$\checkmark \underset{\text { SOLUTIONS }}{\text { LIGHTING }}$

Component Systems for Lighting Applications

For Discharge Lamps

Ballasts, Control Gear Units,
Ignitors, Power Switches,
Capacitors and Lampholders

For Fluorescent Lamps

Ballasts, Capacitors, Lampholders,
Starter Lampholders, Terminal
Blocks and Accessories

For Incandescent Lamps

Transformers and Lampholders

For Emergency Lighting

Emergency lighting modules,
Rechargable Batteries and
Supports

3
Electronic Ballasts
for TC and T Lamps 132-164
For compact fluorescent lamps 134-150
ELXs - Warm start 134
ELXc - Warm start - linear casing shape 135
ELXd - Dimmable - linear casing shape 136-137
ELXc - Warm start - compact casing shape 138-146
ECO Effectline 144
ELXd - Dimmable - compact casing shape 147-150
For tubular fluorescent lamps 151-163
ELXs - Warm start 151
ELXc - Warm start - linear casing shape 152-159
Effectline and Effectline II 156-157
New T5 Effectline 158
ECO Effectline 159
ELXd - Dimmable - linear casing shape 160-163
Accessories for dimmable electronic built-in ballasts 164
. Electromagnetic ballasts
for TC and T Lamps 166-177
For compact fluorescent lamps 168-172
Standard ballasts 168-171
Ballasts 120 V, 60 Hz 172
For tubular fluorescent lamps 173-176
Ballasts 120 V, 60 Hz 176
3 Lampholders 179-199
G24, GX24 lampholders 180-187
G23 lampholders 188-191
GR8, GR10q, GRY10q-3, GRZ10d,
GRZ 1Ot lampholders 191-192
2G10 lampholders 192
Accessories 195-197
GX53-1 lampholders, accessories 198-199
3 for TLamps 200-231
G5 lampholders 202-209
5 lampholders, accessories 202-206
G5 lampholders, degree ofprotection IP54/IP65/IP67207-208
2GX13 lampholders, accessories 209
G13 lampholders 210-229
G13 push-through lampholders 210-212
G 13 push-fit lampholders 213-215
G13 push-fit twin lampholders, accessories 216-217
G13 built-in lampholders 217-221
G 13 surface-mounted lampholders $221-222$
$222-224$
Accessories for T8 and T12 lamps
Accessories for T8 and T12 lamps
225-229
225-229
protection IP54/IP65/IP67, accessories
protection IP54/IP65/IP67, accessories 230
W 4.3×8.5 d lampholders 231

LIGHT TECHNOLOGY PRODUCTS

Vossloh-Schwabe is not merely a manufacturer of top-quality components for the lighting industry, but above all a competent and innovative partner when it comes to providing the growing lighting market with cost-effective all-round solutions.

Featuring a future-proof component structure that already now satisfies both the requirements of energy-efficient lighting and European standards, VS' unique product range includes magnetic and electronic ballasts, state-of-the-art control systems (LiCS), LED lighting systems and matching operating devices.

Employing in excess of 1,000 people in more than 20 countries, VosslohSchwabe is represented all over the world. As a subsidiary of the Japanese Panasonic Group, VS can draw on extensive resources for R\&D as well as for international expansion activities. A highly motivated workforce, comprehensive market knowledge, profound industry expertise as well as eco-awareness and environmental responsibility show VosslohSchwabe to be a reliable partner for the provision of optimum and cost-effective lighting solutions.

Vossloh-Schwabe's dedication to delivering superior quality is reflected in its ISO 9001 certification.

Vossloh-Schwabe is ready to embark on a collaborative journey into an economically illuminated future

LED components are just as much a part of our product range as light control systems. Our extensive range of powerful LED modules, LED drivers, LiCS controllers and sensors is presented in
our separate Innovative Systems catalogue.

We'll be happy to help you dimension your lighting project. Contact us.

PUMA Headquarters

Porsche Museum

PUMA Headquarters, Herzogenaurach

As the secret "capital of sport", the little German town of Herzogenaurach is home to the headquarters of the sport lifestyle company PUMA. Covering a total surface area of 50,000 square metres, the complex is made up of three buildings that are positioned so as to create a large central square, the PUMA Plaza.

The main aim of the lighting concept developed for the new PUMA corporate headquarters was to deliver optimum quality of light, enable maximum flexibility in using the available space and yield the greatest possible energy savings. No less than 985 electronic DALI ballasts and 4,650 standard electronic ballasts made by Vossloh-Schwabe went into implementing the lighting system.

The inner courtyard features additional red and white effect lighting in the form of ground-level linear markings created using LEDs made by Vossloh-Schwabe. These LEDs enable digital lighting sequences to flow over the square. To complement the clear-cut, rectilinear forms that characterise the entire building complex, a number of slender light columns, made of square aluminium sections, were installed to round off the courtyard's stylish appearance.

Porsche Museum, Stuttgart

The name "Porsche" both stands for a long tradition of outstanding quality and the excitement of high-octane driving. The Porsche Museum in Stuttgart constitutes a fitting presentation venue that does the brand image every justice. The architectural flagship thus serves to make the "Porsche experience" available to everyone.

The lighting installed in the Porsche Museum forms a crucial element of the exhibition space created for around 80 vehicles. It was important to ensure every detail of these high-end cars was clearly visible. In this regard, direct and reflecting lighting had to be reduced to an absolute minimum so as to neither irritate visitors, nor detract from the brilliant gloss of the bodywork.

This forms another instance in which Vossloh-Schwabe products have helped to add to the enjoyment of each and every visitor. Built-in electronic ballasts and electronic DALI safety converters ensure flicker-free, efficient light.

ELECTRONIC AND ELECTROMAGNETIC

ELECTRONIC AND ELECTROMAGNETIC OPERATING DEVICES

For high-pressure sodium lamps (HS), metal halide lamps (HI) and mercury vapour lamps (HM)

Electronic ballasts

Modern discharge lamps operate very efficiently in combination with electronic ballasts. The numerous advantages of using electronic ballasts to operate high-pressure discharge lamps are listed in more detail on the product pages.

With the help of temperature and service-life tests, VS electronic ballasts guarantee a high degree of reliability. The quality of the electronic ballasts is ensured by continuous in-circuit tests and function tests like burn-in tests.

Magnetic ballasts

The electrical specifications of VS' range of ballasts comply with lampspecific requirements. Vossloh-Schwabe attaches great importance to ensuring the impedance value of electromagnetic ballasts is kept within particularly narrow tolerances. This advantage, which is achieved by individual adjustment of the air gap during the automated production and testing process of every ballast, decisively contributes to optimising light output, light colour and service life of discharge lamps.

The range includes ballasts with variable voltage tapping points and varying degrees of inherent heating as well as encapsulated devices.

Electronic ballasts, accessories

Dimmable electronic ballasts
Luminaire protection device SP 230/10K
16-17
$\begin{array}{ll}\text { Control gear units for HS and HI lamps } & \text { 19-21 }\end{array}$
$\begin{array}{ll}\text { Electromagnetic ballasts } & \text { 22-47 }\end{array}$
For HS and HI lamps $\quad 22-37$
For HM and HI lamps $\quad 38-41$
$\begin{array}{ll}\text { For power reduction } & 42-47\end{array}$

Technical details for discharge lamps
89-131
General technical details 394-401
Glossary
402-404

Compact

Electronic Ballasts

for HI Lamps

20 and 35 W

Shape: K35

Casing: heat-resistant polyamide, encapsulated with polyurethane
(EHXc 35G. 327 B and EHXc 35G. 327 I)
For ceramic discharge tube lamps (C-HI)
Power factor: > 0.9
Operation frequency: 135 Hz
Push-in terminals: 0.5-1.5 mm²
Constant power consumption
Protection against "no load" operation
For luminaires of protection class I and II
Degree of protection: IP20
Permissible load capacity: 120 pF
RFI-suppressed
Fixing brackets for screws M4
for base mounting
No flickering of defective lamps

K35

K35 with cord grip

Lamp				Electronic ballast									$\begin{array}{\|l\|} \hline \text { System } \\ \hline \text { Output } \end{array}$
Output W	Type	Base	Power con- sumption W	Type	Ref. No.	Voltage AC $50,60 \mathrm{~Hz}$ V-10\%+6\%	Mains current A	Energy efficiency	Ambient temperature $\mathrm{t}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature ${ }_{\mathrm{t}}^{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Ignition voltage kV	Weight	

Electronic built-in ballasts

20	HI	GU6.5, G8.5, GX8.5, GX10, G12	1×20	EHX 20.329 B	188991	220-240	0.11	A2	- 15 to 60	max. 75	2-4	130	23
35	HI	$\begin{aligned} & \text { GU6.5, G8.5, GX8.5, } \\ & \text { GX10, G12 } \end{aligned}$	1×39	EHXc 35G. 327 B	188993	220-240	0.2	A2	- 15 to 45	max. 80	2-4	180	43.5

Independent electronic ballasts with cord grip

20	HI	GU6.5, G8.5, GX8.5, GX10, G12	1×20	EHXC 20.329 \\|	188992	220-240	0.11	A2	- 15 to 60	max. 75	2-4	145	23
35	HI	GU6.5, G8.5, GX8.5 GX10, G12	1×39	EHXc 35G.327 I	188994	220-240	0.2	A2	- 15 to 45	max. 80	2-4	195	43.5

[^0]
Electronic Ballasts
 for HI Lamps 35, 50 and 70 W

Shape: M3/K34

Casing: aluminium (M3),
heat-resistant polycarbonate (K34)
For ceramic discharge tube lamps (C-HI)
Power factor: ≥ 0.95
Ignition voltage: max. 5 kV
Operation frequency: 173 Hz
Push-in terminals with lever opener: $0.75-2.5 \mathrm{~mm}^{2}$
Total harmonic distortion: < 10\%
Temperature protection
Constant power consumption
Protection against "no load" operation
For luminaires of protection class I (metal casing)
For luminaires of protection class I and II
(plastic casing)
Degree of protection: IP20
Permissible load capacity: 20-120 pF
RFI-suppressed
Fixing brackets for screws M4
for base mounting
No flickering of defective lamps

M3 built-in PCB

K34 with cord grip

t_{c} point definition

Electronic built-in ballast (with cap)

35	HI	GU6.5, G8.5, GU8.5, GX8.5, G12, E27	1×39	EHXc 35.325	183033	220-240	0.20-0.18	A2	-20 to 65	max. 80	220	43
50	HI	G8.5, G12	1×50	EHXc 50.358	183028	220-240	0.26-0.24	A2	-20 to 60	max. 80	220	55
70	HI	G8.5, GU8.5, GX8.5, G12, PG12-2. E27 RX7s	1×73	EHXc 70.326	183036	220-240	0.36-0.34	A2	-20 to 55	max. 80	220	80

