 08610 | 307 | - |
| 100273 | 08701 | 307 | - |
| 100305 | 09105 | 174 | 1,3 |
| 100310 | 09205 | 174 | 1,3 |
| 100437 | 20200 | 207 | 1 |
| 100442 | 20400 | 192 | - |
| 100448 | 20501 | 192 | - |
| 100484 | 22600 | 186 | 1,3,33 |
| 100486 | 22601 | 186 | 1,3,33 |
| 100487 | 22602 | 186 | 1,3,33 |
| 100551 | 27356 | 191 | 1,3 |
| 100557 | 27450 | 184 | 1,3,33 |
| 100559 | 27460 | 184 | 1,3 |
| 100572 | 27722 | 191 | 1,3 |
| 100579 | 27820 | 182 | 1,3,33 |
| 100581 | 27821 | 182 | 1,3 |
| 100583 | 27822 | 191 | 1,3 |
| 100585 | 28100 | 184 | 1,3,33 |
| 100588 | 28200 | 184 | 1,3,33 |
| 100591 | 28500 | 183 | 1,3,33 |
| 100593 | 28501 | 183 | 1,3,33 |
| 100616 | 30023 | 275 | 1 |
| 100662 | 30300 | 267 | 1 |
| 100710 | 30523 | 275 | 1 |
| 100720 | 30550 | 275 | 1 |
| 100723 | 30602 | 75 | 1 |
| 100741 | 30620 | 75 | 1 |
| 100912 | 32300 | 273 | 1 |
| 100913 | 32301 | 73 | 1 |
| 100921 | 32311 | 73 | 1 |
| 100922 | 32321 | 73 | 1 |
| 100925 | 32326 | 74 | 1 |
| 100928 | 32330 | 74 | 1 |
| 100931 | 32336 | 74 | 1 |
| 100932 | 32341 | 73 | 1 |
| 100934 | 32361 | 73 | 1 |
| 100937 | 32381 | 74 | 1 |
| 100939 | 32400 | 261,264,266 | 1 |
| 101162 | 32600 | 265 | 1 |
| 101207 | 32620 | 265 | 1 |
| 101248 | 32680 | 265 |  |
| 101253 | 32690 | 265 |  |
| 101258 | 32700 | 261 | 1 |
| 101274 | 32720 | 261 | 1 |
| 101298 | 35004 | 164 | 1,3,33 |
| 101306 | 35006 | 164 | 1,3,33 |
| 101310 | 35007 | 164 | 1,3,33 |
| 101314 | 35008 | 164 | 1,3 |
| 101320 | 35010 | 165 | 1,3,33 |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 101324 | 35011 | 165 | 1,3,33 |
| 101344 | 35051 | 165 | 1,3,33 |
| 101346 | 35052 | 165 | 1,3 |
| 101364 | 35201 | 166 | 1,3,33 |
| 101485 | 36050 | 168 | 1,3,33 |
| 101489 | 36051 | 168,343 | 1,3,33 |
| 101491 | 36052 | 168 | 1,3,33 |
| 101493 | 36053 | 168 | 1,3,33 |
| 101497 | 36061 | 171 | - |
| 101521 | 36300 | 167 | 1,3 |
| 101627 | 43000 | 201 | 1,3,33 |
| 101629 | 43010 | 201 | 1,3 |
| 101631 | 43100 | 201 | 1,3 |
| 101636 | 43300 | 202 | 1,3,33 |
| 101643 | 46100 | 190 | 1,3 |
| 101647 | 46101 | 190 | 1,3 |
| 101681 | 47102 | 188 | 1,3 |
| 101706 | 47200 | 188 | 1,3 |
| 101712 | 47205 | 189 | 1,3 |
| 101716 | 47206 | 189 | 1,3 |
| 101740 | 47502 | 188 | 1,3 |
| 101745 | 47504 | 189 | 1,3,33 |
| 101765 | 47600 | 188 | 1,3 |
| 101769 | 47605 | 189 | 1,3,33 |
| 101773 | 47606 | 189 | 1,3 |
| 101781 | 47700 | 189 | 1,3 |
| 101784 | 47900 | 189 | 1,3,33 |
| 101785 | 47920 | 190 | 1,33 |
| 101787 | 48500 | 190 | 1,3 |
| 101789 | 48501 | 190 | 1,3 |
| 101791 | 48502 | 192 | 1,3 |
| 101793 | 48503 | 192 | 1,3 |
| 102577 | 62010 | 65,298 | 1 |
| 102582 | 62015 | 65,298 | 1 |
| 102599 | 62050 | 65,298 | 1 |
| 102615 | 62104 | 65 | 1 |
| 102617 | 62105 | 65 | 1 |
| 102624 | 62310 | 66,299 | 1 |
| 102635 | 62600 | 64 | 1 |
| 102637 | 62601 | 64 | 1 |
| 102923 | 78100 | 268 | 1,3 |
| 102938 | 80003 | 288 | - |
| 102939 | 80003 | 288 | - |
| 102946 | 80006 | 288 | - |
| 102947 | 80006 | 288 | - |
| 102956 | 80014 | 303 | - |
| 103020 | 80342 | 300 | - |
| 103021 | 80342 | 300 | - |
| 103026 | 80343 | 300 | - |
| 103027 | 80343 | 300 | - |
| 103087 | 80433 | 308 | - |
| 103359 | 81019 | 287 | - |
| 103360 | 81019 | 287 | - |
| 103365 | 81022 | 288 | - |
| 103366 | 81022 | 288 | - |
| 103414 | 81093 | 285 | - |
| 103415 | 81093 | 285 | - |
| 103424 | 81095 | 285 | 1,33 |



Reference Numbers

| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 103430 | 81109 | 285 | - |
| 103431 | 81109 | 285 | - |
| 103442 | 81120 | 285 | - |
| 103443 | 81120 | 285 | - |
| 103467 | 83000 | 295 | - |
| 103468 | 83000 | 295 | - |
| 103483 | 83002 | 295 | - |
| 103484 | 83002 | 295 | - |
| 103504 | 83006 | 302 | 1 |
| 103515 | 83008 | 302 | 1 |
| 103520 | 83011 | 295 | 1,33 |
| 103569 | 83173 | 295 | - |
| 103570 | 83173 | 295 | - |
| 103582 | 83218 | 300 | - |
| 103583 | 83218 | 300 | - |
| 103587 | 83218 | 303 | - |
| 103590 | 83219 | 300 | - |
| 103591 | 83219 | 300 | - |
| 103594 | 83219 | 303 | - |
| 103595 | 83221 | 300 | 1 |
| 103597 | 83223 | 300 | 1 |
| 103643 | 83285 | 295 | 1,33 |
| 103709 | 84122 | 197 | - |
| 103710 | 84122 | 197 | - |
| 103711 | 84123 | 197 | - |
| 103712 | 84123 | 197 | - |
| 103743 | 84154 | 197 | - |
| 103744 | 84154 | 197 | - |
| 103818 | 86037 | 76 | - |
| 104928 | 94304 | 301,302 | - |
| 105144 | 96010 | 301,302 | - |
| 105179 | 96033 | 301 | - |
| 105185 | 96034 | 301 | - |
| 105448 | 97031 | 169 | - |
| 105482 | 97064 | 203 | - |
| 105483 | 97065 | 203 | - |
| 105775 | 35060 | 170 | - |
| 105776 | 35060 | 169 | - |
| 105777 | 35760 | 169 | - |
| 105843 | 97532 | 192 | - |
| 105931 | 35061 | 169 | - |
| 105981 | 97638 | 170 | - |
| 106094 | 98085 | 196 | - |
| 106095 | 98086 | 203 | - |
| 106256 | 94060 | 267 |  |
| 106416 | 35060 | 169 | - |
| 106417 | 35760 | 169 | - |
| 106455 | 9210 | 174 | 1,3 |
| 106457 | 32480 | 265 | 1 |
| 106585 | 62110 | 65 | 1 |
| 106766 | 94067 | 308 | - |
| 106767 | 94068 | 308 | - |
| 106768 | 94069 | 308 | - |
| 106802 | 94074 | 308 | - |
| 106817 | 98006 | 305 | - |
| 106818 | 02170 | 201 | 1,3 |
| 106829 | 94450 | 309 | - |
| 106948 | 09501 | 311 | - |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 106949 | 09502 | 311 | - |
| 107065 | 31662 | 72 | 1 |
| 107066 | 31672 | 72 | 1 |
| 107096 | 83015 | 303 | 1 |
| 107154 | 05202 | 307 | - |
| 107177 | 96242 | 293 | - |
| 107178 | 96206 | 293 | - |
| 107192 | 32360 | 274 | 1 |
| 107193 | 32340 | 274 | 1 |
| 107194 | 32320 | 274 | 1 |
| 107195 | 32310 | 274 | 1 |
| 107213 | 32390 | 273 | 1 |
| 107214 | 32391 | 273 | 1 |
| 107215 | 32395 | 273 | 1 |
| 107331 | 83015 | 303 | 1 |
| 107445 | 43410 | 203 | 1 |
| 107677 | 21100 | 77 | 34 |
| 107694 | 33100 | 267 | - |
| 107716 | 81096 | 285 | 1,33 |
| 107780 | 12801 | 67,313 | 1 |
| 107957 | 84171 | 194 | 1 |
| 107958 | 84172 | 195 | 1,3 |
| 107959 | 84173 | 194 | 1 |
| 107960 | 84174 | 195 | 1,3 |
| 108208 | 12800 | 67,313 | 1 |
| 108266 | 98003 | 180,193,194 | - |
| 108267 | 98004 | 179,195 | - |
| 108304 | 97159 | 310 | - |
| 108373 | 12812 | 68,313 | 1 |
| 108374 | 12810 | 68,313 | 1 |
| 108375 | 12811 | 68,313 | 1 |
| 108416 | 62622 | 65 | 1 |
| 108437 | 28920 | 185 | 1,3 |
| 108438 | 28921 | 185 | 1,3 |
| 108449 | 30471 | 263 | 1 |
| 108454 | 43500 | 202 | 1 |
| 108608 | 84175 | 195 | 1,3 |
| 108614 | 84175 | 195 | 1,3 |
| 108666 | 84172 | 195 | 1,3 |
| 108669 | 84174 | 195 | 1,3 |
| 108671 | 43020 | 201 | 1,3 |
| 108678 | 94071 | 264 | - |
| 108718 | 62150 | 64 | 1 |
| 108719 | 62151 | 64 | 1 |
| 108747 | 64740 | 290 | 1,33 |
| 108748 | 64800 | 305 | 1 |
| 108758 | 64741 | 291 | 1,33 |
| 108773 | 22800 | 186 | 1 |
| 108775 | 22801 | 186 | 1 |
| 108777 | 22850 | 186 | 1 |
| 108778 | 22851 | 186 | 1 |
| 108780 | 97044 | 192 | - |
| 108816 | 22604 | 186 | 1,3,33 |
| 108845 | 97117 | 193 | - |
| 108878 | 36060 | 170 | - |
| 108898 | 35012 | 165 | 1,3,33 |
| 108927 | 35500 | 166 | 1,3 |
| 108928 | 35510 | 166 | 1,3 |



| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 108932 | 35530 | 166 | 1,3 |
| 108933 | 35540 | 167 | 1,3 |
| 108934 | 35550 | 167 | 1,3 |
| 108936 | 64401 | 289 | 1,33 |
| 108937 | 02500 | 75 | 1 |
| 108940 | 85007 | 276 | - |
| 108947 | 98002 | 179 | - |
| 108953 | 64770 | 290 | 1,33 |
| 108956 | 97194 | 309 | - |
| 108965 | 64501 | 289 | 1,33 |
| 108979 | 31000 | 271 | 1,34 |
| 108983 | 64307 | 281 | 1,33 |
| 108984 | 22900 | 186 | 1 |
| 109007 | 31010 | 271 | 1,34 |
| 109014 | 12870 | 342 | 34 |
| 109039 | 83007 | 296 | - |
| 109041 | 81130 | 286 | - |
| 109044 | 96172 | 297 | - |
| 109045 | 97511 | 293 | - |
| 109052 | 83007 | 296 | - |
| 109054 | 81130 | 286 | - |
| 109060 | 96172 | 297 | - |
| 109062 | 97511 | 293 | - |
| 109074 | 83293 | 296 | - |
| 109077 | 85070 | 291 | - |
| 109081 | 83274 | 297 | - |
| 109084 | 96159 | 286 | - |
| 109086 | 97147 | 193 | - |
| 109087 | 83293 | 296 | - |
| 109092 | 85070 | 291 | - |
| 109093 | 83274 | 297 | - |
| 109095 | 96159 | 286 | - |
| 109098 | 83035 | 296 | - |
| 109099 | 83035 | 296 | - |
| 109102 | 81002 | 286 | - |
| 109103 | 81002 | 286 | - |
| 109110 | 85075 | 282 | - |
| 109112 | 85075 | 282 | - |
| 109119 | 97666 | 283 | - |
| 109120 | 97666 | 283 | - |
| 109122 | 97635 | 283 | - |
| 109123 | 97635 | 283 | - |
| 109126 | 97697 | 283 | - |
| 109145 | 81024 | 286 | - |
| 109149 | 96211 | 286 | - |
| 109150 | 96211 | 286 | - |
| 109152 | 81132 | 287 | - |
| 109153 | 81132 | 287 | - |
| 109158 | 83297 | 304 | 1 |
| 109159 | 83282 | 293 | - |
| 109162 | 03210 | 307 | - |
| 109166 | 05202 | 307 | - |
| 109184 | 97698 | 292 | - |
| 109187 | 96148 | 296 | - |
| 109188 | 96148 | 296 | - |
| 109190 | 96154 | 297 | - |
| 109191 | 96154 | 297 | - |
| 109195 | 96147 | 296 | - |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 109196 | 96147 | 296 | - |
| 109198 | 83260 | 303 | - |
| 109199 | 83260 | 303 | - |
| 109200 | 96229 | 304 | - |
| 109201 | 96229 | 304 | - |
| 109235 | 35610 | 163 | 1,3 |
| 109238 | 35611 | 163 | 1,3 |
| 109240 | 35612 | 163 | 1,3 |
| 109243 | 83300 | 304 | - |
| 109247 | 09708 | 310 | - |
| 109248 | 09701 | 311 | - |
| 109249 | 09703 | 310 | - |
| 109253 | 09701 | 311 | - |
| 109280 | 96033 | 301 | - |
| 109281 | 96034 | 301 | - |
| 109282 | 83258 | 302 | - |
| 109283 | 83258 | 302 | - |
| 109285 | 08610 | 307 | - |
| 109291 | 08701 | 307 | - |
| 109317 | 96160 | 311,312 | 17 |
| 109318 | 96160 | 311,312 | 17 |
| 109330 | 27700 | 181 | 1,3,33 |
| 109331 | 27701 | 181 | 1,3,33 |
| 109332 | 27800 | 181 | 1,3 |
| 109335 | 27801 | 181 | 1,3 |
| 109338 | 28500 | 182 | 1,3,33 |
| 109339 | 28501 | 182 | 1,3,33 |
| 109340 | 28600 | 182 | 1,3,33 |
| 109341 | 28601 | 182 | 1,3,33 |
| 109342 | 28700 | 345 | - |
| 109343 | 28701 | 345 | - |
| 109376 | 28725 | 345 | - |
| 109377 | 28726 | 345 | - |
| 109383 | 64001 | 280 | 1,33 |
| 109384 | 64001 | 280 | 1,33 |
| 109386 | 64101 | 280 | 1,33 |
| 109387 | 64101 | 280 | 1,33 |
| 109411 | 97244 | 271 | - |
| 109429 | 64501 | 289 | 1,33 |
| 109462 | 83282 | 293 | - |
| 109497 | 32380 | 274 | 1 |
| 109512 | 96124 | 297 | - |
| 109518 | 12876 | 342 | 34 |
| 109532 | 84000 | 180 | - |
| 109547 | 33300 | 260,264,266 | 1,34 |
| 109548 | 97255 | 260 | - |
| 109550 | 97257 | 260,269 | - |
| 109553 | 94095 | 264 | - |
| 109554 | 94096 | 266 | - |
| 109555 | 97260 | 293 | - |
| 109556 | 97260 | 293 | - |
| 109559 | 96124 | 297 | - |
| 109560 | 97698 | 292 | - |
| 109568 | 62111 | 65 | 1 |
| 109575 | 97065 | 203 | - |
| 109592 | 09705 | 311 | - |
| 109600 | 09704 | 312 | - |
| 109621 | 94435 | 308 | - |


|  |  |
| :---: | :---: |
|  | ENEC <br> applied |
|  | $\mathrm{EW}^{15}$ |
|  | $c \mathrm{UL}_{\mathrm{L}}$ |
| 5 | (I) <br> 4 csv |
| 7 |  |
| 13 | KEMA |
|  | $\text { a }) \text { ) })_{\text {EMC }}^{\text {KEMA }}((\mathbb{}$ |
| 14 | $\mathrm{D}_{\mathrm{E}}$ |
| 14a | VDE <br> applied |
| 15 | VDE |
| 16 |  |
| 17 |  |
|  | $P$ |
| 25 | B |
| 28 | $\begin{aligned} & \left(\left(f_{1}\right)\right) \\ & \text { EMC } \end{aligned}$ |
|  |  |
| 32 | GnB: |
| 33 | © |
|  | $c \overbrace{u s}^{®}$ |
|  |  |
| 36 | > DEKRA |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 109622 | 94436 | 308 | - |
| 109674 | 33400 | 260 | 1,34 |
| 109676 | 97636 | 282 | - |
| 109677 | 97636 | 282 | - |
| 109679 | 97665 | 292 | - |
| 109680 | 97665 | 292 | - |
| 109685 | 94088 | 178 | - |
| 109686 | 09170 | 177 | 1,3 |
| 109725 | 97750 | 309 | - |
| 109728 | 97752 | 309 | - |
| 109784 | 02110 | 200 | 1,3,33 |
| 109790 | 43200 | 202 | 1,3 |
| 109792 | 43210 | 202 | 1,3,33 |
| 109794 | 97664 | 292 | - |
| 109795 | 97664 | 292 | - |
| 109805 | 81024 | 286 | - |
| 109838 | 64770 | 290 | 1,33 |
| 140413 | Z 70 S | 42 | 1,14 |
| 140425 | Z 250 S | 43 | 1,14 |
| 140427 | z 400 s | 44 | 1,14 |
| 140430 | Z 1000 S | 47 | 1,14 |
| 140432 | Z 2000 S | 50 | - |
| 140471 | Z 1000 L | 48 | - |
| 140481 | Z 70 K | 42 | 1,14 |
| 140489 | Z 250 K | 43 | 1,14 |
| 140496 | Z $1000 \mathrm{~S} / 400 \mathrm{~V}$ | 48 | 14 |
| 140497 | Z 2000 S/400 V | 50 | 14 |
| 140499 | Z $3500 \mathrm{~S} / 400 \mathrm{~V}$ | 50 | - |
| 140537 | CE 50 | 60 | - |
| 140594 | Z 400 M | 45 | 1,14 |
| 140597 | Z 400 MK | 45 | 1,14 |
| 140607 | Z 1000 TOP | 47 | 14 |
| 140608 | Z 1200/2,5 | 49 | - |
| 140609 | Z 1200/9 | 49 | - |
| 140613 | PZS 1000 K | 52 | 14 |
| 140617 | PZI 1000/1 K | 52 | 14 |
| 140621 | PU 12 K | 55 | 14 |
| 140622 | PU 120 K | 55 | 14 |
| 140623 | PU 121 K | 55 | - |
| 140627 | AS 1000 K | 58 | 1,14 |
| 140693 | Z 400 M S | 45 | 1,14 |
| 141193 | AS $1000 \mathrm{~K} \mathrm{A10}$ | 59 | - |
| 141580 | Z 70 K D20 | 42 | 1,14 |
| 141581 | Z 250 K D20 | 43 | 1,14 |
| 141582 | Z 400 M K D20 | 45 | 1,14 |
| 141583 | Z 400 S D20 | 44 | 1,14 |
| 141584 | Z 1000 S D20 | 47 | 1,14 |
| 142098 | ZPU 70 K D20 | 56 | 14 |
| 142099 | ZPU 250 K D20 | 56 | 14 |
| 142150 | PR 12 KD | 55 | 14 |
| 142170 | PR 12 KLC | 55 | 14 |
| 142330 | Z 70 K D20 | 42 | 1,14 |
| 142350 | Z 250 K D20 | 43 | 1,14 |
| 142370 | Z 400 M K D20 | 45 | 1,14 |
| 142783 | PZ 1000/400 V A5 | 51 | 14 |
| 142784 | PZ 1000 K D20 | 51 | 14 |
| 142897 | Z 400 M K VS-Power | 45 | 14 |
| 146990 | Z 750 S | 46 | 14 |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 147230 | SP 230/10 K | 12 | 14 |
| 147707 | Z 400 M VS-Power | 45 | 14 |
| 147790 | HZ 600 K | 53 | - |
| 147791 | HZ 1000 K | 54 | - |
| 147793 | HZ $2000 \mathrm{~K} / 400 \mathrm{~V}$ | 54 | - |
| 149992 | SU 1-10 VK | 57 | 14 |
| 149993 | PR 1-10 V K LC | 57 | 14 |
| 159968 | 0607 | 193 | - |
| 160597 | NaHJ 250.160 | 21 | 1,19,31 |
| 160604 | NaHJ 250.163 | 21 | - |
| 160613 | NaHJ 70/50.157 | 20 | 1 |
| 161158 | $\mathrm{NaHJ} 100 / 70.519$ | 21 | 1 |
| 161367 | NaHJ 35.485 | 20 | 1 |
| 161371 | NaHJ 35.638 | 20 | - |
| 161379 | NaH 50.486 | 20 | 1 |
| 161392 | NaHJ 70.653 | 20 | - |
| 161399 | NaH 50.654 | 20 | - |
| 161460 | UNaH 70/40\%.691 | 36 | - |
| 161469 | $\mathrm{NaHJ} 100 / 70.703$ | 21 | 1 |
| 161471 | $\mathrm{NaHJ} 100 / 70.709$ | 21,36 | - |
| 161475 | UNaH 150/40\%.717 | 36 | - |
| 161662 | NaHJ 70.158 | 20 | 1 |
| 161686 | NaHJ 250.915 | 21 | 1,31,32 |
| 161707 | NaHJ 100.941 | 21 | 1 |
| 161757 | STr 50/12.301 | 255 | 15,19 |
| 161781 | STr 20/12.306 | 255 | 19 |
| 161860 | STr 20/12.306 | 256 | 19 |
| 161935 | STr 105/12.406 | 256 | - |
| 163305 | L7/9/11.207 | 149 | - |
| 163683 | L 4/6/8.304 | 153 | 1,19,25 |
| 163694 | L7/9/11.307 | 148 | 1,19,25,31 |
| 163711 | LN 13.313 | 148,153 | 1,19,25,31 |
| 163730 | LN 16.316 | 148,154 | 1,25 |
| 163763 | LN 181.319 | 149 | 1,19,25,31 |
| 163861 | LN 15.329 | 154 | 1,25 |
| 164013 | L 25.346 | 154 | 1 |
| 164033 | L 30.347 | 154 | 19,25,31 |
| 164326 | L 4/6/8.404 | 153 | 1 |
| 164335 | L7/9/11.411 | 148 | 1 |
| 164342 | LN 13.413 | 148,153 | 1 |
| 164353 | LN 181.418 | 150 | 1 |
| 164358 | LN 16.417 | 148,155 | 1 |
| 164438 | L 36/40.443 | 150,155 | 1 |
| 164555 | LN 36.505 | 150,155 | 1 |
| 164560 | LN 58.506 | 150,155 | 1 |
| 164566 | LN 18.507 | 150,155 | 1 |
| 164572 | LN 18.510 | 149,150,154 | 1 |
| 164590 | LN 36.511 | 150,154 | 1 |
| 164680 | LN 30.530 | 149 | - |
| 164779 | L 181.602 | 151 | - |
| 164828 | L 58.625 | 151,155 | - |
| 164870 | L 58.657 | 151,155 | - |
| 167100 | Q 50.501 | 31 | 1 |
| 167125 | Q 50.508 | 31 | 1 |
| 167132 | Q 80.510 | 31 | 1 |
| 167136 | Q 125/80.511 | 31 | 1 |
| 167140 | Q 125.512 | 31 | 1 |
| 167144 | Q 250.513 | 31 | 1,19,31 |



| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 167185 | Q 50.535 | 31 | - |
| 167213 | Q 50.550 | 31 | 1,32 |
| 167250 | Q 400.561 | 31 | 1,19,31 |
| 167263 | Q 125.568 | 31 | 1,19,31,32 |
| 167299 | Q 80.584 | 31 | - |
| 167302 | Q 80.587 | 31 | 19 |
| 167304 | Q 80.588 | 31 | 1,19,31,32 |
| 167306 | Q 80/50.592 | 31 | - |
| 167311 | Q 80/50.596 | 31 | 1 |
| 167326 | Q 125/80.611 | 31 | 1 |
| 167330 | Q 400.612 | 31 | 1,19,31,32 |
| 167335 | Q 400.613 | 31 | - |
| 167367 | Q 250.528 | 31 | 1,19,31,32 |
| 167374 | Q 400.669 | 31 | 1 |
| 169125 | STr 105/12.406 | 255 | - |
| 169389 | LN 58.568 | 150,154 | 1 |
| 169645 | LN 30.801 | 154 | 1 |
| 169647 | LN 13.805 | 148 | 1 |
| 169721 | NaHJ 150.995 | 23 | 1,32 |
| 169722 | NaHJ 70.158 | 23 | 1,32 |
| 169747 | STr 105/12.311 | 256 | 19,31 |
| 169748 | STr 50/12.401 | 256 | - |
| 169779 | LN 36.570 | 150,154 | 1 |
| 169830 | STr 50/12.401 | 255 | - |
| 169892 | UNaH 250/40\%.983 | 36 | - |
| 169947 | Q 125.549 | 31 | 1,19 |
| 170002 | STr 105/12.311 | 255 | 15,19,31 |
| 170091 | STr 50/12.301 | 256 | 14,19 |
| 172775 | Cover plate | 144 | - |
| 172776 | Light sensor | 144 | - |
| 172777 | Multi sensor | 144 | - |
| 172778 | Manual controller | 144 | - |
| 174961 | NaHJ 70.300 | 20 | 1,31 |
| 178177 | NaHJ 250.340 | 21 | 1 |
| 178771 | NaHJ 250.727 | 28 | 1,19,32 |
| 178790 | NaHJ 400.006 | 28 | 1,31,32 |
| 179424 | NaHJ 400.737 | 28 | 1,19,31,32 |
| 179444 | STr 50/12.337 | 256 | - |
| 179454 | NaH 600.005 | 28 | 1,19 |
| 179604 | STr 60/12.338 | 255 | - |
| 179608 | STr 60/12.338 | 256 | - |
| 179740 | NaHJ 400.006 | 28 | 1,31,19 |
| 179742 | NaH 600.010 | 28 | 1 |
| 179743 | NaHJ 250.003 | 28 | 1 |
| 183033 | EHXc 35.325 | 9 | 1,14,28 |
| 183034 | EHXc 35.325 | 9 | 1,14,28 |
| 183035 | EHXc 35.325 | 9 | 1,14,28 |
| 183036 | EHXC 70.326 | 9 | 1,14,28 |
| 183038 | EHXc 70.326 | 9 | 1,14,28 |
| 183039 | ELXC 424.223 | 137 | 1,14,28 |
| 183040 | ELXC 226.878 | 129 | 1,14,28 |
| 183046 | EHXc 150G. 334 | 10 | 1,14,28 |
| 183047 | EHXC 150G. 334 | 10 | 1,14,28 |
| 183059 | ELXd 235.735 | 142 | 1,14,28 |
| 183108 | ElXC 226.878 | 129 | 1,14,28 |
| 183109 | ELXC 414.227 | 139 | 16 |
| 183110 | ELXC 424.228 | 139 | 16 |
| 183111 | ELXC 228.229 | 139 | 16 |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 183112 | ELXc 328.230 | 139 | 16 |
| 183113 | ELXC 135.231 | 139 | 16 |
| 183114 | ELXC 235.232 | 139 | 16 |
| 183115 | ELXC 239.233 | 139 | 16 |
| 183116 | ELXc 149.234 | 139 | 16 |
| 183117 | ELXc 249.235 | 139 | 16 |
| 183118 | ELXc 254.236 | 139 | 16 |
| 183119 | ELXc 180.237 | 139 | 16 |
| 183122 | ELXc 114.238 | 140 | 16 |
| 183123 | ELXc 128.239 | 140 | 16 |
| 183124 | ElXc 214.240 | 140 | 16 |
| 183125 | ELXc 228.241 | 140 | 16 |
| 183126 | ELXc 414.242 | 140 | 16 |
| 183127 | ELXc 118.243 | 140 | 16 |
| 183128 | ELXc 136.244 | 140 | 16 |
| 183129 | ELXc 158.245 | 140 | 16 |
| 183130 | ELXc 218.246 | 140 | 16 |
| 183131 | ELXc 236.247 | 140 | 16 |
| 183132 | ELXc 258.248 | 140 | 16 |
| 183133 | ELXC 418.249 | 140 | 16 |
| 183134 | ELXc 118.879 | 131 | 16 |
| 183135 | ELXc 126.880 | 131 | 16 |
| 183136 | ELXc 218.881 | 131 | 16 |
| 183137 | ELXc 226.882 | 131 | 16 |
| 186072 | EST 70/12.380 | 254 | 1,14,28 |
| 186077 | EST 105/12.381 | 254 | 1,14,28 |
| 186098 | EST 150/12.622 | 254 | 1,14,28 |
| 186173 | EST 60/12.635 | 254 | 13 |
| 188080 | Cord Grip | 11 | - |
| 188093 | ELXc 135.856 | 137 | 1,14,28 |
| 188094 | ELXc 235.857 | 137 | 1,14,28 |
| 188095 | ELXc 149.858 | 137 | 1,14,28 |
| 188140 | ELXC 140.862 | 122,137 | 1,14,28 |
| 188142 | ELXc 154.864 | 137 | 1,14,28 |
| 188144 | ELXc 180.866 | 122,137 | 1,14,28 |
| 188329 | ELXX 124.600 | 124,143 | 1,14,28 |
| 188330 | ElXd 224.601 | 124,143 | 1,14,28 |
| 188331 | ELXX 139.602 | 124,143 | 1,14,28 |
| 188332 | ElXd 154.603 | 124,143 | 1,14,28 |
| 188333 | ElXX 254.604 | 124,143 | 1,14,28 |
| 188334 | ElXd 180.605 | 124,143 | 1,14,28 |
| 188335 | ElXd 249.606 | 143 | 1,14,28 |
| 188336 | ElXd 124.607 | 124,142 | 1,14,28 |
| 188337 | ElXd 224.608 | 124,142 | 1,14,28 |
| 188338 | ELXd 139.609 | 124,142 | 1,14,28 |
| 188339 | ElXd 239.610 | 124,142 | 1,14,28 |
| 188340 | ELXX 154.611 | 124,142 | 1,14,28 |
| 188341 | ELXX 254.612 | 124,142 | 1,14,28 |
| 188342 | ELXX 180.613 | 124,142 | 1,14,28 |
| 188343 | ElXd 249.614 | 142 | 1,14,28 |
| 188350 | ElXd 239.621 | 124,143 | 1,14,28 |
| 188431 | ElXd 226.801 | 134 | 14,28 |
| 188438 | ElXc 414.868 | 137 | 1,14,28 |
| 188490 | ElXd 226.801 | 134 | 14,28 |
| 188549 | ElXd 218.803 | 134 | 1,14,28 |
| 188550 | ELXX 242.807 | 134 | 1,14,28 |
| 188564 | ELXX 118.802 | 134 | 1,14,28 |
| 188565 | ELXd 142.806 | 134 | 1,14,28 |


|  |  |
| :---: | :---: |
|  | ENEC applied |
|  | $\mathrm{EW}^{15}$ D |
|  | $\mathrm{U}_{\mathrm{L}}$ |
| 5 |  |
| 7 | (1) |
| 13 | KEMA |
|  | $\text { )) })_{\text {EMC }}^{\text {KEMA }}(\text { ( }$ |
|  | $\mathrm{V}_{\mathrm{E}}$ |
|  | VDE applied |
| 15 | VDE |
|  | $\pm$ a |
| 17 | $S$ |
| 19 | PG |
| 25 |  |
| 28 | $\left(\left(G_{0}\right)\right.$ |
| 31 | (1RA) (S) |
| 32 |  |
| 33 | © |
| 34 | $c={ }_{c}^{\infty}$ |
|  |  |
| 36 | > DEKRA |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 188589 | ELXC 128.869 | 127 | 1,14,28 |
| 188590 | ELXC 128.869 | 129,13 | 1,14,28 |
| 188595 | ElXc 336.214 | 137 | 1,14,28 |
| 188597 | ElXd 324.623 | 124,142 | 1,14,28 |
| 188598 | EIXd 424.624 | 124,142 | 1,14,28 |
| 188600 | ELXd 324.626 | 124,143 | 1,14,28 |
| 188602 | ELXd 424.628 | 124,143 | 1,14,28 |
| 188604 | ELXd 280.630 | 142 | 1,14,28 |
| 188605 | ELXd 280.631 | 143 | 1,14,28 |
| 188616 | ELXC 240.863 | 122,137 | 1,14,28 |
| 188617 | ELXC 249.859 | 137 | 1,14,28 |
| 188618 | ElXC 254.865 | 122,137 | 1,14,28 |
| 188619 | ELXC 280.538 | 122,137 | 1,14,28 |
| 188643 | ELXC 242.837 | 127,128 | 1,14,28 |
| 188680 | ELXC 155.378 | 128 | 1,14,28 |
| 188681 | ELXC 155.378 | 130 | 1,14,28 |
| 188694 | ELXd 118.802 | 134 | 1,14,28 |
| 188695 | ELXd 142.806 | 134 | 1,14,28 |
| 188696 | ELXd 218.803 | 134 | 1,14,28 |
| 188697 | ElXd 242.807 | 134 | 1,14,28 |
| 188698 | ELXC 213.870 | 127 | 1,14,28 |
| 188699 | ELXC 218.871 | 127 | 1,14,28 |
| 188700 | ELXC 142.872 | 127,128 | 1,14,28 |
| 188704 | ELXC 136.207 | 138 | 14 |
| 188705 | ELXC 236.208 | 138 | 14 |
| 188706 | ELXC 158.209 | 138 | 14 |
| 188707 | ELXC 258.210 | 138 | 14 |
| 188712 | ELXC 213.870 | 129 |  |
| 188713 | ELXC 218.871 | 129 | 1,14,28 |
| 188714 | ELXC 142.872 | 129,13 | 1,14,28 |
| 188717 | ELXd 135.823 | 142 | 1,14,28 |
| 188744 | ELXC 418.204 | 137 | 1,14,28 |
| 188792 | EMXs 180.000 | 331 | 36 |
| 188793 | EMXs 180.001 | 331 | 36 |
| 188794 | EMXs 180.002 | 331 | 36 |
| 188795 | EMXs 180.003 | 331 | 36 |
| 188823 | EMXs 180.000 | 331 | - |
| 188824 | EMXs 180.001 | 331 | - |
| 188825 | EMXs 180.002 | 331 | - |
| 188826 | EMXs 180.003 | 331 | - |
| 188827 | Battery Holder | 331 | - |
| 188828 | Battery Holder | 331 | - |
| 188829 | Battery Holder | 331 | - |
| 188873 | ELXd 118.718 | 124,142 | 1,14,28 |
| 188874 | ElXd 218.719 | 124,142 | 1,14,28 |
| 188875 | ELXX 136.720 | 124,142 | 1,14,28 |
| 188876 | ElXd 236.721 | 124,142 | 1,14,28 |
| 188877 | ELXd 158.722 | 124,142 | 1,14,28 |
| 188878 | ELXd 258.723 | 142 | 1,14,28 |
| 188912 | ELXC 136.216 | 138 | 1,14,28 |
| 188913 | ELXC 236.217 | 138 | 1,14,28 |
| 188914 | ELXC 158.218 | 138 | 1,14,28 |
| 188915 | ELXC 258.219 | 138 | 1,14,28 |
| 188921 | ELXC 135.220 | 138 | 14,28 |
| 188922 | ELXC 235.221 | 138 | 14,28 |
| 188923 | EIXd 142.709 | 135 | 1,14,28 |
| 188924 | ELXd 142.709 | 135 | 1,14 |
| 188932 | ELXd 135.724 | 143 | 1,14,28 |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 188933 | ElXd 235.725 | 143 | 1,14,28 |
| 188953 | EIXX 118.705 | 135 | 1,14 |
| 188954 | ElXd 218.707 | 135 | 1,14,28 |
| 188955 | ElXd 218.707 | 135 | 1,14 |
| 188974 | ElXd 242.711 | 135 | 1,14,28 |
| 188975 | ELXd 242.711 | 135 | 1,14 |
| 188993 | EHXC 35G. 327 B | 8 | 1,14,28 |
| 188994 | EHXc 35G. 327 I | 8 | 1,14,28 |
| 400671 | 94066 | 308 | - |
| 400699 | 80474 | 308 | - |
| 400732 | 97755 | 310 | - |
| 400772 | 80476 | 309 | - |
| 400779 | 80475 | 309 | - |
| 400817 | 85076 | 282 | - |
| 400818 | 85076 | 282 | - |
| 400819 | 85077 | 292 | - |
| 400820 | 85077 | 292 | - |
| 400913 | 12600 | 67 | 1 |
| 400914 | 12600 | 67 | 1 |
| 400915 | 12610 | 67 | 1 |
| 400916 | 12610 | 67 | 1 |
| 400917 | 12614 | 67 | 1 |
| 400918 | 12614 | 67 | 1 |
| 401536 | 94444 | 309 | - |
| 401549 | 94438 | 309 | - |
| 401970 | 97754 | 310 | - |
| 500296 | Capacitor | 240 | 1 |
| 500299 | Capacitor | 240 | 1 |
| 500300 | Capacitor | 240 | 1 |
| 500301 | Capacitor | 240 | 1 |
| 500302 | Capacitor | 240 | 1 |
| 500303 | Capacitor | 240 | 1 |
| 500304 | Capacitor | 240 | 1 |
| 500305 | Capacitor | 240 | 1 |
| 500315 | Capacitor | 240 | 1 |
| 500316 | Capacitor | 240 | 1 |
| 500317 | Capacitor | 240 | 1 |
| 500318 | Capacitor | 240 | 1 |
| 500319 | Capacitor | 240 | 1 |
| 500320 | Capacitor | 240 | 1 |
| 500321 | Capacitor | 240 | 1 |
| 500322 | Capacitor | 240 | 1 |
| 500323 | Capacitor | 240 | - |
| 500401 | NaHJ 250.011 | 28 | - |
| 500402 | NaHJ 400.737 | 28 | 1 |
| 500403 | NaHJ 400.012 | 28 | 1 |
| 500574 | 35613 | 163 | 1,3 |
| 500757 | 84001 | 178,18 | - |
| 500810 | 64401 | 289 | 1,33 |
| 500843 | STr 50/12.207 | 255 | - |
| 500969 | NaHJ 250.727 | 28 | 1,19 |
| 500976 | NaHJ 250.727 | 28 | 1,19 |
| 501351 | 08400 | 302 | - |
| 501352 | 08400 | 302 | - |
| 501356 | 64601 | 289 | 1,33 |
| 501358 | 64601 | 289 | 1,33 |
| 501942 | 97268 | 270 | - |
| 502004 | 33500 | 270 | 1,34 |



