Specifications

Heat Value Gas Chromatograph ISO standard version

Model HGC303

OVERVIEW

The model HGC303 is the world smallest gas chromatograph, which is capable of analyzing 11 different components of natural gas and digitally publishing the derived parameters, such as calorific value, Wobbe-index, or density.

By using our leading sensing & control technology, we designed the model HGC303 specifically for custody transfer, quality control, and other natural gas applications to meet the demands of the expanding natural gas market. The model HGC303's size, weight, cost and other great features gives the user the benefits of functionality, flexibility and economy from the production site to the pipe line station to the gas distributor and onto the end user's station.

FEATURES

Small size for easy field installation

The model HGC303 has a compact design thus facilitating field installation. In addition, the device can be mounted with a sampling system in the field.

- Small compact packaging
- No analyzer house is required
- Flameproof certified

Pre-engineered analysis and calculations for Natural Gas Metering

The model HGC303 has pre-engineered analysis and calculations for Natural Gas Metering so that no additional programming or application work is required.

- Easy to set up straight out of the box
- Analysis of 11 components and pre-configured value calculations
- Analysis and calculations based on international standards

Digital communication for system integration

The model HGC303 is capable of supporting MODBUS protocols with optional analog output capabilities and has been tested with leading flow computers.

PC monitoring and online diagnostics

The Heat Value Gas Chromatograph Monitor (HGM) is a PC-based software that allows the user to view all data and diagnostic information from a laptop computer.

ADVANTAGES

Simple to start-up and easy to maintain

A huge amount of time and cost in the analyzer system start up phase can be saved with the model HGC303's unique packaging and preengineered functions.

The unit's easy-to-maintain design contributes to time and cost savings and it can be repaired without the need for analyzer expertise.

FUNCTIONAL SPECIFICATIONS

Principle of measurement

Gas chromatography

Measured gas streams

1

Analyzed components

1.1

Analysis time

300 sec.

Detector

Micro TCD (Thermal Conductivity Detector)

Chromatographic method

ISO 6974, part 4

Heat value calculation method

ISO 6976

Gas to be analyzed

Natural gas

Component measuring ranges and minimum detection

Components	Ranges (mol%)	Minimum detection (mol%)	
Sum of C6+	0-0.3	0.01	
C3H8 (propane)	0-3	0.05	
i-C4H10 (i-butane)	0-1	0.01	
n-C4H10 (n-butane)	0-1	0.01	
neo-C5H12	0-0.5	0.01	
(neo-pentane)			
i-C5H12 (i-pentane)	0-0.5	0.01	
n-C5H12 (n-pentane)	0-0.5	0.01	
N2 (nitrogen)	0-20	0.1	
CH4 (methane)	50-100	-	
CO2 (carbon dioxide)	0-10	0.05	
C2H6 (ethane)	0-15	0.05	

Analyzer outputs

Allaly				
PV1	C6+ (sum of C6+)(mol%)			
PV2	C3H8 (propane)(mol%)			
PV3	i-C4H10 (i-butane)(mol%)			
PV4	n-C4H10 (n-butane)(mol%)			
PV5	neo-C5H12 (neo-pentane)(mol%)			
PV6	i-C5H12 (i-pentane)(mol%)			
PV7	n-C5H12 (n-pentane)(mol%)			
PV8	N2 (nitrogen)(mol%)			
PV9	CH4 (methane)(mol%)			
PV10	CO2 (carbon dioxide)(mol%)			
PV11	C2H6 (ethane)(mol%)			
PV12	SCV (real) (MJ/m ³) [default], (kJ/m ³), (kWh/m ³)			
	or SCV (ideal) (MJ/m ³), (kJ/m ³), (kWh/m ³)			
	or ICV (real) (MJ/m ³), (kJ/m ³), (kWh/m ³)			
	or ICV (ideal) (MJ/m ³), (kJ/m ³), (kWh/m ³)			
PV13	Density (real) (kg/m ³) [default]			
	or Density (ideal) (kg/m ³)			
	or Relative density (real)			
	or Relative density (ideal)			
PV14	Wobbe index (real) (MJ/m ³) [default], (kJ/m ³),			
	(kWh/m^3)			
	or Wobbe index (ideal) (MJ/m ³), (kJ/m ³),			
	(kWh/m³)			
PV15	Compressibility factor Zmix			
PV16	Total of raw concentrations(mol%)			
PV17	Oven temperature(degree C)			
PV18	Carrier gas pressure(kPa)			
PV19	ICV (real) (MJ/m ³) [default], (kJ/m ³), (kWh/m ³)			
	or ICV (ideal) (MJ/m ³), (kJ/m ³), (kWh/m ³)			
PV20	Relative density (real) [default],			
	Relative density (ideal) or Helium normalized			
	conc. (mol%)			
	[CONO. (MO1/0)			

Auto-calibration

External solenoid valve and HDM contact are required.