Built-in PCB - Electronic built-in ballasts (without cap)

35	HI	GU6.5, G8.5, GU8.5, GX8.5, G12, E27	1×39	EHXc 35.325	183034	220-240	0.20-0.18	A2	-20 to 65	max. 80	180	43
50	HI	G8.5, G12	1×50	EHXc 50.358	183030	220-240	0.26-0.24	A2	-20 to 60	max. 80	180	55
70	HI	G8.5, GU8.5, GX8.5, G12, PG12-2, E27, RX7s	1×73	EHXc 70.326	183037	220-240	0.36-0.34	A2	-20 to 55	max. 80	180	80

Independent electronic ballasts with cord grip

35	HI	GU6.5, G8.5, GU8.5, GX8.5, G12, E27	1×39	EHXc 35.325	183035	220-240	0.20-0.18	A2	-20 to 65	max. 75	260	43
50	HI	G8.5, G12	1×50	EHXc 50.358	183029	220-240	0.26-0.24	A2	-20 to 60	max. 70	260	55
70	HI	$\begin{aligned} & \text { G8.5, GU8.5, GX8.5, G12, } \\ & \text { PG12-2, E27, RX7s } \end{aligned}$	1×73	EHXc 70.326	183038	220-240	0.36-0.34	A2	-20 to 55	max. 75	260	80

[^1]
Electronic Ballasts
 for HI Lamps
 35 and 70 W

Shape: M3.1 EffectLine

Casing: metal
For ceramic discharge tube lamps (C-HI)
Power factor: ≥ 0.95
Ignition voltage: max. 5 kV
Operation frequency: 173 Hz
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$
Total harmonic distortion: < 10\%
Temperature protection
Constant power consumption
Protection against "no load" operation
For luminaires of protection class I

M3.1 EffectLine

Degree of protection: IP20
Permissible load capacity: 20-120 pF
RFI-suppressed
Life-time at tc max. $=30,000 \mathrm{hrs}$
Fixing brackets for screws M4
for base mounting

Lamp				Electronic ballast								System
Output W	Type	Base	Power consumption W	Type	Ref. No.	Voltage AC $\begin{aligned} & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Mains current A	Energy efficiency	Ambient temperature $\mathrm{ta}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{c}\left({ }^{\circ} \mathrm{C}\right)$	Weight g	Output W
35	HI	GU6.5, G8.5, GU8.5, GX8.5, G12, E27	1×39	EHXe 35.356	183026	220-240	0.20-0.18	A2	- 15 to 65	max. 80	220	43
70	HI	G8.5, GU8.5, GX8.5, G12, PG12-2, E27, RX7s	1×73	EHXe 70.357	183027	220-240	0.36-0.34	A2	- 15 to 50	max. 80	220	80

[^2]
Independent Electronic Ballasts for HI Lamps 20-70 W

Shape: K36

Casing: heat-resistant polycarbonate Easy connection by plug-in connector primary: GST18 1-coded/black with locking
secondary: ST 18-3BF lockable
For ceramic discharge tube lamps (C-HI) Power factor: 0.95
Ignition voltage: max. 5 kV
Operation frequency: 173 Hz
Total harmonic distortion: < 10\%
Temperature protection
Constant power consumption
Protection against "no load" operation For luminaires of protection class I and II Degree of protection: IP20
Permissible load capacity: 20-120 pF
RFI-suppressed
Fixing brackets for screws M4
for base mounting

Additional technical features

The electronic ballast is protected against transient mains peaks up to 2.5 kV .

Overheating protection with VS thermal cut-out system with automatic reset which evaluates the temperature of the ballast.

At lamp operation voltage of $>140 \mathrm{~V}$ the electronic ballast will switch itself off.

Inrush current limiter

K36

Electronic Ballasts for HI Lamps
 2×35 and $2 \times 70 \mathrm{~W}$

Shape: K32

Casing: heat-resistant polycarbonate
For ceramic discharge tube lamps (C-HI)
Power factor: 0.98
Ignition voltage: max. 5 kV
Operation frequency: 176 Hz
Push-in terminals with lever opener: $0.75-2.5 \mathrm{~mm}^{2}$
Total harmonic distortion: < 10\%
Temperature protection: a lamp is switched off in the event of overheating
Constant power consumption
Protection against "no load" operation For luminaires of protection class I and II Degree of protection: IP20
Permissible load capacity: 20-100 pF
RFI-suppressed
Fixing brackets for screws M4
for base mounting
Separate ignition channels enable independent lamp operation

K32

K32 with cord grip

Lamp				Electronic ballast								System
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V}-10 \%+6 \% \end{aligned}$	Mains current A	Energyefficiency	Ambient temperature $t_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Weight g	Output W
Electronic built-in ballasts												
2x35	HI	GU6.5, G8.5, GU8.5, GX8.5, G12, E27	2×39	EHXC 235.316	188223	220-240	0.4-0.36	A2	-25 to 50	max. 80	405	86
2×70	HI	$\begin{aligned} & \text { G8.5, GU8.5, GX8.5, G12, } \\ & \text { PG12-2, E27, RX7s } \end{aligned}$	2×73	EHXC 270.317	188224	220-240	0.74-0.68	A2	-25 to 45	max. 80	440	160
Independent electronic ballasts with cord grip												
2x35	HI	GU6.5, G8.5, GU8.5, GX8.5, G12, E27	2×39	EHXc 235.316	188455	220-240	0.4-0.36	A2	-25 to 50	max. 80	455	86
2×70	H	$\begin{aligned} & \text { G8.5, GU8.5, GX8.5, G12, } \\ & \text { PG12-2, E27, RX7s } \end{aligned}$	2×73	EHXc 270.317	188456	220-240	0.74-0.68	A2	-25 to 45	max. 80	490	160

[^3]
Cord Grip for Electronic Built-in

Ballasts

For shape K31 and K32

By using the cord grip electronic built-in ballasts for metal halide lamps become independent
ballasts.
Material: heat-resistant polycarbonate
For use with electronic built-in ballasts
with casing K31 and K32
For mains leads:
H03VV-F $3 X 0.75$ or NYM $3 X 1.5 \mathrm{~mm}^{2}$
For lamp leads: SIHY-Cu $3 \times 1 \mathrm{~mm}^{2}$
or SIHSI-Cu 3×1 mm²

Weight: 50 g
Unit: 20 pcs.
By turning the cable clamp by 180°
the lead diameter can be reduced to 5 mm .
Ref. No.: 188080

Electronic Ballasts
for HI Lamps 100 and 150 W

Shape: M36/K31/K38

Casing: aluminium (M36),
heat-resistant polycarbonate (K31, K38)
For ceramic discharge tube lamps (C-HI)
Power factor: 0.98
Ignition voltage: max. 5 kV
Operation frequency: 170 Hz
Push-in terminals with lever opener: $0.75-2.5 \mathrm{~mm}^{2}$ Total harmonic distortion: < 10\%
Temperature protection
Constant power consumption
Protection against "no load" operation
For luminaires of protection class I and II
Degree of protection: IP20
Permissible load capacity: 20-240 pF

RFI-suppressed
Fixing brackets for screws M4
for base mounting

M36

K38

K31 with cord grip

Electronic Ballasts for HI Lamps 100 and 150 W

Shape: M36 and K31, K38

Dimmable Electronic Built-in Ballasts for HI and HS Lamps 50-250 W

Shape: K40/K41 and M42

For dimmable metal halide lamps and dimmable high pressure sodium lamps
Casing: aluminium (M42),
heat-resistant polycarbonate (K40/K41)

Dimming range: acc. to lamp specification

Dimming via digital microcontrolle
Dimming interface: DALI or MidNight
For use with open or closed-loop control units
Suitable MidNight Controller 186240 (for installation in the distribution board) or 186241 (as a mobile controller) are available on request.
Power factor: 0.98
Ignition voltage: max. 4.5 kV
Operation frequency: 81 Hz
Push-in terminals with lever opener: $0,75-2,5 \mathrm{~mm}^{2}$

Total harmonic distortion: < 10\%
Degree of protection: IP20
Permissible load capacity: 250 pF
Constant power consumption
Protection against "no load" operation
RFI-suppressed
Electromagnetic immunity category
in acc. with IEC 61000-4-11 : class B
Spectral power ratio (HF-Ripple): < 1.5%
in acc. with IEC 61167
EOL shutdown at the end of the lamp's service life
Transient mains peak protection
The ballast outputs (to the lamp) are short-circuit-
proof.
Max. lamp lead length: 2.5 m

DALI/MidNight (Dual) - Casing K40, K41 and M42

50	HI/HS	G8.5, G12, E27	1×50	EHXd 50.360	183048	220-240	0.27-0.22	A2	-25 to 80	max. 85	K40	380	55
70	HI/HS	G8.5, GU8.5, GX8.5, G12, PG12-2, E27, RX7s	1×73	EHXd 70.361	183049	220-240	0.37-0.31	A2	-25 to 75	max. 85	K40	380	80
100	HI/HS	G12, E40	1×100	EHXd 100.362	183050	220-240	0.50-0.43	A2	-25 to 65	max. 75	K41	520	107
150	HI/HS	G12, G22, PGX12-2, Fc2, E27, E40, RX7s	1×150	EHXd 150.363	183051	220-240	0.76-0.64	A2	-25 to 55	max. 80	K41	520	161
250	H//HS	Fc2, E40, RX7s	1×250	EHXd 250.364	183052	220-240	1.25-1.07	A2	-25 to 45	max. 60	M42	930	267

[^4]* Please ensure that lamps are only dimmed if specified as "dimmable" by the manufacturer.