ENEC la applied 2 焽 $_{15}$ (D)
${ }_{3} \mathrm{CH}_{\mathrm{L}}$ US
 14a applied 15 VDE

16

17


19
PG

25
B

28

| 31 | (1RAM (S) |
| :---: | :---: |
|  |  |
| 33 CQC |  |
| 34 cts |  |
| 35 (-11) |  |
| 36 | > DEKRA |

Reference Numbers

| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 502064 | 97320 | 271 | - |
| 502111 | 31020 | 271 | 1,34 |
| 502112 | 31030 | 271 | 1,34 |
| 502394 | 33600 | 69 | 1 |
| 502416 | 97282 | 272 | - |
| 502503 | 05202 | 270 | - |
| 502515 | 83301 | 305 | - |
| 502592 | STr 50/12.422 | 255 | - |
| 502783 | Capacitor | 240 | 1 |
| 502799 | NaHJ 100.941 | 23 | 1 |
| 502818 | Q 125.598 | 31 | - |
| 503010 | NaHJ 35.485 | 23 | 1,32 |
| 503041 | 64781 | 290 | 1,33 |
| 503136 | NaHJ 70/50.695 | 37 | 1 |
| 503457 | 97000 | 284 | 5 |
| 503458 | 97000 | 284 | 5 |
| 503579 | 97322 | 282 | - |
| 503773 | 98087 | 179,196 | - |
| 503923 | 64201 | 280 | 1,33 |
| 503924 | 64201 | 280 | 1,33 |
| 504078 | 98011 | 179,195 | - |
| 504109 | NaHJ 250.340 | 21 | 1 |
| 504131 | NaHJ 100/70.703 | 23,37 | 1 |
| 504135 | NaHJ 150/100.973 | 23,37 | 1 |
| 504202 | 28315 | 184 | 1 |
| 504302 | 64719 | 289 | 1,33 |
| 504303 | 64719 | 289 | 1,33 |
| 504351 | Capacitor | 240 | 1 |
| 504416 | 31695 | 72 | 1 |
| 504467 | Q 250.417 | 33 | 1,32 |
| 504474 | Q 400.001 | 33 | 1,32 |
| 504615 | 97321 | 291 | - |
| 504640 | 83226 | 300 | - |
| 504641 | 83226 | 300 | - |
| 504643 | 83227 | 300 | - |
| 504644 | 83227 | 300 | - |
| 504669 | 31696 | 72 | 1 |
| 504749 | 96021 | 305 | - |
| 504769 | 83283 | 293 | - |
| 504938 | 97277 | 171 | - |
| 504939 | 97278 | 171 | - |
| 505002 | Q 400.001 | 33 | 1 |
| 505014 | 64770 | 64 | 1 |
| 505054 | NaHJ 250.915 | 23 | 1,31,32 |
| 505251 | 93088 | 277 | 15 |
| 505389 | 64770 | 64 | 1,33 |
| 505720 | 64719 | 64 | 1 |
| 505721 | 64719 | 64 | 1,33 |
| 505732 | 09404 | 175,178 | 1,3 |
| 505733 | 09405 | 175 | 1,3,33 |
| 505734 | 09406 | 175 | 1,3,33 |
| 505735 | 09415 | 175 | 1,3,33 |
| 505736 | 09416 | 175 | 1,3,33 |
| 505737 | 09420 | 176,346 | 1,3,33 |
| 505739 | 09421 | 176,346 | 1,3 |
| 505745 | 09426 | 176 | 1,3,33 |
| 505746 | 09427 | 176 | 1,3,33 |
| 505747 | 09440 | 176 | 1,3 |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 505750 | 09450 | 177 | 1,3,33 |
| 505751 | 09460 | 177 | 1,3,33 |
| 505782 | J 400.027 | 28 | 1 |
| 505951 | 83310 | 270 | - |
| 506007 | 28310 | 184 | 1,33 |
| 506020 | 09607 | 312 | 17 |
| 506024 | 09607 | 312 | 17 |
| 506026 | 09606 | 311 | 17 |
| 506027 | 09606 | 311 | 17 |
| 506120 | NaHJ 100.670 | 22 | 1,19 |
| 506122 | NaHJ 35.485 | 22 | 1,32 |
| 506211 | 94079 | 308 | - |
| 506247 | 64360 | 281 | 1,33 |
| 506249 | 64360 | 281 | 1,33 |
| 506255 | 64775 | 290 | 1,33 |
| 506257 | 64775 | 290 | 1,33 |
| 506263 | 64785 | 290 | 1,33 |
| 506265 | 64785 | 290 | 1,33 |
| 506267 | 64785 | 290 | 1,33 |
| 506366 | Capacitor | 240 | 1 |
| 506495 | Capacitor | 240 | 1 |
| 506807 | 93089 | 277 | 15 |
| 507049 | 81018 | 287 | - |
| 507050 | 81018 | 287 | - |
| 507052 | 81017 | 288 | - |
| 507053 | 81017 | 288 | - |
| 507075 | 83283 | 293 | - |
| 507105 | 34000 | 263 | 1 |
| 507181 | STr 50/12.342 | 255 | - |
| 507256 | Q 250.703 | 31 | 1 |
| 507341 | $\mathrm{NaHJ} 70 / 50.157$ | 22 | 1 |
| 507342 | NaHJ 100/70.703 | 22 | 1 |
| 507343 | NaHJ 150/100.973 | 22 | 1 |
| 507490 | 97257 | 260,269 | - |
| 507498 | NaH 50.486 | 23 | 1 |
| 507562 | 97677 | 178 | - |
| 507592 | 97528 | 74,275 | - |
| 507593 | 97528 | 74 | - |
| 507627 | UNaH 150/100.722 | 37 | 1 |
| 507628 | NaHJ 100/70.519 | 23,37 | 0 |
| 507671 | NaHJ 100.126 | 21 | 1,19 |
| 507697 | NaHJ 70/50.695 | 23 | 1 |
| 507797 | 97267 | 310 | - |
| 507798 | 97267 | 310 | - |
| 507802 | 83146 | 301 | 1 |
| 507803 | 83147 | 301 | 1 |
| 507936 | LN 58.192 | 150,155 | 1 |
| 508067 | 97037 | 284 | 5 |
| 508186 | LN 58.116 | 150,154 | 1 |
| 508245 | Q 400.613 | 31 | - |
| 508352 | 96004 | 287 | - |
| 508353 | 96004 | 287 | - |
| 508423 | 28330 | 185 | 1 |
| 508468 | Capacitor | 240 | 1 |
| 508484 | Capacitor | 241 | 1 |
| 508562 | 97355 | 277 | 15 |
| 508563 | 97356 | 277 | 15 |
| 508590 | 09407 | 175 | 1,3 |