Normalization of concentrations

On-line diagnostics

Hazardous area certification

ISSeP/ATEX certifications: II 2 GD EEx d IIC T6 IP65

Process Gas

Temperature

-10°C to 50°C

Flow rate

 50 ± 20 ml/min

Dust and mist

None

Moisture

Less than 2000 ppm

Coexisting components limit

H2 < 0.1 mol% He < 0.1 mol%

Oxygen < 0.1 mol%

H2S (dry) < 0.1 mol%

Ambient temperature limits

-10°C to 50°C

-40°C to 70°C for storage and transportation

Ambient humidity Range

0-95%RH

CE marking

Electromagnetic compatibility (EMC):2004/108/EC Equipment explosive atmospheres (ATEX): 94/9/EC

PERFORMANCE SPECIFICATIONS

Repeatability of analysis

 $\pm 0.05\% \text{ CV}$

PHYSICAL SPECIFICATIONS

Color

Metallic light green, silver

Material

Body

Cast aluminum

Oven

Cast aluminum

Wet-parts

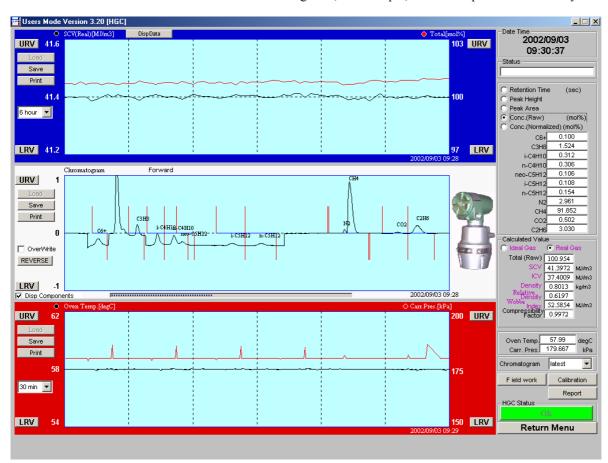
304 Stainless steel, polyimide

Sensor

Pt, glass, gold

Dimensions

W: 100 mm × D: 115 mm × H: 244 mm


Weight

3.5kg

COMMUNICATIONS

The model HGC303 communicates to a PC for configuration, maintenance and data transmission. PC and HGC bus connections are provided as standard equipment.

A specific Windows-based model HGC303 software, the HGC Monitor HGM, enables convenient model HGC303 instrument control in a user-friendly environment. Retransmission of data to the central system can be performed via the Internet. Modbus communication is also available for networking with, for example, a flow computer or SCADA system.

INSTALLATION

Mounting

Vertical 2 in. pipe mount

Power supply

24V DC ± 15% 4A min

Power consumption

5~50VA at -10°C to 50°C

Utilities

Carrier gas: Helium

Purity

99.99% or higher

Pressure

 $400 \text{ kPa} \pm 50 \text{ kPa}$

Consumption

25ml/min (approximately)

Instrument air (for actuating the valve)

Pressure

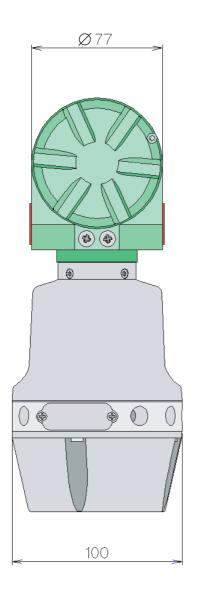
 $400 \text{ kPa} \pm 50 \text{ kPa}$

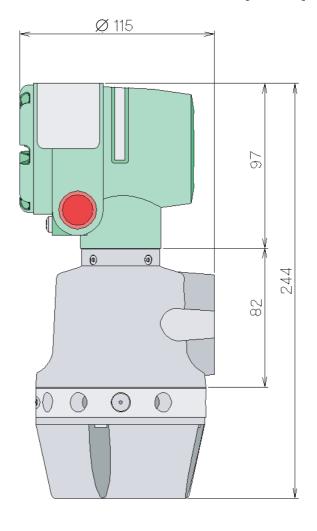
Environmental classification

Sheltered location (protected from sunlight or precipitation)

MODEL SELECTION

Heat Value Gas Chromatograph


HGC303 - I II


Basic Model No.	HGC303-

I	Conduit entry	1/2 NPT	1	
	Gas connection	1/4 NPT		
II	Explosion-protection	ISSeP/ATEX Flameproof		Е

DIMENSIONS

[Unit: mm]

$\underline{\mathcal{N}ote}$

$\underline{\mathcal{N}ote}$

Yamatake Corporation Advanced Automation Company

1-12-2 Kawana, Fujisawa-shi Kanagawa-ken 251-8522 Japan

URL:http://www.azbil.com

Mar. 2009-Y/Y