Independent Dimmable Electronic Ballasts IP65 for HI and HS Lamps 50-250 W

Shape: M43/M44 and M45

For dimmable metal halide lamps and dimmable high pressure sodium lamps
Casing: aluminium

Dimming range: acc. to lamp specification

Dimming via digital microcontroller
Dimming interface: DALI or MidNight
For use with open or closed-loop control units
Suitable MidNight Controller 186240 (for installation in the distribution board) or 186241 (as a mobile controller) are available on request.
Constant power consumption
Protection against "no load" operation
RFl-suppressed
Electromagnetic immunity category
in acc. with IEC 61000-4-11: class B
Spectral power ratio (HF-Ripple): < 1.5%
in acc. with IEC 61167

Temperature monitoring
For luminaires of protection class I
and II
Fixing brackets for screws M4
for base mounting
Compatible with IEC 62386
(DALI version for HID)

Lead lengths: 60 cm
Total harmonic distortion: < 10\%

Degree of protection: IP65

Permissible load capacity: 250 pF
EOL shutdown at the end of the lamp's service life
Transient mains peak protection
The ballast outputs (to the lamp) are short-circuit-
proof.
Power factor: 0.98
Ignition voltage: max. 4.5 kV
Operation frequency: 81 Hz
Leads: Mains: H05VV-F $3 X 1.5 \mathrm{~mm}^{2}$
DALI: YSLY-OZ $\quad 2 \times 0.75 \mathrm{~mm}^{2}$
Lamp: X-SIHF $\quad 2 \times 1.5 \mathrm{~mm}^{2}$

DALI/MidNight (Dual) - Casing M43, M44 and M45

50	HI/HS	G8.5, G12, E27	1×50	EHXd 50.360	183060	220-240	0.27-0.22	A2	-25 to 80	max. 85	M43	1000	55
70	HI/HS	G8.5, GU8.5, GX8.5, G12, PG12-2, E27, RX7s	1×73	EHXd 70.361	183061	220-240	0.37-0.31	A2	-25 to 75	max. 85	M43	1000	80
100	HI/HS	G12, E40	1×100	EHXd 100.362	183062	220-240	0.50-0.43	A2	-25 to 65	max. 75	M44	1200	107
150	HI/HS	$\begin{aligned} & \text { G12, G22, PGX12-2, } \\ & \text { Fc2, E27, E40, RX7s } \\ & \hline \end{aligned}$	1×150	EHXd 150.363	183063	220-240	0.76-0.64	A2	-25 to 80	max. 80	M44	1200	161
250	HI/HS	Fc2, E40, RX7s	1×250	EHXd 250.364	183064	220-240	1.25-1.07	A2	-25 to 65	max. 65	M45	1500	267

[^5][^6]
Luminaire Protection Device SP 230/10K

For electronic devices

When electronic components form part of lighting systems, it is often necessary to protect such components against power-supply interruptions and electric overloads (power surges).

These can be caused by switching inductive loads or by atmospheric discharges such as lightning striking the mains or the ground. A further cause can be induced voltages from neighbouring cables when working with leading-edge phase-cutting controls.

Suitable for luminaires of protection class I and II
Solid connecting wire: $0.5 \mathrm{~mm}^{2}$
Lead length: 50 mm

The SP230/10K protection unit reduces overvoltages at the connection terminals of electronic components. The remaining residual voltage is then reduced to a respective protective level, based on the discharge current (see diagram below).

Wiring diagram

Type	Best.-Nr.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Impulse voltage Uoc (V)	Impulse discharge current $\ln (8 / 20 \mu \mathrm{~s})(\mathrm{A})$	Protection level at discharge current of $1,000 \mathrm{~A}(\mathrm{~V})$	Min. ambient temperature $\operatorname{ta}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{c}\left({ }^{\circ} \mathrm{C}\right)$	Weight g
SP 230/10 K	147230	220-240	max. 10,000	max. 10,000	≤ 850	-30		20

Bandwidth of the standard impulse: $\mathrm{tr}=20 \mu \mathrm{~s}$
The protection unit can withstand at least 10 spikes
of 5 kA .

Residual voltage, based on the discharge current (B)
$A=$ Leak current | $B=$ Protection levels

[^7]
Control Gear Units
 for HS and HI
 Lamps 35 to 150 W

Compact plastic casing
 Shape: $\mathbf{6 4 \times 7 2 \mathrm { mm }}$

For high pressure sodium lamps (HS),
metal halide lamps (HI)
and ceramic discharge lamps (C-HI)
Compact control gear unit with ballast with patented, intelligent thermal cut-out with automatic reset (which evaluates the temperature and current of the ballast), digital timer ignitor with IPP++ technology and compensation capacitor with thermal fuse
As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

Protection class II

Degree of protection: IP40
Permissible load capacity: 20-1000 pF
Lead length to the lamp: max. 10 m
tw 130

Lamp			Control gear unit									
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	Mains current A	mm	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{aligned} & \mathrm{t}_{0} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Power factor λ	Energy efficiency*
$230 \mathrm{~V}, \mathbf{5 0 ~ H z}$												
35	HS, HI	0.53	VNaHJ 35PZTG. 568	536199	230,50	0.210	175	166	1.32	55	0.92	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG. 566	535657	230,50	0.380	175	166	1.32	45	0.91	EEI=A3
100	HS, HI	1.20	VNaHJ 100PZTG. 571	536200	230,50	0.560	214	205	1.85	45	0.85	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG. 567	535695	230,50	0.720	214	205	2.25	45	0.91	EEI=A3
$\mathbf{2 4 0 ~ V , ~} 50$ Hz												
35	HS, HI	0.53	VNaHJ 35PZTG. 568	536201	240,50	0.210	175	166	1.32	55	0.94	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG. 566	536202	240,50	0.370	175	166	1.32	40	0.94	EEI=A3
100	HS, HI	1.20	VNaHJ 100PZTG. 571	536203	240,50	0.560	214	205	1.85	40	0.86	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG. 567	536204	240,50	0.730	214	205	2.25	40	0.91	EEI=A3
$220 \mathrm{~V}, 60 \mathrm{~Hz}$												
35	HS , HI	0.53	VNaHJ 35PZTG. 574	536205	220,60	0.220	175	166	1.32	60	0.98	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG. 575	536207	220,60	0.370	175	166	1.32	50	0.97	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG. 576	536209	220,60	0.800	214	205	2.25	45	0.98	EEI=A3

[^8]
Control Gear

 Units IP65 for HS and HI Lamps 35 to 150 W
Encapsulated unit in compact plastic casing
 Shape: $\mathbf{6 1 \times 7 2 m m}$

For high pressure sodium lamps (HS),
metal halide lamps (HI)
and ceramic discharge lamps (C-HI)
Compact control gear unit with ballast with patented, intelligent thermal cut-out with automatic reset (which evaluates the temperature and current of the ballast), digital timer ignitor with IPP ${ }^{++}$technology and compensation capacitor with thermal fuse
As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

Protection class II

Degree of protection: IP65
Permissible load capacity: 20-1000 pF Lead length to the lamp: max. 10 m tw 130

Lamp			Control gear unit									
Output W	Type	Current A	Type	Ref. No.	Voltage V, Hz	Mains current A	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{array}{\|l\|} \hline \mathrm{ta}_{0} \\ { }^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & \text { Power factor } \\ & \lambda \end{aligned}$	Energy efficiency*
$\mathbf{2 3 0 ~ V , 5 0 ~ H z ~}$												
35	HS, HI	0.53	VNaHJ 35PZTG. 050	533391	230,50	0.240	222	214	1.95	60	0.96	EEI=A3
50	HS	0.76	VNaH 50PZTG. 058	543733	230,50	0.290	222	214	1.95	60	0.94	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG. 051	533392	230,50	0.370	222	214	1.95	50	0.97	EEI=A3
100	HS, HI	1.20	VNaHJ 100PZTG. 078	533393	230,50	0.560	249	240	2.25	55	0.90	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG. 052	533394	230,50	0.740	249	240	2.75	50	0.94	EEI=A3
$240 \mathrm{~V}, 50 \mathrm{~Hz}$												
35	HS, HI	0.53	VNaHJ 35PZTG. 053	534107	240,50	0.240	222	214	1.95	60	0.96	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG. 054	534109	240,50	0.370	222	214	1.95	50	0.97	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG. 055	534115	240, 50	0.730	249	240	2.75	50	0.95	EEI=A3
$\mathbf{2 2 0 ~ V , ~ 6 0 ~ H z ~}$												
35	HS, HI	0.53	VNaHJ 35PZTG. 041	534122	220,60	0.220	222	214	1.95	70	0.98	EEI=A3
70	HS, HI	0.98	VNaHJ 70PZTG. 067	534111	220,60	0.370	222	214	1.95	50	0.97	EEI=A3
150	HS, HI	1.80	VNaHJ 150PZTG. 068	534117	220,60	0.800	249	240	2.25	45	0.98	EEI=A3

[^9]
Control Gear Units

 for HS and HI Lamps
250 and 400 W

Shape: 76x91 mm

For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Fully wired slim, weather-proof control gear unit
with ballast with thermal cut-out with automatic reset,
capacitor, timer ignitor and connection terminal
Suitable for installation in or on pylons
Frontal cable feed using a PG thread fitting
Front access to terminals
Screw-fixed end cap

Screw terminals: 0.75-2.5 mm²
For luminaires of protection class 1
Degree of protection: IP54
Permissible load capacity: 20-1000 pF
Distance to the lamp: max. 10 m
tw 130
With connection for protective earth conductor

Lamp				Control gear unit							
Output W	Type	Current A	Mains current A	Type	Ref. No.	Voltage AC V, Hz	L	$\begin{aligned} & \mathrm{LI} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	Power factor λ	Energy efficiency*
250	HS, HI	3.0	1.3	VNaHJ 250PZT. 745	531476	230, 50	322	302	4.30	>0.94	EEI=A3
400	HS, HI	4.45	2.0	VNaHJ 400PZT. 743	531475	230,50	357	337	5.62	> 0.91	A2

* Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

Ballast Units
 for HS and HI Lamps 600 to 2000 W

Shape: 114×116 mm

For high-pressure sodium vapour lamps (HS) and metal halide lamps (HI)

Slim, weather-proof ballast unit fully wired with ballast, capacitor and connection terminal
Suitable for installation in or on pylons With connection for protective earth conductor Frontal cable feed using a PG thread fitting Front access to terminals or fuses
Optional additional third PG connection for mains feed-through wiring
Screw-fixed end cap
Diverse mounting options using an assembly plate or rail Screw terminals: 0.75-10 mm²
For luminaires of protection class 1
tw 130

Degree of protection: IP54

Lamp				Ballast unit								
Output W	Type	Current A	Mains current A	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \text { V, Hz } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~mm} \end{aligned}$	Ll	$\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{~mm} \end{aligned}$	Weight kg	Power factor λ	Energy efficiency*
600	HS	6.2	3.1	VNaH 600.02	531182	230-240,50	452	375	335	9.6	> 0.90	A2
1000	$\begin{aligned} & \mathrm{HS} \\ & \mathrm{HI} \\ & \hline \end{aligned}$	$\begin{array}{r} 10.3 \\ 9.5 \end{array}$	$\begin{aligned} & 5.0 \\ & 4.9 \end{aligned}$	VNaHJ 1000.61	531472	230-240,50	487	410	370	11.6	> 0.90	$\begin{aligned} & \mathrm{A} 2 \\ & \text { A2 } \end{aligned}$
2000	HI	8.8	5.7	VJ 2000.05	531193	380-400,50	570	500	460	15.2	> 0.90	A2
2000	HI	10.3	6.0	VJD 2000.63	531474	380-400, 50	627	550	510	20.2	> 0.90	A2

* Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

Degree of protection: IP65

Fully encapsulated ballast unit with leads

Lamp				Ballast unit								
Output W	Type	Current A	Mains current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~mm} \end{aligned}$	Ll	$\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{~mm} \end{aligned}$	Weight kg	Power factor λ	Energy efficiency*
1000	$\begin{array}{\|c\|} \hline \mathrm{HS} \\ \mathrm{HI} \\ \hline \end{array}$	$\begin{array}{r} 10.3 \\ 9.5 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 4.9 \end{aligned}$	VNaHJ 1000.61	531480	220, 50	487	410	370	11.6	> 0.90	$\begin{aligned} & \mathrm{A} 2 \\ & \mathrm{~A} 2 \end{aligned}$
2000	HI	10.3	6.0	VJD 2000.63	531481	380, 50	627	550	510	20.2	> 0.90	A2

[^10]Ballast Units
for HS and HI Lamps 1000 to 2000 W

Encapsulated in a plastic casing

For high-pressure sodium vapour lamps (HS) and metal halide lamps (HI)
Fully encapsulated ballast unit in a self-extinguishing, fibre-glass-reinforced polyamide casing consisting of a ballast, capacitor, fuse and a ready-to-use, pre-wired connection terminal.
Cable feed using a PG thread fitting
Screw terminals: 0.75-10 mm²

Protection class II

tw 130

230/240 V, 50 Hz and $380 / 400 / 415$ V, 50 Hz

new	1000	$\begin{aligned} & \mathrm{HS} \\ & \mathrm{HI} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 10.3 / 11.3 \\ 9.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 5.75 \\ & 4.9 \\ & \hline \end{aligned}$	VNaHJ 1000.75	554313	230/240, 50	288	217	-	220	15	> 0.90	$\begin{aligned} & \mathrm{A} 2 \\ & \mathrm{~A} 2 \end{aligned}$
new	2000	HI	8.8/9.2	5.7	VJ 2000.76	554314	380/400/415,50	320	217	225	225	21	> 0.90	A2
new	2000	HI	10.3/11.3	6.0	VJD 2000.77	554315	380/400/415,50	320	220	225	225	23	> 0.90	A2
new	2000	HI	12.2	6.0	VJD 20001.78	554316	380/400/415,50	320	220	225	225	25	> 0.90	A2

$\mathbf{2 2 0} \mathrm{V}, \mathbf{6 0 ~ H z}$ and $\mathbf{3 8 0} \mathrm{V}, \mathbf{6 0} \mathbf{~ H z}$

new	1000	$\begin{array}{\|l\|} \mathrm{HS} \\ \mathrm{HI} \end{array}$	$\begin{aligned} & \hline 10.3 / 11.3 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 5.75 \\ & 4.9 \end{aligned}$	VNaHJ 1000.75	554904	220,60	288	217	-	220	15	> 0.90	$\begin{aligned} & \mathrm{A} 2 \\ & \mathrm{~A} 2 \end{aligned}$
new	2000	HI	8.8/9.2	5.7	VJ 2000.76	554905	380,60	320	220	225	225	21	> 0.90	A2
new	2000	HI	10.3/11.3	6.0	VJD 2000.77	554906	380,60	320	220	225	225	23	> 0.90	A2
new	2000	H	12.2	6.0	VJD 20001.78	554909	380,60	320	220	225	225	25	> 0.90	A2

[^11]
Compact

Assembly Kits for HS and HI Lamps
35 to 150 W

Ballast shape: $53 \times 66 \mathrm{~mm}$

For high pressure sodium lamps (HS), metal halide lamps (HI)
and ceramic discharge lamps (C-HI)
Compact assembly kit with ballast with or without patented, intelligent thermal cut-out with automatic reset (which evaluates the temperature and current of the ballast), superimposed ignitor and compensation capacitor With luminaire terminal block:
screw terminal 0.75-2.5 mm²
With earth terminal
Permissible load capacity: 20-100 pF
Lead length to the lamp: max. 1.5 m
tw 130
On request:
Further outputs and voltages
With digital timer ignitor
For pulse ignition system

As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

Especially suitable for change of lamp technology from HM to HS.

$230 \mathrm{~V}, 50 \mathrm{~Hz}$

35	HS, HI	0.53	PKNaHJ 35.008	546797	230,50	0.22	yes	117	86	108	54	1.2	> 0.90	EEI=A3
50	HS	0.76	PKNaH 50PZT. 992	543378	230,50	0.30	yes	117	86	111	59	1.4	> 0.90	EEI=A3
70	HS, HI	0.98	PKNaHJ 70.128	538675	230,50	0.37	yes	117	86	111	59	1.4	> 0.90	$\begin{aligned} & \mathrm{EEI}=\mathrm{A} 3 \\ & \mathrm{EEI}=\mathrm{A} 3 \\ & \hline \end{aligned}$
				538685			no							
100	HS, HI	1.20	PKNaHJ 100.941	538676	230,50	0.56	yes	117	86	111	59	1.6	> 0.90	EEI=A3
				538686			no							EEI=A3
150	HS, HI	1.80	PKNaHJ 150.620	538677	230,50	0.74	yes	151	120	115	63	2.2	> 0.90	EEI=A3
				538687			no							EEI=A3
220 V, 60 Hz														
35	HS, HI	0.53	PKNaHJ 35.008	547285	220,60	0.23	yes	117	86	108	54	1.2	> 0.90	EEI=A3
				543401			no							
70	HS, HI	0.98	PKNaHJ 70.653	547287	220,60	0.37	yes	117	86	111	59	1.4	> 0.90	EEI=A3
				538680			no							
100	HS, HI	1.20	PKNaHJ 100.271	538681	220,60	0.56	no	117	86	111	59	1.6	> 0.90	EEI=A3
150	HS, HI	1.80	PKNaHJ 150.679	538682	220,60	0.74	no	151	120	115	63	2.2	> 0.90	EEI=A3
220/240 V, 60 Hz														
100	HS, HI	1.20	PKNaHJ 100.345	543295	220/240,60	0.60	no	117	86	111	60	1.6	> 0.90	EEI=A3
150	HS, HI	1.80	PKNaHJ 150.301	543299	220/240, 60	0.80	no	151	120	115	63	2.2	> 0.90	EEI=A3

[^12]
Compact

Assembly Kits for HS and HI Lamps 250 and 400 W

Ballast shape: $\mathbf{7 1 \times 7 5} \mathbf{~ m m}$

For high pressure sodium lamps (HS),
metal halide lamps (HI)
and ceramic discharge lamps (C-HI)
Compact assembly kit with ballast with or
without thermal cut-out with automatic reset,
superimposed ignitor and compensation
capacitor
With luminaire terminal block:
screw terminal 0.75-2.5 mm²
With earth terminal
Permissible load capacity: 20-100 pF
Lead length to the lamp: max. 1.5 m
tw 130
On request:
Further outputs and voltages
With digital timer ignitor
For pulse ignition system

As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

Especially suitable for change of lamp technology from HM to HS.

Lamp			Assembly kit											
Output W	Type	Current A	Type	Ref. No.	Voltage AC $\mathrm{V}, \mathrm{~Hz}$	Mains current A	Temperature protection	a mm	b mm	c mm	d mm	Weight kg	Power factor λ	Energy efficiency*
$\mathbf{2 3 0 ~ V , ~} \mathbf{5 0 ~ H z}$														
250	HS, HI	3.00	PKNaHJ 250.741	538678	230,50	1.20	yes	141	110	128	73	3.2	> 0.90	A2
				538688			no							A2
400	HS, HI	4.45	PKNaHJ 400.743	538679	230,50	1.80	yes	171	140	129	73	5.2	> 0.90	A2
				538689			no							A2
$220 \mathrm{~V}, 60 \mathrm{~Hz}$														
250	HS, HI	3.00	PKNaHJ 250.742	538683	220,60	1.20	no	141	110	126	71	3.2	> 0.90	A2
400	HS, HI	4.45	PKNaHJ 400.744	538684	220,60	1.80	no	171	140	129	71	5.2	> 0.90	A2

[^13]
Standard Ballasts for HS and HI
 Lamps 35 to 70 W

Shape: $53 \times 66 \mathrm{~mm}$

For high pressure sodium lamps (HS), metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Vacuum-impregnated with polyester resin
Screw terminals: 0.5-2.5 mm²
Protection class I
tw 130
Ballasts for pulse ignition system on request

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC $\mathrm{V}, \mathrm{~Hz}$	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & \mathrm{Lt} \\ & \mathrm{~K} \end{aligned}$	Power factor λ	Energy efficiency*	$\begin{aligned} & \mathrm{CP}_{p} \\ & \mathrm{HF} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
35	HS, HI	0.53	NaHJ 35.485	526517	220/230,50	108	86	36	1.07	60	0.40	EEI=A3	6	0.22/0.21
35	HS, HI	0.53	NaHJ 35.485	161367	230/240,50	108	86	36	1.07	60	0.40	EEI=A3	6	0.22/0.21
35	HS, HI	0.53	NaHJ 35.638	161371	220,60	108	86	36	1.07	50	0.41	EEI=A3	5	0.23
50	HS	0.76	NaH 50.486	161379	230/240,50	108	86	36	1.07	65	0.37	EEI=A3	8	0.30/0.29
50	HS	0.76	NaH 50.654	161399	220,60	108	86	36	1.07	60	0.36	EEI=A3	8	0.31
50	HS	0.76	$\mathrm{NaHJ} 70 / 50.157$	160613	230, 50	108	86	42	1.23	55	0.37	EEI=A3	8	0.30
70	HS, HI	0.98								70	0.37	EEI=A3	12	0.38
70	HS, HI	0.98	NaHJ 70.300	174961	220,50	108	86	36	1.07	75	0.40	EEI=A3	12	0.40
70	HS, HI	0.98	NaHJ 70.128	533568	230,50	108	86	36	1.07	70	0.36	EEI=A3	12	0.38
70	HS, HI	0.98	NaHJ 70.128	539434	230/240,50	108	86	36	1.07	70/75	0.36	EEI=A3	12	0.38/0.37
70	HS, HI	0.98	NaHJ 70.158	161662	240,50	108	86	42	1.23	70	0.36	EEI=A3	12	0.37
70	HS, HI	0.98	NaHJ 70.128	538407	240,50	108	86	36	1.07	75	0.37	EEI=A3	12	0.37
70	HS, HI	0.98	NaHJ 70.653	161392	220,60	108	86	36	1.07	60	0.42	EEI=A3	10	0.40