Reference Numbers

| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 508667 | Capacitor | 240 | 1 |
| 508668 | Capacitor | 240 | 1 |
| 508723 | NaHJ 250.340 | 23 | 1 |
| 508741 | NaHJ 400.012 | 28 | 1 |
| 508744 | NaHJ 250.011 | 28 | - |
| 508746 | Q 250.417 | 33 | 1 |
| 508922 | LN 181.940 | 149 | 1 |
| 509100 | NaHJ 150.355 | 22 | 1,19,31 |
| 509110 | 93034 | 270 | - |
| 509117 | 34301 | 72 | 1 |
| 509118 | 93035 | 270 | - |
| 509152 | 47105 | 187 | 1,3,33 |
| 509154 | 47106 | 187 | 1,3,33 |
| 509156 | 47304 | 187 | 1,3,33 |
| 509162 | 47505 | 187 | 1,3,33 |
| 509164 | 47506 | 187 | 1,3,33 |
| 509169 | NaHJ 70.653 | 22 | - |
| 509170 | NaHJ 35.638 | 22 | - |
| 509171 | NaHJ 150.679 | 22 | - |
| 509213 | 42000 | 71 | 1,3 |
| 509263 | 64307 | 281 | 1,33 |
| 509295 | 97355 | 277 | 15 |
| 509296 | 97356 | 277 | 15 |
| 509340 | 97427 | 284 | 17 |
| 509349 | LN 58.990 | 150,154 | 1 |
| 509356 | 31400 | 70 | 1,34 |
| 509357 | 33800 | 268 | 1,34 |
| 509373 | L 36.120 | 151,155 | - |
| 509490 | NaHJZ 70/50.785 | 26 | 15 |
| 509491 | NaHJZ 100/70.786 | 26 | 15 |
| 509492 | NaHJZ 150/100.787 | 26 | 15 |
| 509502 | LN 26.813 | 150 | 1,31 |
| 509519 | 93059 | 170 | - |
| 509520 | 93058 | 170 | - |
| 509521 | 93057 | 170 | - |
| 509522 | 93056 | 170 | - |
| 509613 | J 400.027 | 28 | 1 |
| 520733 | 97705 | 282 | - |
| 520734 | 97705 | 282 | - |
| 520735 | 85074 | 283 | - |
| 520736 | 85074 | 283 | - |
| 520759 | 97708 | 283 | - |
| 520760 | 97708 | 283 | - |
| 520865 | 30470 | 263 | 1,34 |
| 520880 | 94455 | 269 | - |
| 520882 | 94457 | 269 | - |
| 520992 | L13.210 | 149,153 | - |
| 521010 | 80280 | 269 | - |
| 521123 | 84105 | 196 | 1,3 |
| 525583 | 97760 | 269 | - |
| 525791 | STr 50/12.109 | 255 | - |
| 526169 | Capacitor | 241 | 1 |
| 526170 | Capacitor | 241 | 1 |
| 526171 | Capacitor | 241 | 1 |
| 526196 | NaHJ 150.679 | 21 | - |
| 526517 | NaHJ 35.485 | 20 | 1 |
| 526616 | NaHJ 150.679 | 23 | - |
| 526715 | Q 1000.311 | 33 | - |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 526886 | 97497 | 291 | - |
| 527191 | LN 36.130 | 150,154 | 1 |
| 527196 | LN 36.201 | 150,155 | 1 |
| 527502 | 71001 | 159 | 1,3,33 |
| 527503 | 71002 | 159 | 1,3,33 |
| 527504 | 71003 | 159 | 1,3,33 |
| 527506 | 71011 | 159 | 1,3,33 |
| 527507 | 71012 | 159 | 1,3,33 |
| 527508 | 71013 | 159 | 1,3,33 |
| 527509 | 71014 | 159 | 1,3,33 |
| 527510 | 71015 | 159 | 1,3 |
| 527511 | 71016 | 159 | 1,3 |
| 527512 | 71019 | 159 | 1,3,33 |
| 527529 | 71101 | 159 | 1,3,33 |
| 527530 | 71102 | 159 | 1,3,33 |
| 527531 | 71103 | 159 | 1,3,33 |
| 527533 | 71111 | 159 | 1,3,33 |
| 527534 | 71112 | 159 | 1,3,33 |
| 527535 | 71113 | 159 | 1,3,33 |
| 527536 | 71114 | 159 | 1,3,33 |
| 527537 | 71115 | 159 | 1,3 |
| 527538 | 71116 | 159 | 1,3 |
| 527539 | 71119 | 159 | 1,3,33 |
| 527556 | 71201 | 161 | 1,3,33 |
| 527557 | 71202 | 161 | 1,3,33 |
| 527558 | 71203 | 161 | 1,3,33 |
| 527560 | 71211 | 161 | 1,3,33 |
| 527561 | 71212 | 161 | 1,3,33 |
| 527562 | 71213 | 161 | 1,3,33 |
| 527563 | 71214 | 161 | 1,3,33 |
| 527564 | 71215 | 161 | 1,3 |
| 527565 | 71216 | 161 | 1,3 |
| 527566 | 71219 | 161 | 1,3,33 |
| 527585 | 71301 | 160 | 1,3,33 |
| 527586 | 71302 | 160 | 1,3,33 |
| 527587 | 71303 | 160 | 1,3,33 |
| 527589 | 71311 | 160 | 1,3,33 |
| 527590 | 71312 | 160 | 1,3,33 |
| 527591 | 71313 | 160 | 1,3,33 |
| 527592 | 71314 | 160 | 1,3,33 |
| 527594 | 71315 | 160 | 1,3 |
| 527595 | 71316 | 160 | 1,3 |
| 527596 | 71319 | 160 | 1,3,33 |
| 527735 | 71501 | 158 | 1,3,33 |
| 527736 | 71502 | 158 | 1,3,33 |
| 527737 | 71503 | 158 | 1,3,33 |
| 527739 | 71511 | 158 | 1,3,33 |
| 527740 | 71512 | 158 | 1,3,33 |
| 527741 | 71513 | 158 | 1,3,33 |
| 527742 | 71514 | 158 | 1,3,33 |
| 527743 | 71515 | 158 | 1,3 |
| 527744 | 71516 | 158 | 1,3 |
| 527745 | 71519 | 158 | 1,3,33 |
| 527762 | 71601 | 162 | 1,3,33 |
| 527763 | 71602 | 162 | 1,3,33 |
| 527764 | 71603 | 162 | 1,3,33 |
| 527766 | 71611 | 162 | 1,3,33 |
| 527768 | 71612 | 162 | 1,3,33 |



| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 527769 | 71613 | 162 | 1,3,33 |
| 527770 | 71614 | 162 | 1,3,33 |
| 527771 | 71615 | 162 | 1,3 |
| 527772 | 71616 | 162 | 1,3 |
| 527773 | 71619 | 162 | 1,3,33 |
| 527790 | 71701 | 161 | 1,3,33 |
| 527791 | 71702 | 161 | 1,3,33 |
| 527792 | 71703 | 161 | 1,3,33 |
| 527794 | 71711 | 161 | 1,3,33 |
| 527795 | 71712 | 161 | 1,3,33 |
| 527796 | 71713 | 161 | 1,3,33 |
| 527797 | 71714 | 161 | 1,3,33 |
| 527798 | 71715 | 161 | 1,3 |
| 527799 | 71716 | 161 | 1,3 |
| 527800 | 71719 | 161 | 1,3,33 |
| 528029 | 71801 | 160 | 1,3,33 |
| 528030 | 71802 | 160 | 1,3,33 |
| 528031 | 71803 | 160 | 1,3,33 |
| 528033 | 71811 | 160 | 1,3,33 |
| 528034 | 71812 | 160 | 1,3,33 |
| 528035 | 71813 | 160 | 1,3,33 |
| 528036 | 71814 | 160 | 1,3,33 |
| 528037 | 71815 | 160 | 1,3 |
| 528038 | 71816 | 160 | 1,3 |
| 528039 | 71819 | 160 | 1,3,33 |
| 528116 | 72101 | 162,344 | 1,3,33 |
| 528117 | 72102 | 162,344 | 1,3,33 |
| 528118 | 72103 | 162,344 | 1,3,33 |
| 528120 | 72111 | 162,344 | 1,3,33 |
| 528121 | 72112 | 162,344 | 1,3,33 |
| 528122 | 72113 | 162,344 | 1,3,33 |
| 528123 | 72114 | 162,344 | 1,3,33 |
| 528124 | 72115 | 162,344 | 1,3 |
| 528125 | 72116 | 162,344 | 1,3 |
| 528126 | 72119 | 162,344 | 1,3,33 |
| 528128 | 72131 | 344 | - |
| 528129 | 72132 | 344 | - |
| 528130 | 72133 | 344 | - |
| 528131 | 72134 | 344 | - |
| 528132 | 72135 | 344 | - |
| 528133 | 72136 | 344 | - |
| 528134 | 72139 | 344 | - |
| 528236 | Q 400.616 | 31 | 1,19 |
| 528252 | 12900 | 68 | 15 |
| 528253 | 12910 | 68 | 15 |
| 528254 | 12911 | 68 | 15 |
| 528521 | Q 700.035 | 33 | - |
| 528536 | NaHJ 1000.089 | 29 | 1 |
| 528548 | NaHJ 1000.089 | 29 | 1 |
| 528554 | Capacitor | 241 | 1 |
| 528555 | Capacitor | 241 | 1 |
| 528582 | L 18.121 | 151,155 | 1 |
| 528761 | Q 1000.096 | 33 | 1 |
| 528886 | Q 1000.145 | 33 | 1 |
| 528958 | 12901 | 68 | 15 |
| 529029 | LN 36.149 | 150,154 | 1 |
| 529072 | NaHJ 250.163 | 21 | - |
| 529087 | NaHJ 250.204 | 21 | 1,19 |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 529464 | 97498 | 291 | - |
| 529560 | NaH 600.140 | 28 | - |
| 529599 | 64740 | 290 | 1,33 |
| 529665 | Capacitor | 241 | 1 |
| 529666 | Capacitor | 241 | 1 |
| 529832 | 84101 | 179 | 1,3 |
| 529836 | 84103 | 180 | - |
| 529841 | 34311 | 72 | 1 |
| 529845 | 34326 | 72 | 1 |
| 530024 | 30400 | 261 | 1 |
| 530025 | 30450 | 262 | 1 |
| 530026 | 30460 | 262 | 1 |
| 530027 | 30465 | 262 | 1 |
| 530079 | 43520 | 202 | 1 |
| 530195 | NaHJ 100.271 | 21 | - |
| 530252 | L 36.158 | 151,155 | 14 |
| 530509 | UNaH 250/150.176 | 39 | 0 |
| 530878 | 11000 | 171 | 1,3,33 |
| 530879 | 11010 | 171 | 1,3,33 |
| 530941 | LN 18.131 | 149,150,155 | 1 |
| 531472 | VNaHJ 1000.61 | 16 | - |
| 531474 | VJD 2000.63 | 16 | - |
| 531475 | VNaHJ 400PZT. 743 | 15 | - |
| 531476 | VNaHJ 250PZT. 745 | 15 | - |
| 531480 | VNaHJ 1000.61 | 16 | - |
| 531481 | VJD 2000.63 | 16 | - |
| 532149 | L 18.121 | 151,155 | 1 |
| 532155 | LN 2x18.135 | 149,154 | 1 |
| 532377 | 09420 | 174 | 1,3 |
| 532378 | 09421 | 174 | 1,3 |
| 532379 | 09422 | 175 | 1,3 |
| 532390 | 97545 | 292 | - |
| 532391 | 80023 | 292 | - |
| 532430 | 13010 | 77 | 0 |
| 532431 | 13010 | 77 | 0 |
| 532602 | 12800 | 67,313 | 1 |
| 532603 | 12801 | 67,313 | 1 |
| 532604 | 12810 | 68,313 | 1 |
| 532605 | 12811 | 68,313 | 1 |
| 532606 | 12812 | 68,313 | 1 |
| 532610 | 33906 | 269 | 1 |
| 532644 | L4/6/8.218 | 153 | - |
| 533043 | LN 18.162 | 150,155 | 1 |
| 533067 | LN 30.806 | 155 | - |
| 533312 | 41500 | 204 | 1 |
| 533313 | 41510 | 204 | 1 |
| 533314 | 41520 | 204 | 1 |
| 533315 | 41540 | 204 | 1 |
| 533316 | 41550 | 204 | 1 |
| 533317 | 41560 | 204 | 1 |
| 533391 | VNaHJ 35PZTG. 050 | 14 | 1 |
| 533392 | VNaHJ 70PZTG. 051 | 14 | 1 |
| 533393 | VNaHJ 100PZTG. 078 | 14 | - |
| 533394 | VNaHJ 150PZTG. 052 | 14 | 1 |
| 533395 | NaHJZ 70/50.520 | 25,38 | 1 |
| 533396 | NaHJZ 100/70.519 | 25, 38 | 1 |
| 533398 | NaHJZ 150/100.466 | 25, 38 | 1 |
| 533428 | 12601 | 67 | 1 |



| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 533429 | 12601 | 67 | 1 |
| 533430 | 12611 | 67 | 1 |
| 533431 | 12611 | 67 | 1 |
| 533432 | 12612 | 67 | 1 |
| 533484 | NaH 600.005 | 28 | 1,19 |
| 533565 | NaHJ 150.620 | 21 | 1 |
| 533568 | NaHJ 70.128 | 20 | 1 |
| 533572 | NaHJ 70.128 | 22 | 1 |
| 533602 | NaHJ 150.159 | 21 | 1,19 |
| 533650 | LN 75.170 | 155 | 1 |
| 533663 | 37001 | 71 | 1 |
| 533705 | Q 250.606 | 31 | - |
| 533820 | 64308 | 281 | 1,33 |
| 533947 | UNaH 100/40\%.452 | 36 | - |
| 533948 | UNaH 150/40\%.453 | 36 | - |
| 533949 | UNaH 250/40\%. 454 | 36 | - |
| 534073 | 84108 | 179 | 1,3 |
| 534097 | 97632 | 310 | 17 |
| 534107 | VNaHJ 35PZTG. 053 | 14 | 1 |
| 534109 | VNaHJ 70PZTG. 054 | 14 | 1 |
| 534111 | VNaHJ 70PZTG. 067 | 14 | - |
| 534115 | VNaHJ 150 PZTG .055 | 14 | 1 |
| 534117 | VNaHJ 150PZTG. 068 | 14 | - |
| 534122 | VNaHJ 35PZTG. 041 | 14 | - |
| 534128 | UNaH 70/40\%.501 | 36 | - |
| 534218 | 34515 | 342 | 17,34 |
| 534219 | 34516 | 342 | 17,34 |
| 534220 | 34511 | 69 | 1 |
| 534252 | LN 58.722 | 150,155 | 1 |
| 534487 | NaHJ 1000.089 | 29 | 1 |
| 534490 | LN 24/26.804 | 149 | 1 |
| 534540 | NaHJ 150.620 | 21 | 1 |
| 534621 | L 18.934 | 149,150,156 | - |
| 534624 | 118.933 | 151,155 | - |
| 534627 | L 18.936 | 150,155 | - |
| 534644 | 09900 | 175 | 1 |
| 534689 | 98013 | 307 | - |
| 534832 | 62063 | 299 | 1 |
| 534833 | 62063 | 299 | 1 |
| 534948 | 41530 | 204 | 1 |
| 534954 | 41570 | 204 | 1 |
| 535032 | 31705 | 272 | 1 |
| 535034 | 31755 | 272 | 1 |
| 535131 | 02113 | 200 | 1 |
| 535142 | NaHJ 400.743 | 27 | 1 |
| 535146 | 30800 | 262 | 1 |
| 535191 | NaHJ 70.128 | 22 | 1 |
| 535216 | NaHJ 150.620 | 22 | 1 |
| 535247 | 97742 | 299,306 | - |
| 535263 | 30800 | 262 | 1 |
| 535267 | 95300 | 262 | - |
| 535333 | UNaH 150/40\%. 142 | 36 | - |
| 535347 | UNaH 100/40\%. 522 | 36 | - |
| 535348 | UNaH 70/40\%. 525 | 36 | - |
| 535357 | 91522 | 284 | - |
| 535474 | 97734 | 204 | 17 |
| 535657 | VNaHJ 70PZTG. 566 | 13 | 1 |
| 535673 | 64900 | 306 | - |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 535674 | 64940 | 306 | - |
| 535684 | 62061 | 299 | 1 |
| 535685 | 62061 | 299 | 1 |
| 535694 | 80010 | 299,306 | - |
| 535695 | VNaHJ 150PZTG. 567 | 13 | 1 |
| 535750 | 42200 | 71 | 1 |
| 535751 | 42210 | 71 | 1 |
| 535755 | 42222 | 71 | 1 |
| 535778 | LN 2×18.135 | 150,155 | 1 |
| 535783 | 34525 | 342 | 17,34 |
| 535977 | L 36.132 | 150,154 | 14 |
| 535988 | 30485 | 263 | 1 |
| 536140 | NaHJ 1000.089 | 29 | 1 |
| 536142 | NaHJ 400.743 | 27 | 1 |
| 536143 | NaHJ 400.743 | 27 | 1 |
| 536144 | NaHJ 400.744 | 27 | - |
| 536145 | NaHJ 400.743 | 27 | 1 |
| 536146 | NaHJ 400.743 | 27 | 1 |
| 536147 | NaHJ 250.741 | 27 | 1 |
| 536148 | NaHJ 250.741 | 27 | 1 |
| 536149 | NaHJ 250.741 | 27 | 1 |
| 536150 | NaHJ 250.742 | 27 | - |
| 536151 | NaHJ 250.741 | 27 | 1 |
| 536152 | NaHJ 250.741 | 27 | 1 |
| 536164 | 97765 | 272 | - |
| 536199 | VNaHJ 35PZTG. 568 | 13 | 1 |
| 536200 | VNaHJ 100PZTG. 571 | 13 | - |
| 536201 | VNaHJ 35PZTG. 568 | 13 | 1 |
| 536202 | VNaHJ 70PZTG. 566 | 13 | 1 |
| 536203 | VNaHJ 100PZTG. 571 | 13 | - |
| 536204 | VNaHJ 150PZTG. 567 | 13 | 1 |
| 536205 | VNaHJ 35PZTG. 574 | 13 | - |
| 536207 | VNaHJ 70PZTG. 575 | 13 | - |
| 536209 | VNaHJ 150PZTG. 576 | 13 | - |
| 536220 | 12612 | 67 | 1 |
| 536258 | Q 400.801 | 32 | 1 |
| 536259 | Q 400.801 | 32 | 1 |
| 536260 | Q 250.800 | 32 | 1 |
| 536261 | Q 250.800 | 32 | 1 |
| 536378 | Capacitor | 239 | 1 |
| 536379 | Capacitor | 239 | 1 |
| 536380 | Capacitor | 239 | 1 |
| 536381 | Capacitor | 239 | 1 |
| 536382 | Capacitor | 239 | 1 |
| 536383 | Capacitor | 239 | 1 |
| 536384 | Capacitor | 239 | 1 |
| 536385 | Capacitor | 239 | 1 |
| 536386 | Capacitor | 239 | 1 |
| 536387 | Capacitor | 239 | 1 |
| 536388 | Capacitor | 239 | 1 |
| 536389 | Capacitor | 239 | 1 |
| 536390 | Capacitor | 239 | 1 |
| 536391 | Capacitor | 239 | 1 |
| 536392 | Capacitor | 239 | 1 |
| 536393 | Capacitor | 239 | 1 |
| 536394 | Capacitor | 239 | 1 |
| 536395 | Capacitor | 239 | 1 |
| 536396 | Capacitor | 239 | 1 |



Reference Numbers

| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 536397 | Capacitor | 239 | 1 |
| 536398 | Capacitor | 239 | 1 |
| 536399 | Capacitor | 239 | 1 |
| 536400 | Capacitor | 239 | 1 |
| 536401 | Capacitor | 239 | 1 |
| 536402 | Capacitor | 239 | 1 |
| 536403 | Capacitor | 239 | 1 |
| 536404 | Capacitor | 239 | 1 |
| 536405 | Capacitor | 239 | 1 |
| 536406 | Capacitor | 240 | - |
| 536445 | 97735 | 299,306 | - |
| 536446 | 97735 | 299,306 | - |
| 536451 | 62062 | 299 | 1 |
| 536452 | 62062 | 299 | 1 |
| 536469 | 31500 | 70 | 1 |
| 536582 | NaHJ 70.128 | 23 | 1 |
| 536593 | NaHJ 150.620 | 23 | 1 |
| 536741 | Capacitor | 241 | 1 |
| 536742 | Capacitor | 241 | 1 |
| 536743 | Capacitor | 241 | 1 |
| 536813 | Capacitor | 241 | 1 |
| 537079 | 81100 | 288 | - |
| 537080 | 81100 | 288 | - |
| 537087 | 83141 | 288 | 1 |
| 537088 | 83141 | 288 | 1 |
| 537103 | Q 1000.097 | 33 | 19 |
| 537132 | 24100 | 183 | 1,3 |
| 537135 | 24110 | 183 | 1,3 |
| 537138 | 24120 | 183 | 1,3 |
| 537144 | 24150 | 183 | 1,3 |
| 537147 | 24160 | 183 | 1,3 |
| 537150 | 24170 | 183 | 1,3 |
| 537153 | 24350 | 183 | 1,3 |
| 537155 | 24360 | 183 | 1,3 |
| 537157 | 23350 | 184 | 1,3 |
| 537160 | 23360 | 184 | 1,3 |
| 537165 | 49100 | 188 | 1,3 |
| 537166 | 49105 | 188 | 1,3 |
| 537167 | 49106 | 188 |  |
| 537173 | 49500 | 188 | 1,3 |
| 537174 | 49505 | 188 | 1,3 |
| 537175 | 49506 | 188 | 1,3 |
| 537181 | 59100 | 188 | 1,3 |
| 537182 | 59105 | 189 | 1,3 |
| 537183 | 59106 | 189 | 1,3 |
| 537205 | 59500 | 188 | 1,3 |
| 537206 | 59505 | 189 | 1,3 |
| 537207 | 59506 | 189 | 1,3 |
| 537403 | STr 50/12.109 | 256 | - |
| 537703 | Q 400.801 | 32 | , |
| 537726 | NaHJ 250.741 | 27 | , |
| 537744 | L 15.007 | 155 | - |
| 537750 | L 30.006 | 155 | - |
| 537763 | NaHJ 150.620 | 23 | 1 |
| 537793 | NaHJ 150.679 | 21 | - |
| 537869 | Q 400.715 | 32 | - |
| 537873 | Q 400.732 | 32 | - |
| 538034 | Q 400.801 | 32 | 1 |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 538072 | L 361.342 | 154 | 1 |
| 538089 | 09700 | 310 | - |
| 538204 | NaHJ 400.743 | 27 | 1 |
| 538258 | NaHJ 35.485 | 24 | 1 |
| 538262 | NaHJ 150.620 | 24 | 1 |
| 538264 | NaHJ 150.620 | 24 | 1 |
| 538361 | $\mathrm{NaHJ} 70 / 50.520$ | 22 | 1 |
| 538407 | NaHJ 70.128 | 20 | 1 |
| 538537 | NaHJ 70.653 | 24 | - |
| 538540 | Q 1000.096 | 33 | 1 |
| 538543 | NaHJ 150.620 | 22 | 1 |
| 538592 | UNaH 400/40\%. 892 | 39 | - |
| 538620 | NaHJ 400.744 | 27 | - |
| 538675 | PKNaHJ 70.128 | 18 | - |
| 538676 | PKNaHJ 100.941 | 18 | - |
| 538677 | PKNaHJ 150.620 | 18 | - |
| 538678 | PKNaHJ 250.741 | 19 | - |
| 538679 | PKNaHJ 400.743 | 19 | - |
| 538680 | PKNaHJ 70.653 | 18 | - |
| 538681 | PKNaHJ 100.271 | 18 | - |
| 538682 | PKNaHJ 150.679 | 18 | - |
| 538683 | PKNaHJ 250.742 | 19 | - |
| 538684 | PKNaHJ 400.744 | 19 | - |
| 538685 | PKNaHJ 70.128 | 18 | - |
| 538686 | PKNaHJ 100.941 | 18 | - |
| 538687 | PKNaHJ 150.620 | 18 | - |
| 538688 | PKNaHJ 250.741 | 19 | - |
| 538689 | PKNaHJ 400.743 | 19 | - |
| 538690 | PRKUNaH 70/40\%.525 | 34 | - |
| 538691 | PRKUNaH 100/40\%.522 | 34 | - |
| 538692 | PRKUNaH 150/40\%. 142 | 34 | - |
| 538693 | PRKUNaH 250/40\%.936 | 35 | - |
| 538694 | PRKUNaH 400/40\%.906 | 35 | - |
| 538695 | PRKUNaH 70/40\%.525 | 34 | - |
| 538696 | PRKUNaH 100/40\%.522 | 34 | - |
| 538697 | PRKUNaH 150/40\%. 142 | 34 | - |
| 538698 | PRKUNaH 250/40\%.936 | 35 | - |
| 538699 | PRKUNaH 400/40\%.906 | 35 | - |
| 538700 | PRKUNaH 70/40\%.525 | 34 | - |
| 538701 | PRKUNaH 100/40\%.522 | 34 | - |
| 538702 | PRKUNaH 150/40\%. 142 | 34 | - |
| 538703 | PRKUNaH 250/40\%.983 | 35 | - |
| 538704 | PRKUNaH 400/40\%.937 | 35 | - |
| 538705 | PRKUNaH 70/40\%.525 | 34 | - |
| 538706 | PRKUNaH 100/40\%.522 | 34 | - |
| 538707 | PRKUNaH 150/40\%. 142 | 34 | - |
| 538708 | PRKUNaH 250/40\%.983 | 35 | - |
| 538709 | PRKUNaH 400/40\%.937 | 35 | - |
| 538710 | UNaH 400/40\%.906 | 39 | 1 |
| 538711 | UNaH 250/40\%.936 | 39 | 1 |
| 538715 | UNaH 400/40\%.937 | 39 | - |
| 538801 | L 18.249 | 151,155 | 14 |
| 538807 | NaHJ 35.485 | 24 | 1 |
| 538810 | NaHJ 70.128 | 24 | 1 |
| 538823 | NaHJ 70.128 | 24 | 1 |
| 538828 | NaHJ 70.653 | 24 | - |
| 538830 | NaHJ 70.128 | 23 | 1 |
| 538831 | NaHJ 150.620 | 23 | 1 |