[^14]
Standard Ballasts for HS and HI Lamps 70 to 250 W

Shape: $53 \times 66 \mathrm{~mm}$

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	Weight kg	$\left\lvert\, \begin{aligned} & \Delta t \\ & K \end{aligned}\right.$	$\begin{aligned} & \text { Power factor } \\ & \lambda \end{aligned}$	Energy efficiency*	$\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I} N \\ & \mathrm{~A} \end{aligned}$
$\begin{array}{r}70 \\ 100 \\ \hline\end{array}$	$\begin{aligned} & \mathrm{HS}, \mathrm{HI} \\ & \mathrm{HS}, \mathrm{HI} \end{aligned}$	$\begin{aligned} & \hline 0.98 \\ & 1.20 \end{aligned}$	$\mathrm{NaHJ} 100 / 70.703$	161469	230, 50	145	120	55	1.55	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.43 \end{aligned}$	$\begin{aligned} & \mathrm{EE}=\mathrm{A} 3 \\ & \mathrm{EE}=\mathrm{A} 3 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.55 \end{aligned}$
$\begin{array}{r}70 \\ 100 \\ \hline\end{array}$	$\begin{aligned} & \mathrm{HS}, \mathrm{HI} \\ & \mathrm{HS}, \mathrm{HI} \end{aligned}$	$\begin{aligned} & 0.98 \\ & 1.20 \end{aligned}$	$\mathrm{NaHJ} 100 / 70.519$	161158	230/240, 50	145	120	75	2.03	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.42 \end{aligned}$	$\begin{aligned} & \mathrm{A} 2 \\ & \mathrm{EE}=\mathrm{A} 3 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 0.38 / 0.37 \\ & 0.55 / 0.53 \end{aligned}$
$\begin{array}{r}70 \\ 100 \\ \hline\end{array}$	$\begin{aligned} & \mathrm{HS}, \mathrm{HI} \\ & \mathrm{HS}, \mathrm{HI} \end{aligned}$	$\begin{aligned} & 0.98 \\ & 1.20 \end{aligned}$	NaHJ 100/70.709	161471	220,60	145	120	55	1.55	$\begin{aligned} & 50 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.44 \end{aligned}$	$\begin{aligned} & \mathrm{EEI}=\mathrm{A} 3 \\ & \mathrm{EEI}=\mathrm{A} 3 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.57 \end{aligned}$
100	HS, HI	1.20	NaHJ 100.126	507671	220, 50	108	86	42	1.24	75	0.44	EEI=A3	12	0.55
100	HS, HI	1.20	NaHJ 100.941	161707	230/240, 50	108	86	42	1.24	75/80	0.42	EEI=A3	12	0.55/0.53
100	HS, HI	1.20	NaHJ 100.271	530195	220,60	108	86	42	1.24	75	0.45	EEI=A3	10	0.57
150	HS, HI	1.80	NaHJ 150.159	533602	220,50	145	120	64	1.80	75	0.41	EEI=A3	20	0.80
150	HS, HI	1.80	NaHJ 150.620	533565	230, 50	145	120	64	1.80	70	0.40	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.620	534540	240, 50	145	120	64	1.80	75	0.40	EEI=A3	20	0.74
150	HS, HI	1.80	NaHJ 150.679	526196	220,60	145	120	55	1.55	75	0.44	EEI=A3	16	0.80
150	HS, HI	1.80	NaHJ 150.679	537793	220,60	117	92	55	1.55	75	0.44	EEI $=$ A3	16	0.80
250	HS, HI	3.00	NaHJ 250.204	529087	220,50	160	135	95	2.50	80	0.42	EEI=A3	32	1.32
250	HS, HI	3.00	NaHJ 250.160	160597	220,50	180	155	110	2.84	75	0.41	EEI=A3	32	1.32
250	HS, HI	3.00	NaHJ 250.915	161686	230, 50	180	155	110	2.84	80	0.40	EEI=A3	32	1.26
250	HS, HI	3.00	NaHJ 250.340	504109	230/240, 50	180	155	110	2.84	80	0.39	EEI=A3	32	1.26/1.21
250	HS, HI	3.00	NaHJ 250.340	178177	240, 50	180	155	110	2.84	80	0.39	EEI $=$ A3	32	1.21
250	HS, HI	3.00	NaHJ 250.163	529072	220,60	160	135	95	2.50	70	0.42	A2	25	1.35
250	HS, HI	3.00	NaHJ 250.163	160604	220,60	180	155	95	2.50	70	0.42	A2	25	1.35

[^15]
Ballasts with
 Thermal Cut-out
 for HS and
 HI Lamps
 35 to 150 W

Shape: $53 \times 66 \mathrm{~mm}$

For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Vacuum-impregnated with polyester resin
With VS-patented, intelligent temperature switch
with automatic reset (evaluates the
temperature and current of the ballast)
Protection class I
tw 130

A Push-in terminals: $0.5-1.5 \mathrm{~mm}^{2}$

Ballasts for pulse ignition system on request
B Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$

Push-in terminals: 0.5-1.5 mm ${ }^{\mathbf{2}}$															
35	HS, HI	0.53	NaHJ 35.209	543737	230/240,50	A	108	86	36	1.07	35	0.36	A2	6	0.22
35	HS, HI	0.53	NaHJ 35.485	506122	230/240,50	A	108	86	36	1.07	60	0.40	EEI=A3	6	0.22/0.21
35	HS, HI	0.53	NaHJ 35.638	509170	220,60	A	108	86	36	1.07	50	0.41	EEI=A3	5	0.23
50	HS	0.76	NaH 50.206	543738	230,50	A	108	86	48	1.39	45	0.35	A2	8	0.30
50	HS	0.76	$\mathrm{NaHJ} 70 / 50.157$	507341	230,50	A	108	86	42	1.23	55	0.37	EEI=A3	8	0.30
70	HS, HI	0.98									70	0.37	EEI=A3	12	0.38
50	HS	0.76	NaHJ 70/50.520	538361	230,50	A	117	92	55	1.55	45	0.36	EEI=A3	8	0.30
70	HS, HI	0.98									55	0.36	EEI=A3	12	0.38
70	HS, HI	0.98	NaHJ 70.128	535191	230,50	A	108	86	36	1.07	70	0.36	EEI=A3	12	0.38
70	HS, HI	0.98	NaHJ 70.226	543741	230,50	A	108	86	48	1.39	50	0.37	A2	12	0.38
70	HS, HI	0.98	NaHJ 70.128	533572	230/240,50	A	108	86	36	1.07	70/75	0.36	EEI=A3	12	0.38/0.37
70	HS, HI	0.98	NaHJ 70.653	509169	220,60	A	108	86	36	1.07	60	0.42	EEI=A3	10	0.40
70	HS, HI	0.98	$\mathrm{NaHJ} 100 / 70.703$	507342	230,50	A	145	120	55	1.55	60	0.37	EEI=A3	12	0.38
100	HS, HI	1.20												12	
100	HS, HI	1.20	NaHJ 100.213	543739	230,50	A	117	92	55	1.55	55	0.41	A2	12	0.55
100	HS, HI	1.20	NaHJ 100.670	506120	230/240,50	A	117	92	55	1.55	70	0.42	EEI=A3	12	0.55/0.53
100	HS, HI	1.20	NaHJ 100.941	539492	230/240,50	A	108	86	42	1.23	75/80	0.42	EEI=A3	12	0.55/0.53
100	HS, HI	1.20	NaHJ 150/100.973	507343	230,50	A	145	120	75	2.02	55	0.41	A2	12	0.55
150	HS, HI	1.80										0.41	EEI=A3	20	0.57
150	HS, HI	1.80	NaHJ 150.620	535216	230,50	A	145	120	64	1.80	70	0.40	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.620	538543	230/240,50	A	145	120	64	1.80	70/75	0.40	EEI=A3	20	$0.77 / 0.74$
150	HS, HI	1,80	NaHJ 150.355	509100	230/240,50	A	145	120	75	2.02	65	0.39	EEI=A3	20	0.77/0.74
150	HS, HI	1.80	NaHJ 150.679	509171	220,60	A	145	120	75	2.02	65	0.42	EEI=A3	16	0.80

[^16]
Ballasts with Thermal Cut-out for HS and HI Lamps 35 to 250 W

Shape: $53 \times 66 \mathrm{~mm}$

Lamp			Ballast											Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	Drawing	a	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & \Delta t \\ & K \end{aligned}$	Power factor λ	Energy efficiency*	$\begin{aligned} & C_{p} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I} \mathrm{~N} \\ & \mathrm{~A} \end{aligned}$
Screw terminals: $\mathbf{0 . 5 - 2 . 5} \mathbf{~ m m}^{\mathbf{2}}$															
35	HS, HI	0.53	NaHJ 35.485	503010	230/240,50	B	108	86	36	1.07	60	0.40	EEI=A3	6	0.22/0.21
35	HS	0.53	NaH 50/35.797	539515	230,50	B	108	86	36	1.07	45	0.40	EEI=A3	6	0.22
50	HS	0.76									70	0.37	EEI=A3	8	0.30
50	HS	0.76	NaH 50.486	507498	230/240,50	B	108	86	36	1.07	65	0.37	EEI=A3	8	0.30
50	HS	0.76	$\mathrm{NaHJ} 70 / 50.695$	507697	230/240,50	B	108	86	48	1.39	50	0.37	EEI=A3	8	0.30/0.29
70	HS, HI	0.98									70	0.37	EEI=A3	12	0.38/0.37
70	HS, HI	0.98	NaHJ 70.128	536582	230,50	B	108	86	36	1.07	70	0.36	EEI=A3	12	0.38
70	HS, HI	0.98	NaHJ 70.158	169722	230/240,50	B	108	86	42	1.23	70	0.36	EEI=A3	12	0.38/0.37
70	HS, HI	0.98	NaHJ 70.128	538830	230/240,50	B	108	86	36	1.07	70/75	0.36	EEI=A3	12	0.38/0.37
70	HS, HI	0.98	NaHJ 70.158	546817	240,50	B	108	86	42	1.23	70	0.36	EEI=A3	12	0.37
70	HS, HI	0.98	NaHJ 100/70.703	504131	230,50	B	117	92	55	1.55	60	0.37	EEI=A3	12	0.38
100	HS, HI	1.20									70	0.43	EEI=A3	12	0.55
100	HS, HI	1.20	NaHJ 100.941	543349	230,50	B	108	86	42	1.23	75	0.42	EEI=A3	12	0.55
100	HS, HI	1.20	NaHJ 100.941	502799	230/240,50	B	108	86	42	1.23	75/80	0.42	EEI=A3	12	0.55/0.53
100	HS, HI	1.20	NaHJ 150/100.973	504135	230,50	B	145	120	75	2.02	55	0.41	A2	12	0.55
150	HS, HI	1.80									75	0.41	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.355	539270	220,50	B	145	120	75	2.02	65	0.39	EEI=A3	20	0.80
150	HS, HI	1.80	NaHJ 150.620	536593	230,50	B	145	120	64	1.80	70	0.40	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.995	169721	230/240,50	B	145	120	75	2.02	70	0.40	EEI=A3	20	0.77/0.74
150	HS, HI	1,80	NaHJ 150.620	538831	230/240,50	B	145	120	64	1.80	70/75	0.40	EEI=A3	20	0.77/0.74
150	HS, HI	1.80	NaHJ 150.620	537763	240,50	B	130	105	64	1.80	75	0.40	EEI=A3	20	0.74
150	HS, HI	1.80	NaHJ 150.679	526616	220,60	B	145	120	75	2.02	65	0.42	EEI=A3	16	0.80
250	HS, HI	3.00	NaHJ 250.915	505054	230,50	B	180	155	110	2.84	80	0.40	EEI=A3	32	1.26
250	HS, HI	3.00	NaHJ 250.340	542349	230/240,50	B	180	155	110	2.84	80	0.39	EEI=A3	32	1.26
250	HS, HI	3.00	NaHJ 250.340	508723	240,50	B	180	155	110	2.84	80	0.39	EEI=A3	32	1.26

* Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

Compact Ballasts for HS and HI Lamps 35 to 150 W

Shape: 53×66 mm

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Vacuum-impregnated with polyester resin Push-in terminals: 0.5-1 mm² IDC terminals for leads HO5V-U 0.5
Protection class I
Ballasts with screw terminals on request

Lamp			Ballast											Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	a mm	$\mathrm{mm}_{\text {m }}$		Weight kg	$\begin{gathered} \Delta t \\ \mathrm{~K} \end{gathered}$	${ }^{\circ} \mathrm{ow}$	Power factor λ	Energy efficiency*	C_{p}	IN A
35	HS, HI	0.53	NaHJ 35.485	538807	230/240, 50	80	67	36	1.07	60	130	0.40	EEI=A3	6	0.22/0.21
70	HS, HI	0.98	NaHJ 70.128	538810	230,50	80	67	36	1.07	70	130	0.36	EEI=A3	12	0.38
70	HS, HI	0.98	NaHJ 70.128	538823	230/240,50	80	67	36	1.07	70/75	130	0.36	EEI=A3	12	0.38/0.37
70	HS, HI	0.98	NaHJ 70.653	538828	220,60	80	67	36	1.07	60	130	0.42	EEI=A3	10	0.40
150	HS, HI	1.80	NaHJ 150.620	538834	230,50	107	94	64	1.80	70	130	0.40	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.625	538843	240,50	107	94	64	1.80	75	130	0.40	EEI=A3	20	0.74
150	HS, HI	1.80	NaHJ 150.679	542557	220,60	107	94	64	1.80	75	130	0.44	EEI=A3	16	0.80

* Step 2: EEI = A3, minimum EU energy efficiency requirements as of $2012 \mid$ Step 3: A2, minimum EU energy efficiency requirements as of 2017

With Thermal Cut-out

Thermal cut-out with automatic reset

Lamp			Ballast											Capacitor	
Output W	Type	Current A	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \text { V, Hz } \end{aligned}$	a mm	b	c mm	Weight kg	$\begin{aligned} & \Delta t \\ & K \end{aligned}$	tw ${ }^{\circ} \mathrm{C}$	Power factor λ	Energy efficiency*	C_{p} $\mu \mathrm{F}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
35	HS, HI	0.53	NaHJ 35.485	538258	230/240,50	80	67	36	1.07	60	130	0.40	EEI = A3	6	0.22/0.21
70	HS, HI	0.98	NaHJ 70.128	538189	230/240,50	80	67	36	1.07	70/75	130	0.36	EEI = A3	12	0.38/0.37
70	HS, HI	0.98	NaHJ 70.128	539223	230/240,50	80	67	36	1.07	70/75	140	0.36	EEI $=$ A3	12	0.38/0.37
70	HS, HI	0.98	NaHJ 70.653	538537	220,60	80	67	36	1.07	60	130	0.42	EEI $=$ A3	10	0.40
100	HS, HI	1.20	NaHJ 100.581	539081	230/240, 50	107	94	64	1.80	60	130	0.42	EEI=A3	12	0.55/0.53
150	HS, HI	1.80	NaHJ 150.159	548260	220,50	107	94	64	1.80	75	130	0.41	EEI = A3	20	0.77
150	HS, HI	1.80	NaHJ 150.620	538262	230,50	107	94	64	1.80	70	130	0.40	EEI $=$ A3	20	0.77
150	HS, HI	1.80	NaHJ 150.620	539306	230,50	107	94	64	1.80	70	140	0.40	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.620	538264	240,50	107	94	64	1.80	75	130	0.40	EEI $=$ A3	20	0.74
150	HS, HI	1.80	NaHJ 150.620	539286	240,50	107	94	64	1.80	75	140	0.40	EEI $=$ A3	20	0.74
150	HS, HI	1.80	NaHJ 150.679	539311	220,60	107	94	64	1.80	75	130	0.44	EEI=A3	16	0.80

[^17]
Ballasts with Thermal Cut-out for HS and HI Lamps
 35 to 150 W, Protection Class II

Encapsulated ballast in

compact plastic casing

Shape: $\mathbf{6 1 \times 7 2 m m}$

For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
With cable holder
Thermal cut-out with automatic reset
Screw terminals: 0.5-2.5 mm²

Protection class II

fw 130

Lamp			Ballast									Capacitor	
Output W	Type	Current A	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \text { V, Hz } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{array}{\|l\|} \hline \Delta t \\ K \\ \hline \end{array}$	Power factor λ	Energy efficiency*	$\begin{aligned} & C_{p} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
35	HS	0.53	NaHZ 50/35.797	539609	230, 50	134	125	1.60	45	0.40	EEI=A3	6	0.22
50	HS	0.76							70	0.37	EEI=A3	8	0.30
50	HS	0.76	NaHJZ 70/50.520	533395	230,50	134	125	1.60	45	0.36	EEI=A3	8	0.30
70	HS, HI	0.98							65			12	0.38
70	HS, HI	0.98	NaHJZ 100/70.519	533396	230,50	161	152	2.10	45	0.36	EEI=A3	12	0.38
100	HS, HI	1.20							60	0.42		12	0.55
100	HS, HI	1.20	NaHJZ 150/100.466	533398	230,50	161	152	2.30	45	0.41	A2	12	0.85
150	HS, HI	1.80								0.39	EEI=A3		0.77

[^18]
Ballasts with
 Thermal Cut-out and
 Thermal Fuse for
 HS and HI Lamps
 35 to 150 W, Protection Class II

With double insulation
Shape: $53 \times 66 \mathrm{~mm}$

For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Thermal cut-out with automatic reset
Screw terminals: 0.5-2.5 mm²

Protection class II

fw 130

	Lamp			Ballast										Capacitor	
	Output W	Type	Current A	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \mathrm{V}, \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \hline \text { Power factor } \\ & \lambda \\ & \hline \end{aligned}$	Energy efficiency*	$\begin{aligned} & C_{p} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
new	35	HS, HI	0.53	NaHZ 50/35.797	553806	230,50	108	92	36	1.07	45	0.40	EEI=A3	6	0.22
	50	HS	0.76								70	0.37	EEI=A3	8	0.30
new	50	HS	0.76	NaHJZ 70/50.785	509490	230,50	108	92	42	1.24	50	0.35	A2	8	0.30
	70	HS, HI	0.98								70	0.38	A2	12	0.38
new	70	HS, HI	0.98	NaHJZ 100/70.786	509491	$230,50$	145	120	69	1.83	55	0.38	EEI=A3	12	0.38
	100	HS, HI	1.20								65	0.41	EEI=A3	12	0.55
new	100	HS, HI	1.20	NaHJZ 150/100.787	509492	230,50	145	120	69	1.83	50	0.39	EEI=A3	12	0.85
	150	HS, HI	1.80								75	0.41	EEI=A3	20	0.77

Ballasts for HS and HI Lamps 150 to 400 W

Shape: $71 \times 75 \mathrm{~mm}$

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI)
Vacuum-impregnated with polyester resin Screw terminals: 0.75-2.5 mm² Protection class 1
tw 130
Ballasts for pulse ignition system on request

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \mathrm{V}, \mathrm{~Hz} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{a} \\ \mathrm{~mm} \end{array}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{c} \\ \mathrm{~mm} \end{array}$	Weight kg	$\begin{array}{\|l\|} \hline \Delta t \\ \mathrm{~K} \\ \hline \end{array}$	Power factor λ	Energy efficiency*	$\begin{aligned} & C_{p} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
250	HS, HI	3.00	NaHJ 250.741	536147	220, 50	135	115	68	2.85	70	0.42	A2	32	1.35
250	HS, HI	3.00	NaHJ 250.741	536148	230,50	135	115	68	2.85	75	0.40	A2	32	1.30
250	HS, HI	3.00	NaHJ 250.741	536149	240,50	135	115	68	2.85	75	0.39	A2	32	1.25
250	HS, HI	3.00	NaHJ 250.742	536150	220,60	135	115	68	2.85	70	0.42	A2	25	1.40
400	HS, HI	4.45	NaHJ 400.743	536142	220,50	165	145	103	4.1	70	0.45	A2	45	2.10
400	HS, HI	4.45	NaHJ 400.743	535142	230,50	165	145	103	4.1	75	0.44	A2	45	2.00
400	HS, HI	4.45	NaHJ 400.743	536143	240,50	165	145	103	4.1	75	0.40	A2	45	1.85
400	HS, HI	4.45	NaHJ 400.744	536144	220,60	165	145	103	4.1	70	0.44	A2	40	2.05

* Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

With Thermal Cut-out

Thermal cut-out with automatic reset

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC $\mathrm{V}, \mathrm{~Hz}$	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & K \end{aligned}$	Power factor λ	Energy efficiency*	$\begin{aligned} & C_{p} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$
150	HS, HI	1.80	NaHJ 150.216	543740	230,50	135	115	68	2.85	45	0.40	A2	20	0.77
250	HS , HI	3.00	NaHJ 250.741	539274	220,50	135	115	68	2.85	70	0.42	A2	32	1.35
250	HS, HI	3.00	NaHJ 250.741	544210	230,50	135	115	68	2.85	65	0.40	A2	32	1.30
250	HS, HI	3.00	NaHJ 250.741	536151	230,50	135	115	68	2.85	75	0.40	A2	32	1.30
250	HS, HI	3.00	NaHJ 250.741	537726	230/240,50	135	115	68	2.85	75	0.40	A2	32	1.30/1.25
250	HS, HI	3.00	NaHJ 250.741	536152	240,50	135	115	68	2.85	75	0.39	A2	32	1.25
400	HS, HI	4.45	NaHJ 400.743	548259	220,50	165	145	103	4.1	70	0.44	A2	45	2.10
400	HS, HI	4.45	NaHJ 400.743	536145	230,50	165	145	103	4.1	75	0.44	A2	45	2.00
400	HS, HI	4.45	NaHJ 400.743	538204	230,50	165	145	103	4.1	65	0.41	A2	45	2.00
400	HS, HI	4.45	NaHJ 400.743	539209	230/240,50	165	145	103	4.1	75	0.41	A2	45	2.00/1.85
400	HS, HI	4.45	NaHJ 400.743	543986	240,50	165	145	103	4.1	70	0.40	A2	45	1.85
400	HS, HI	4.45	NaHJ 400.743	536146	240,50	165	145	103	4.1	75	0.40	A2	45	1.85
400	HS, HI	4.45	NaHJ 400.744	538620	220,60	165	145	103	4.1	70	0.44	A2	40	2.05

[^19]Ballasts for
HS and HI Lamps
250 to 600 W
Shape: 92×102 mm

For high pressure sodium lamps (HS), metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Vacuum-impregnated with polyester resin Screw terminals: 0.75-2.5 mm²
Protection class 1
tw 130
Ballasts for pulse ignition system on request

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & \mathrm{Lt} \\ & K \end{aligned}$	Power factor λ	Energy efficiency*	$\begin{aligned} & C_{p} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$
250	HS, HI	3.00	NaHJ 250.003	179743	220,50	133	120	44	3.53	70	0.41	EEI=A3	32	1.32
250	HS, HI	3.00	NaHJ 250.727	178771	230,50	133	120	44	3.53	70	0.39	EEI=A3	32	1.26
250	HS, HI	3.00	NaHJ 250.727	500976	240,50	133	120	44	3.53	70	0.39	EEI=A3	32	1.21
250	HS, HI	3.00	NaHJ 250.011	500401	220,60	133	120	44	3.53	65	0.43	A2	25	1.35
400	HS, HI	4.45	NaHJ 400.006	179740	220,50	148	135	68	5.20	70	0.44	A2	45	2.00
400	HS, HI	4.45	NaHJ 400.006	178790	230,50	148	135	68	5.20	70	0.44	A2	45	1.95
400	HS, HI	4.45	NaHJ 400.737	500402	240,50	148	135	68	5.20	75	0.43	A2	45	1.90
400	HS, HI	4.45	NaHJ 400.012	500403	220,60	148	135	68	5.20	70	0.44	A2	40	2.00
400	HI	3.50	J 400.027	505782	230/240,50	148	135	68	5.20	60	0.45	A2	35	1.64/1.59
600	HS	6.20	NaH 600.010	179742	220, 50	173	160	96	6.80	70	0.44	A2	65	2.90
600	HS	6.20	NaH 600.005	533484	230/240, 50	173	160	96	6.80	70	0.44	A2	65	2.90/2.85
600	HS	6.20	NaH 600.140	529560	220,60	173	160	96	6.80	65	0.46	A2	55	3.00

* Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

With Thermal Cut-out

Thermal cut-out with automatic reset

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	b mm	c	Weight kg	$\begin{aligned} & \Delta t \\ & \mathrm{~L} \end{aligned}$	Power factor λ	Energy efficiency*	$\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{I} N \\ & \mathrm{~A} \end{aligned}$
250	HS, HI	3.00	NaHJ 250.727	500969	230/240, 50	133	120	44	3.53	70	0.39	EEI=A3	32	1.26/1.21
250	HS, HI	3.00	NaHJ 250.011	508744	220,60	133	120	44	3.46	65	0.43	A2	25	1.35
400	HS, HI	4.45	NaHJ 400.737	179424	230/240, 50	148	135	68	5.20	70/75	0.43	A2	45	1.95/1.90
400	HI	3.50	J 400.027	509613	230/240,50	148	135	68	5.20	60	0.45	A2	35	1.64/1.59
400	HS, HI	4.45	NaHJ 400.012	508741	220,60	148	135	68	5.20	70	0.44	A2	40	2.00
600	HS	6.20	NaH 600.005	179454	230/240,50	173	160	96	6.80	70	0.44	A2	65	2.90/2.85

[^20]
Ballasts for HS and HI Lamps 1000 W

Shape: $92 \times 102 \mathrm{~mm}$

For high pressure sodium lamps (HS) and metal halide lamps (HI)
Vacuum-impregnated with polyester resin
Screw terminals: 0.75-2.5 mm²
Protection class I
tw 130
Ballasts for pulse ignition system on request

[^21]Ballasts for
HI Lamps
up to 2500 W
Shape: $150 \times 150 \mathrm{~mm}$

For metal halide lamps (HI)
Vacuum impregnated with polyester resin
Screw terminals: 0.75-4 mm²
For luminaires of protection class 1
tw 130

For Short Arc Lamps

	Lamp			Ballast										Capacitor	
	Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	b	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & \mathrm{Lt} \\ & K \end{aligned}$	Power factor λ	Energy efficiency*	$\begin{aligned} & C_{p} \\ & \mu F \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$
new	2000	HI	8.8	J 2000.71	554303	380/400, 50	122	175	200	15	75	0.60	A2	37	6
new	2000	HI	8.8	J 2000.72	554304	380/400/415,50	122	135	160	14	70	0.58	A2	37	6
new	2000	HI	8.8	J 2000.73	554305	380,60	122	175	200	15	75	0.53	A2	30	6
new	2000	HI	10.3/11.3	JD 2000.81	554270	380/400, 50	122	175	200	15	80	0.53	A2	60	6
new	2000	HI	10.3/11.3	JD 2000.82	554306	380/400/415,50	122	135	160	14	75	0.52	A2	60	6
new	2000	HI	10.3/11.3	JD 2000.83	554283	380,60	122	175	200	15	75	0.54	A2	50	6
new	2000	HI	12.2	JD 2000II.91	554307	380/400, 50	122	175	200	16	80	0.46	A2	70	6
new	2000	HI	12.2	JD 2000II. 92	554308	380,60	122	175	200	16	75	0.45	A2	60	6
new	2000	HI	16.5	JD 20001.85	554309	230/240, 50	122	135	160	14	80	0.57	A2	125	10.5
new	2000	HI	16.5	JD 20001.86	554310	220,60	122	135	160	14	80	0.57	A2	105	10

	For Short Arc Lamps 1200 and 2500 W														
new	1200	HI	13.8	J 1200.95	554311	$\begin{array}{\|l\|} \hline 208,60 \\ 230 / 245,50 \\ \hline \end{array}$	122	105	130	11	-	0.40	$\begin{aligned} & \mathrm{A} 2 \\ & \mathrm{~A} 2 \end{aligned}$	150	6
new	2500	HI	25.6	J 2500.96	554312	$\begin{array}{\|l\|} \hline 208,60 \\ 230 / 245,50 \\ \hline \end{array}$	122	175	200	16	-	0.44	$\begin{aligned} & \mathrm{A} 2 \\ & \mathrm{~A} 2 \end{aligned}$	260	12.3

[^22]
Encapsulated Ballasts for HS Lamps 1000 W and HI Lamps 1000 and 2000 W

Shape: $108 \times 114 \mathrm{~mm}$

For high-pressure sodium vapour lamps (HS) and metal halide lamps (HI)
Corrosion-proof due to fully encapsulation of the ballast in an aluminium casing Specifically designed for installation in pylons Diverse mounting options
Screw terminals: $0.75-10 \mathrm{~mm}^{2}$
For luminaires of protection class 1
tw 130
With connection for protective earth conductor

Lamp			Ballast									Capacitor	
$\begin{aligned} & \text { Output } \\ & \mathrm{W} \end{aligned}$	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~mm} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{LI} \\ \mathrm{~mm} \end{array}$	Weight kg	$\begin{array}{\|l\|} \hline \Delta t \\ \mathrm{~K} \\ \hline \end{array}$	Power factor λ	Energy efficiency*	$\begin{aligned} & C_{p} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
1000	HS	10.3	NaH 1000G. 46	531018	230/240,50	216	185	10.3	65	0.44	A2	100	5.1
1000	HI	9.5	J 1000G. 41	531017	230/240,50	216	185	10.2	70	0.48	A2	85	5.1
2000	HI	10.3	J 2000G. 40	531024	380/400, 50	313	290	19.7	70	0.50	A2	60	6
2000	HI	8.8	J 2000G. 42	531021	360/380/400,50	261	235	13.8	90	0.62	A2	37	6

[^23]Ballasts for HM and HI Lamps 50 to 400 W

Shape: $53 \times 66 \mathrm{~mm}$

For mercury vapour lamps (HM) and metal halide lamps (HI) with ignition voltage 1 kV Vacuum-impregnated with polyester resin Screw terminals: 0.5-2.5 mm²
Protection class I
tw 130