|  |  |
| :---: | :---: |
|  | ENEC applied |
|  | W-15 |
|  | $c \mathrm{U}_{\mathrm{L}} \text { us }$ |
| 5 |  |
|  | Csv |
| 7 |  |
| 13 | KEMA |
|  | $\text { )) })_{\text {EMC }}^{\text {KEMA }}((\mathbb{C}$ |
| 14 | $\mathrm{DV}_{\mathrm{E}}$ |
|  | VDE applied |
| 15 | VDE |
| 16 | $\pm$ and |
| 17 | 5 |
| 19 | PG |
| 25 |  |
| 28 |  |
| 31 | (1RAM (S) |
| 32 | 6n日s |
| 33 | © |
| 34 | $c \div{ }^{\circ}$ |
|  |  |
| 36 | > DEKRA |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 538834 | NaHJ 150.620 | 24 | 1 |
| 538843 | NaHJ 150.625 | 24 | 1 |
| 539050 | UNaH 150/100.722 | 37 | 1 |
| 539081 | NaHJ 100.581 | 24 | 1 |
| 539128 | 23370 | 184 | 1,3 |
| 539209 | NaHJ 400.743 | 27 | 1 |
| 539212 | NaHJ 1000.089 | 29 | 1 |
| 539223 | NaHJ 70.128 | 24 | 1 |
| 539270 | NaHJ 150.355 | 23 | 1,19,31 |
| 539274 | NaHJ 250.741 | 27 | 1 |
| 539283 | UNaH 250/40\%.746 | 39 | - |
| 539286 | NaHJ 150.620 | 24 | 1 |
| 539306 | NaHJ 150.620 | 24 | 1 |
| 539311 | NaHJ 150.679 | 24 | - |
| 539328 | PRKUNaH 70/40\%. 525 | 34 | - |
| 539329 | PRKUNaH 70/40\%. 525 | 34 | - |
| 539330 | PRKUNaH 100/40\%.522 | 34 | - |
| 539331 | PRKUNaH 100/40\%.522 | 34 | - |
| 539332 | PRKUNaH 150/40\%. 142 | 34 | - |
| 539333 | PRKUNaH 150/40\%. 142 | 34 | - |
| 539334 | PRKUNaH 250/40\%.936 | 35 | - |
| 539335 | PRKUNaH 400/40\%.906 | 35 | - |
| 539336 | PRKUNaH 250/40\%.936 | 35 | - |
| 539337 | PRKUNaH 400/40\%.906 | 35 | - |
| 539384 | UNaH 600/40\%.060 | 39 | - |
| 539434 | NaHJ 70.128 | 20 | 1 |
| 539492 | NaHJ 100.941 | 22 | 1 |
| 539497 | 34520 | 69 | 1 |
| 539515 | $\mathrm{NaH} 50 / 35.797$ | 23,37 | 1 |
| 539517 | UNaH 250/40\%.747 | 39 | - |
| 539609 | NaHZ 50/35.797 | 25 | 1 |
| 542349 | NaHJ 250.340 | 23 | 1 |
| 542557 | NaHJ 150.679 | 24 | - |
| 542983 | 28740 | 182 | 1 |
| 542984 | 28741 | 182 | 1 |
| 543048 | 85011 | 276 | - |
| 543049 | 85012 | 276 | - |
| 543053 | 85013 | 276 | - |
| 543054 | 85012 | 276 | - |
| 543058 | 85015 | 276 | - |
| 543059 | 85016 | 276 | - |
| 543153 | 31550 | 343 | - |
| 543267 | 31530 | 70 | 1 |
| 543295 | PKNaHJ 100.345 | 18 | - |
| 543299 | PKNaHJ 150.301 | 18 | - |
| 543303 | 62370 | 66,299 | 1 |
| 543304 | 62070 | 66,298 | 1 |
| 543349 | NaHJ 100.941 | 23 | 1 |
| 543378 | PKNaH 50PZT. 992 | 18 | - |
| 543384 | PRKUNaH 70/40\%. 525 | 34 | - |
| 543385 | PRKUNaH 150/40\%.142 | 34 | - |
| 543386 | PRKUNaH 250/40\%.936 | 35 | - |
| 543388 | PRKUNaH 100/40\%.522 | 34 | - |
| 543389 | PRKUNaH 400/40\%.906 | 35 | - |
| 543401 | PKNaHJ 35.008 | 18 | - |
| 543414 | 62415 | 66,298 | 1 |
| 543615 | 97765 | 272 | - |
| 543643 | 42242 | 71 | 1 |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 543733 | VNaH 50PZTG. 058 | 14 | - |
| 543737 | NaHJ 35.209 | 22 | 1 |
| 543738 | NaH 50.206 | 22 | 1 |
| 543741 | NaHJ 70.226 | 22 | 1 |
| 543742 | PRKUNaH 70/40\%. 525 | 34 | - |
| 543743 | PRKUNaH 100/40\%.522 | 34 | - |
| 543744 | PRKUNaH 150/40\%. 142 | 34 | - |
| 543745 | PRKUNaH 250/40\%.936 | 35 | - |
| 543746 | PRKUNaH 400/40\%.906 | 35 | - |
| 543747 | UNaH 250/40\%.936 | 39 | 1 |
| 543748 | UNaH 400/40\%.906 | 39 | 1 |
| 543770 | 40560 | 206 | 1 |
| 543771 | 40561 | 206 | 1 |
| 543772 | 40562 | 206 | 1 |
| 543773 | 40563 | 206 | 1 |
| 543777 | 40566 | 206 | 1 |
| 543778 | 40567 | 206 | 1 |
| 543781 | 40570 | 206 | 1 |
| 543782 | 40571 | 206 | 1 |
| 543783 | 40572 | 206 | 1 |
| 543784 | 40573 | 206 | 1 |
| 543787 | 40576 | 206 | 1 |
| 543788 | 40577 | 206 | 1 |
| 543793 | 40660 | 205 | 1 |
| 543794 | 40661 | 205 | 1 |
| 543795 | 40662 | 205 | 1 |
| 543796 | 40663 | 205 | 1 |
| 543800 | 40666 | 205 | 1 |
| 543801 | 40667 | 205 | 1 |
| 543802 | 40670 | 205 | 7 |
| 543803 | 40671 | 205 | 7 |
| 543805 | 40672 | 205 | 7 |
| 543806 | 40673 | 205 | 7 |
| 543809 | 40676 | 205 | 7 |
| 543810 | 40677 | 205 | 7 |
| 543986 | NaHJ 400.743 | 27 | 1 |
| 544210 | NaHJ 250.741 | 27 | 1 |
| 544605 | 62009 | 65,298 | 1 |
| 544621 | 64800 | 305 | - |
| 544728 | UNaH 70/40\%.525 | 37 | - |
| 544729 | UNaH 150/40\%. 142 | 37 | - |
| 544730 | UNaH 100/40\%.522 | 37 | - |
| 544760 | PRKUNaH 50/40\%. 021 | 34 | - |
| 544787 | NaHJ 1000.089 | 29 | 1 |
| 545261 | 22860 | 187 | 1 |
| 545262 | 22861 | 187 | 1 |
| 545405 | LN 26.238 | 150 | 1 |
| 545840 | 29125 | 345 | - |
| 545842 | 29126 | 345 | - |
| 545845 | 29100 | 345 | - |
| 545849 | 29101 | 345 | - |
| 545894 | 09446 | 177 | 1,3 |
| 545896 | 09447 | 177 | 1,3 |
| 545933 | 09432 | 176,346 | 1,3 |
| 545935 | 09433 | 176,346 | 1,3 |
| 545937 | 09434 | 176,346 | 1,3 |
| 545939 | 09435 | 176,346 | 1,3 |
| 546006 | 97745 | 284 | - |



| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 546254 | 98008 | 179,196 | - |
| 546454 | 64370 | 280 | 1,33 |
| 546456 | 64370 | 280 | 1,33 |
| 546585 | PRKUNaH 250/40\%.758 | 35 | - |
| 546641 | 27700 R | 181 | 1,3 |
| 546642 | 27701 R | 181 | 1,3 |
| 546647 | 27800 R | 181 | 1,3 |
| 546648 | 27801 R | 181 | 1,3 |
| 546797 | PKNaHJ 35.008 | 18 | - |
| 546817 | NaHJ 70.158 | 23 | - |
| 547145 | LN 21.293 | 150 | - |
| 547285 | PKNaHJ 35.008 | 18 | - |
| 547287 | PKNaHJ 70.653 | 18 | - |
| 547761 | 34510 | 69 | 1 |
| 548259 | NaHJ 400.743 | 27 | 1 |
| 548260 | NaHJ 150.159 | 24 | 1,19 |
| 549999 | 31500 | 70 | 1 |
| 550375 | 83142 | 287 | 1 |
| 551271 | 26300 | 182,345 | 1a,3 |
| 551272 | 26310 | 182,345 | 1a,3 |
| 551275 | 26302 | 345 | - |
| 551277 | 26312 | 345 | - |
| 551645 | Capacitor | 239 | - |
| 552774 | Capacitor | 241 | 1 |
| 553806 | $\mathrm{NaHZ} 50 / 35.797$ | 26 | - |
| 554005 | NaHJ 100.213 | 23 | 1 |
| 554006 | NaHJ 150.216 | 27 | 1 |
| 554270 | JD 2000.81 | 30 | - |
| 554283 | JD 2000.83 | 30 | - |
| 554303 | J 2000.71 | 30 | - |
| 554304 | J 2000.72 | 30 | - |
| 554305 | J 2000.73 | 30 | - |
| 554306 | JD 2000.82 | 30 | - |
| 554307 | JD 200011.91 | 30 | - |
| 554308 | JD 2000II. 92 | 30 | - |
| 554309 | JD 20001. 85 | 30 | - |
| 554310 | JD 20001.86 | 30 | - |
| 554311 | J 1200.95 | 30 | - |
| 554312 | J 2500.96 | 30 | - |
| 554313 | VNaHJ 1000.75 | 17 | - |
| 554314 | VJ 2000.76 | 17 | - |
| 554315 | VJD 2000.77 | 17 | - |
| 554316 | VJD 20001.78 | 17 | - |
| 554325 | STr 200/12.40 | 257 | - |
| 554326 | STr 300/12.41 | 257 | - |
| 554542 | 33650 | 69 | 1 |
| 554543 | 33671 | 69 | 1 |
| 554662 | 31760 | 272 | 1 |
| 554904 | VNaHJ 1000.75 | 17 | - |
| 554905 | VJ 2000.76 | 17 | - |
| 554906 | VJD 2000.77 | 17 | - |
| 554909 | VJD 20001.78 | 17 | - |
| 560657 | LNN 18.645 | 152 | - |
| 560659 | LNN 18.646 | 152 | - |
| 560661 | LNN 18.647 | 152 | - |
| 560664 | LNN 18.648 | 152 | - |
| 560665 | LNN 58TD. 649 | 152 | - |
| 562450 | NaHJ 150.166 | 23 | 1 |


| Ref. No. | Type | Page | Approval |
| :---: | :---: | :---: | :---: |
| 562658 | LNN 9/11.015 | 148 | la |
| 563039 | NaHJ 70.226 | 23 | 1 |
| 563416 | VNaHJ 7OPZTG. 203 | 13 | - |
| 563417 | VNaHJ 100PZTG. 202 | 13 | - |
| 563870 | $\mathrm{NaHJ} 70 / 50.411$ | 37 | - |
| 563871 | $\mathrm{NaH} 50 / 35.412$ | 23, 37 | - |
| 563872 | UNAH 70/40\%.413 | 37 | - |
| 563873 | UNAH 100/40\%.41 | 37 | - |
| 563874 | UNAH150/40\%.922 | 37 | - |
| 563876 | NaHJ 150/100.923 | 23,37 | - |
| 564135 | 64314 | 281 | 1 |
| 564189 | LNN 2X18.043 | 149,152,154 | la |
| 564190 | LNN 13.044 | 148,152,153 | la |
| 564191 | LNN 30.045 | 152,154 | la |
| 564192 | LNN 181.046 | 149,152 | la |
| 564680 | 64770 | 294 | - |
| 564681 | 64770 | 294 | - |
| 554314 | VJ 2000.76 | 17 | - |
| 554315 | VJD 2000.77 | 17 | - |
| 554316 | VJD 20001.78 | 17 | - |
| 554325 | STr 200/12.40 | 265 | - |
| 554326 | $\mathrm{STr} 300 / 12.41$ | 265 | - |
| 554542 | 33650 | 69 | 1 |
| 554543 | 33671 | 69 | 1 |
| 554662 | 31760 | 280 | 1 |
| 554904 | VNaHJ 1000.75 | 17 | - |
| 554905 | VJ 2000.76 | 17 | - |
| 554906 | VJD 2000.77 | 17 | - |
| 554909 | VJD 20001.78 | 17 | - |
| 560657 | LNN 18.645 | 154 | - |
| 560659 | LNN 18.646 | 154 | - |
| 560661 | LNN 18.647 | 154 | - |
| 560664 | LNN 18.648 | 154 | - |
| 560665 | LNN 58TD. 649 | 154 | - |
| 562450 | NaHJ 150.166 | 23 | 1 |
| 562658 | LNN 9/11.015 | 150 | la |
| 563039 | NaHJ 70.226 | 23 | 1 |
| 563416 | VNaHJ 7OPZTG. 203 | 13 | - |
| 563417 | VNaHJ 100PZTG. 202 | 13 | - |
| 563870 | NaHJ 70/50.411 | 37 | - |
| 563871 | NaH 50/35.412 | 23, 37 | - |
| 563872 | UNAH 70/40\%.413 | 37 | - |
| 563873 | UNAH 100/40\%.41 | 37 | - |
| 563874 | UNAH150/40\%.922 | 37 | - |
| 563876 | NaHJ 150/100.923 | 23,37 | - |
| 564135 | 64314 | 289 | 1 |
| 564189 | LNN 2X18.043 | 151,154,156 | la |
| 564190 | LNN 13.044 | 150, 154, 155 | la |
| 564191 | LNN 30.045 | 154,156 | la |
| 564192 | LNN 181.046 | 151,154 | la |
| 564680 | 64770 | 302 | - |
| 564681 | 64770 | 302 | - |


| , EN |  |
| :---: | :---: |
|  | ENEC a applied |
| $2{ }^{\text {EP }} 15$ |  |
| ${ }_{3} \mathrm{OL}^{\text {us }}$ |  |
| $5 \frac{(1)}{(\mathrm{Csv}}$ |  |
| ${ }_{7}$ (1) |  |
| 13 KEMA |  |
|  |  |
| $14 \mathrm{OE}$ |  |
| VDE <br> 14a applied |  |
| 15 ODE |  |
| $16 \triangle$ |  |
| 17 S |  |
| 19 PG |  |
| 25 B |  |
|  |  |
| 31 (18A) (S) |  |
| 32 5月88 |  |
|  | CQC |
|  | c ${ }^{-1}$ |
|  | (-11) |
|  | > DEKRA |


| Subsidiaries | Adress | Phone / Fax / Email |
| :---: | :---: | :---: |
| Vossloh-Schwabe Deutschland GmbH | P.O. Box 2869 | Phone: +49/(0)2351/10 10 |
| Germany, Benelux, CIS, Georgia, Great Britain, Ireland, | D-58478 Lüdenscheid, Germany | Fax: +49/(0)2351/10 1217 |
| Austria, Switzerland, Scandinavia, Turkey, Ukraine |  | info.vsv@vsv.vossloh-schwabe.com |
| Australia | Branch Office Sydney | Phone: +61/(0)2/88 430700 |
| Vossloh-Schwabe Deutschland GmbH | Unit 4C, 6 Boundary Road | Fax: +61/(0)2/88 430777 |
|  | Northmead, NSW, 2152, Australia | sales-aus@vsaus.vossloh-schwabe.com |
| China | Room 2935, Capitaland, HuMin Road, | Phone: +852/2877 9688 |
| Vossloh-Schwabe Hong Kong Ltd. | Xinzhuang, Minhang | Fax: +852/2877 9933 |
| (Shanghai Office) | Shanghai, 201 199, China | ryan.gao@vshk.vossloh-schwabe.com |
| France | Branch Office France | Phone: +33/(0)389/20 1212 |
| Vossloh-Schwabe Deutschland GmbH | 10 Rue Denis Papin CS50101 | Fax: +33/(0)389/24 1865 |
|  | 68025 Colmar, France | vsf.ventes@vsf.vossloh-schwabe.com |
| Hong Kong | Room B5, 17/F., TML Tower | Phone: +852/2877 9688 |
| Vossloh-Schwabe Hong Kong Ltd. | 3 Hoi Shing Road, | Fax: +852/2877 9933 |
|  | Tsuen Wan, N.T., Hong Kong | sales.vshk@vshk.vossloh-schwabe.com |
| Italy | Via Strada S. Martino 15 | Phone: +39/0547/9 8111 |
| Vossloh-Schwabe Italia S.p.A. | 47027 Sarsina/Forli-Cesena, Italy | Fax: +39/0547/9 8260 |
|  |  | vs-i@vsi.vossloh-schwabe.com |
| Korea | \#605 Cosmo Tower Building | Phone: +82 $234846611 \sim 6$ |
| Vossloh-Schwabe Korea | 416 Youngdongdae-ro, Gangnam-gu | Fax: +82 234846617 |
|  | Seoul 135-549, Korea | sales.vskr@vs.vossloh-schwabe.com |
| New Zealand | Branch Office Auckland | Phone: +64/(0)9/265 1110 |
| Vossloh-Schwabe Deutschland GmbH | P.O. Box 58809 | Fax: +64/(0)9/265 1120 |
|  | 2163 Botany, Manukau / New Zealand | sales-nz@vsnz.vossloh-schwabe.com |
| Poland, Baltic States, Czech Republic | Sales office Poland | Phone: +48 123572323 |
| Vossloh-Schwabe Deutschland GmbH | ul. Dr. Jana Piltza 48/15 | Fax: +4812262 0326 |
|  | PL 30392 Krakow | lukasz.niemczycki@vsv.vossloh-schwabe.com |
|  | Poland | marcin.niemczycki@vsv.vossloh-schwabe.com |
| Serbia, Albania, Bosnia-Herzegovina, Bulgaria, | Sales Office Belgrad/Serbia | Phone: +381/63/286 330 |
| Croatia, Greece, Kosovo, Macedonia, | Danila Lekica 1 | Fax: +381/63/286 330 |
| Montenegro, Cyprus | 11000 Belgrade, Serbia | goran.stankovic@vsv.vossloh-schwabe.com |
| Vossloh-Schwabe Deutschland GmbH |  |  |
| Singapore | No. 33 Ubi Avenue 3 | Phone: +65/62757533 |
| Vossloh-Schwabe Pte. Ltd. | \#06-72 Vertex Tower A | Fax: +65/62757633 |
|  | Singapore 408868 | sales.vsfe@vsfe.vossloh-schwabe.com |
| Slovakia, Hungary, Slovenia | Sales office Slovakia | Phone: +38651261605 |
| Vossloh-Schwabe Deutschland GmbH | Priemyselná 5 | dejan.hergan@vsv.vossloh-schwabe.com |
|  | 91701 Trnava, Slovakia |  |
| South Africa | Branch Office Johannesburg | Phone: +27/11/3144340 |
| Vossloh-Schwabe Deutschland GmbH | 154, Lechwe Avenue, Corporate Park | Fax: +27/11/3145287 |
|  | Midrand 1685, South Africa | barry.hall@vsaf.vossloh-schwabe.com |
| Spain, South America, Portugal | Venezuela 105, $5^{\circ}$ - A | Phone: +34/93/4817070 |
| Vossloh-Schwabe Ibérica, S.L. | 08019 Barcelona, Spain | Fax: +34/93/4817071 |
|  |  | vs-e@vse.vossloh-schwabe.com |
| Taiwan | Taiwan Branch | Phone: +886-2/2568 3622 |
| Vossloh-Schwabe Pte. Ltd. | 9FL-2, No. 80, Sung Chiang Road | Fax: +886-2/2568 3620 |
|  | Taipei, Taiwan 10456 | sales.vstw@vstw.vossloh-schwabe.com |
| Thailand | 3rd Floor, Unit 1, Bangkok Union Insurance Bldg. | Phone: +6602634-7311 |
| Vossloh-Schwabe Trading Ltd. | 175-177 Surawong Road, Kwaeng Suriyawong | Fax: +6602634-7313 |
|  | Khet Bangrak, Bangkok 10500, Thailand | sales.vst!@vstt.vossloh-schwabe.com |
| Tunisia | Rue de l'énergie, BP. 299 | Phone: $+216 / 71 / 384900$ |
| Vossloh-Schwabe Tunisie S.A. | Zone Industrielle de Ben Arous 2013 | Fax: +216/71/384990 |
|  | Tunis, Tunisia | hatem.benyahmed@vstu.com.tn |
| USA, Canada, Mexico | 26 Century Blvd. | Phone: $+1 / 615 / 316-5100$ |
| Universal ${ }^{\text {TM }}$ Lighting Technologies | Nashville, TN 37214-3683, USA | Fax: +1/615/316-5205 |
|  |  | oem_sales@unvlt.com |

Whenever an electric light goes on around the world, Vossloh-Schwabe is likely to have made a key contribution to ensuring that everything works at the flick of a switch.

Headquartered in Germany, VosslohSchwabe has been a member of the global Panasonic group since 2002 and counts as a technology leader within the lighting sector. Top-quality, high-performance products form the basis of the company's success.

Whether cost-effective standard components or tailor-made product developments are needed, Vossloh-Schwabe can satisfy even the most diverse market and customer requirements. Vossloh-Schwabe's extensive product portfolio covers all lighting components: LED systems with matching control gear units and state-of-the-art control systems (LiCS) as well as electronic and magnetic ballasts and lampholders.



[^0]:    Circuit diagrams see page 87

[^1]:    Circuit diagrams see page 87

[^2]:    Circuit diagrams see page 87

[^3]:    Source: Epcos Databook 2011

[^4]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^5]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^6]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^7]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^8]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^9]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^10]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^11]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^12]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^13]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^14]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^15]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^16]:    * Ballasts without CE marking for replacements or markets outside of the EU
    ** Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI 1000/1 K (see page 52)

[^17]:    * Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI $1000 / 1 \mathrm{~K}$ (see page 52)

[^18]:    * Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI $1000 / 1 \mathrm{~K}$ (see page 52)

[^19]:    * Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI $1000 / 1 \mathrm{~K}$ (see page 52)

[^20]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^21]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^22]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^23]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^24]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^25]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^26]:    Plastic casing (PC) with push-in terminals: $\mathbf{0 . 5 - 2 . 5} \mathbf{~ m m}^{\mathbf{2}}$

[^27]:    * With IPP technology

[^28]:    Plastic casing (PC) with push-in terminals: $\mathbf{0 . 5 - 2 . 5} \mathbf{~ m m}^{\mathbf{2}}$

[^29]:    * With IPP technology

[^30]:    * With IPP technology

[^31]:    * With IPP technology

[^32]:    * Suitable ballasts (type: NaHJ...PZT) are available on request

[^33]:    Suitable ballasts see page 31, 32 and 33

[^34]:    * $\quad$ For full-load lamp start
    ** Time of power-reduced operation selectable, starting point of switching-time changes automatically to suit constantly changing day-night cycles
    *** Power reduction after a constant switching-time (delay switching); swichting-time selectable: 3|3.5|4|4.5|5|5.5|6 hrs at 50 Hz
    **** 120-240 $\mathrm{V} \pm 10 \%$ on request

[^35]:    $\qquad$

[^36]:    * With a conductor of, for instance, 100 pF per $\mathrm{m}\left(3 \times 2.5 \mathrm{~mm}^{2}\right)$ - wiring must be taken into consideration

[^37]:    * Not suitable HRI-TS 2000W/N/L; HQl-TS 2000W/N/L

[^38]:    * Z 400 M VS power ignitor is not suitable for C-HI lamps

[^39]:    Circuit diagrams see pages 220-223

[^40]:    Circuit diagrams see pages 220-223

[^41]:    Circuit diagrams see pages 220-223

[^42]:    Circuit diagrams see pages 220-223

[^43]:    Circuit diagrams see pages 220-223

[^44]:    Circuit diagrams see pages 220-223

[^45]:    Preliminary data | Circuit diagrams see pages 220-223

[^46]:    Preliminary data | Circuit diagrams see pages 220-223

[^47]:    Circuit diagrams see pages 220-223

[^48]:    Circuit diagrams see pages 220-223

[^49]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^50]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^51]:    * TD = halfchoke (two ballasts per lamp are necessary)

[^52]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^53]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^54]:    * Ballasts without CE marking for replacements or markets outside of the EU

[^55]:    * Lampholder 527745 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
    the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

[^56]:    Lampholder 527539 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
    the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

[^57]:    * Lampholder 528039 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
    the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

[^58]:    * Lampholder 527566 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
    the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

[^59]:    Lampholder 527773 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

[^60]:    * Lampholder 528126 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
    the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

[^61]:    * ELXc devices can also be wired under observation of the circuit diagram on the ballast.

[^62]:    * Lampholders 528126 and 528134 may only be used in luminaires that are operated with electronic ballasts that have been certified according to the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

[^63]:    There are plans to include further electrical equipment in the ENEC Agreement.