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	a	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & \mathrm{~K} \end{aligned}$	Power factor λ	Energy efficiency*	$\begin{gathered} C_{p} \\ \mu \mathrm{~F} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$
50	HM	0.61	Q 50.501	167100	220,50	108	86	36	1.07	55	0.44	EEI=A3	7	0.28
50	HM	0.61	Q 50.550	167213	230,50	108	86	36	1.07	55	0.44	EEI=A3	7	0.27
50	HM	0.61	Q 50.508	167125	240,50	108	86	36	1.07	65	0.42	EEI=A3	7	0.26
50	HM	0.61	Q 50.535	167185	220,60	108	86	36	1.07	50	0.44	EEI=A3	6	0.28
50	HM	0.61	Q 80/50.596	167311	230, 50	108	86	36	1.07	55	0.43	EEI=A3	7	0.27
80	HM	0.80								70	0.51	EEI=A3	8	0.41
50	HM	0.61	Q 80/50.592	167306	220,60	108	86	36	1.07	50	0.44	EEI=A3	6	0.28
80	HM	0.80								60	0.53	EEI=A3	7	0.43
80	HM	0.80	Q 80.587	167302	220,50	108	86	36	1.07	65	0.52	EEI=A3	8	0.43
80	HM	0.80	Q 80.588	167304	230,50	108	86	36	1.07	70	0.51	EEI=A3	8	0.41
80	HM	0.80	Q 80.510	167132	240,50	108	86	36	1.07	60	0.48	EEI=A3	8	0.40
80	HM	0.80	Q 80.584	167299	220,60	108	86	36	1.07	55	0.51	EEI=A3	7	0.43
80	HM	0.80	Q 125/80.611	167326	230, 50	108	86	42	1.23	50	0.49	EEI=A3	8	0.41
125	HM	1.15								70	0.54	EEI=A3	10	0.60
80	HM	0.80	Q 125/80.511	167136	240, 50	108	86	48	1.39	50	0.48	EEI=A3	8	0.40
125	HM	1.15								70	0.52	EEI=A3	10	0.58
125	HM	1.15	Q 125.549	169947	220,50	108	86	36	1.07	70	0.56	EEI=A3	10	0.63
125	HM	1.15	Q 125.568	167263	230,50	108	86	36	1.07	75	0.54	EEI=A3	10	0.60
125	HM	1.15	Q 125.512	167140	240, 50	108	86	48	1.39	65	0.51	EEI=A3	10	0.58
125	HM	1.15	Q 125.598	502818	220,60	108	86	36	1.07	60	0.57	EEI=A3	10	0.65
250	HM	2.13	Q 250.513	167144**	220,50	145	120	75	2.10	75	0.58	EEI=A3	18	1.26
250	HM	2.13	Q 250.528	167367**	230,50	145	120	75	2.10	75	0.56	EEI=A3	18	1.20
250	HM	2.13	Q 250.703	507256**	240,50	145	120	75	2.10	75	0.53	EEI=A3	18	1.15
250	HM	2.13	Q 250.606	533705**	220,60	145	120	64	1.80	70	0.58	A2	15	1.30
400	HM	3.25	Q 400.616	528236**	220,50	160	135	95	2.50	80	0.60	EEI=A3	25	2.00
400	HM	3.25	Q 400.561	167250**	220,50	180	155	110	2.88	75	0.60	A2	25	2.00
400	HM	3.25	Q 400.612	167330**	230,50	180	155	110	2.88	75	0.56	EEI=A3	25	1.90
400	HM	3.25	Q 400.669	167374**	240,50	180	155	110	2.88	75	0.54	EEI=A3	25	1.85
400	HM	3.25	Q 400.613	167335**	220,60	180	155	110	2.88	65	0.60	EEI=A3	25	2.00
400	HM	3.25	Q 400.613	508245**	220,60	180	155	95	2.50	75	0.60	EEI=A3	25	2.00

[^24]
Ballasts with Thermal Cut-out

 for HM Lamps 50 to 125 W, Protection Class II
Encapsulated ballast in

compact plastic casing
Shape: $61 \times 72 \mathrm{~mm}$
For mercury vapour lamps (HM)
With cable holder
Thermal cut-out with automatic reset
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$

Protection class II

tw 130

Lamp			Ballast									Capacitor	
Output W	Type	$\begin{aligned} & \text { Current } \\ & \text { A } \end{aligned}$	Type	Ref. No.	Voltage AC V, Hz	mm	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & K \\ & K \end{aligned}$	Power factor λ	Energy efficiency*	$\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$
50	HM	0.61	QZ 80/50.551	533399	230,50	134	125	1.2	50	0.43	EEI=A3	7	0.27
80	HM	0.80							65	0.51	EEI=A3	8	0.41
80	HM	0.80	QZ 125/80.553	533400	230,50	134	125	1.6	45	0.50	EEI=A3	8	0.41
125	HM	1.15							60	0.53	EEI=A3	10	0.60

* Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

Ballasts for HM and HI Lamps
250 and 400 W
Shape: $71 \times 75 \mathrm{~mm}$

For mercury vapour lamps (HM) and metal halide lamps (HI) with ignition voltage 1 kV Vacuum-impregnated with polyester resin
Screw terminals: 0.75-2.5 mm^{2}
Protection class 1
tw 130

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{array}{\|l\|} \Delta t \\ K \end{array}$	Power factor λ	Energy efficiency*	$\begin{aligned} & \mathrm{CP}_{\mathrm{p}} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
250	HM	2.13	Q 250.800	536260**	230/240,50	135	115	68	2.85	55	0.53	EEI=A3	18	1.3
400	HM	3.25	Q 400.715	537869**	220,50	135	115	68	2.85	70	0.59	A2	25	2.0
400	HM	3.25	Q 400.801	536258**	230,50	135	115	68	2.85	75	0.58	EEI=A3	25	2.0
400	HM	3.25	Q 400.801	538034**	230,50	135	115	68	2.85	65	0.58	EEI=A3	25	2.0
400	HM	3.25	Q 400.801	537703**	230/240,50	135	115	68	2.85	75	0.58	EEI=A3	25	2.0/1.85
400	HM	3.25	Q 400.732	537873**	220,60	135	115	68	2.85	70	0.59	A2	25	2.0

* Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017
** Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI $1000 / 1 \mathrm{~K}$ (see page 60)

With Thermal Cut-out

Thermal cut-out with automatic reset

Lamp			Ballast										Capacitor	
	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	mm	b mm	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & K \end{aligned}$	Power factor λ	Energy efficiency*	$\begin{aligned} & C_{p} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & I_{N} \\ & \mathrm{~A} \end{aligned}$
250	HM	2.13	Q 250.800	536261 **	230/240,50	135	115	68	2.85	55	0.53	EEI=A3	18	1.3
400	HM	3.25	Q 400.801	536259**	230, 50	135	115	68	2.85	75	0.58	EEI=A3	25	2.0

[^25]Ballasts for HM and HI Lamps 250 to 1000 W

Shape: $92 \times 102 \mathrm{~mm}$

For mercury vapour lamps (HM) and metal halide lamps (HI) with ignition voltage 1 kV Vacuum-impregnated with polyester resin
Screw terminals: 0.75-2.5 mm²
Protection class I
tw 130

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & \mathrm{Lt} \end{aligned}$	Power factor λ	Energy efficiency*	$\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \end{aligned}$	IN
250	HM	2.13	Q 250.417	504467**	230/240,50	133	120	44	3.53	50	0.52	EEI=A3	18	1.20
400	HM	3.25	Q 400.001	504474**	230/240,50	133	120	44	3.53	65	0.56	EEI=A3	25	1.80
700	HM	5.40	Q 700.035	528521	230/240, 50	173	160	96	6.90	60	0.56	EEI=A3	40	3.40
1000	HM	7.50	Q 1000.097	537103**	220,50	173	160	96	6.90	75	0.61	EEI=A3	60	4.80
1000	HM	7.50	Q 1000.096	538540**	230,50	173	160	96	6.90	65	0.60	EEI=A3	60	4.80
1000	HM	7.50	Q 1000.096	528761 *	230,50	173	160	96	6.90	65	0.60	EEI=A3	60	4.80
1000	HM	7.50	Q 1000.145	528886**	240,50	173	160	96	6.90	75	0.58	EEI=A3	60	4.60
1000	HM	7.50	Q 1000.311	526715**	220,60	173	160	96	6.90	70	0.61	EEI=A3	50	5.00

[^26]
With Thermal Cut-out

Thermal cut-out with automatic reset

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	b mm	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & K \end{aligned}$	Power factor λ	Energy efficiency*	$\begin{aligned} & C_{p} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{I} N \\ & \mathrm{~A} \end{aligned}$
250	HM	2.13	Q 250.417	508746**	230/240,50	133	120	44	3.53	50	0.52	EEI=A3	18	1.20
400	HM	3.25	Q 400.001	505002**	230/240,50	133	120	44	3.53	65	0.56	EEI=A3	25	1.80

[^27]
Compact

Power Reduction Kits for HS Lamps 50 to 150 W

Ballast shape: $53 \times 66 \mathrm{~mm}$

For high pressure sodium lamps (HS)
Compact power reduction kit with ballast with or without patented, intelligent thermal cut-out with automatic reset (which evaluates the temperature and current of the ballast), ignitor, power switch and compensation capacitor
With luminaire terminal block:
screw terminal 0.75-2.5 mm²
With earth terminal
Permissible load capacity: 20-100 pF Lead length to the lamp: max. 1.5 m tw 130
Further outputs and voltages on request With digital timer ignitor on request

As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

Power reduction without control phase - Intelligent power switch PR 12 K LC (Light Control)

$70 / 40 \%$	HS	0.98	PRKUNaH 70/40\%.525	$\mathbf{5 4 3 3 8 4}$	220,50	0.38	no	117	86	151	76	60	1.5	>0.90	EEI=A3
$100 / 40 \%$	HS	1.20	PRKUNaH 100/40\%.522	$\mathbf{5 4 3 3 8 8}$	220,50	0.56	no	123	92	151	76	60	1.7	>0.90	EEI=A3
$150 / 40 \%$	HS	1.80	PRKUNaH 150/40\%.142	$\mathbf{5 4 3 3 8 5}$	220,50	0.77	no	151	120	154	79	60	2.3	>0.90	EEI=A3
$50 / 40 \%$	HS	0.76	PRKUNaH 50/40\%.021	$\mathbf{5 4 4 7 6 0}$	230,50	0.30	yes	117	86	151	76	56	1.5	>0.90	EEI=A3
$70 / 40 \%$	HS	0.98	PRKUNaH 70/40\%.525	$\mathbf{5 4 3 7 4 2}$	230,50	0.38	yes	117	86	151	76	60	1.5	>0.90	EEI=A3
$100 / 40 \%$	HS	1.20	PRKUNaH 100/40\%.522	$\mathbf{5 4 3 7 4 3}$	230,50	0.55	yes	123	92	151	76	60	1.7	>0.90	EEI=A3
$150 / 40 \%$	HS	1.80	PRKUNaH 150/40\%.142	$\mathbf{5 4 3 7 4 4}$	230,50	0.77	yes	151	120	154	79	60	2.3	>0.90	EEI=A3

Power reduction without control phase - Power switch PR 12 KD with selectable switching time

70/40\%	HS	0.98	PRKUNaH 70/40\%.525	539328	220,50	0.38	no	117	86	151	76	60	1.5	> 0.90	EEI=A3
100/40\%	HS	1.20	PRKUNaH 100/40\%. 522	539330	220,50	0.56	no	123	92	151	76	60	1.7	> 0.90	EEI=A3
150/40\%	HS	1.80	PRKUNaH 150/40\%. 142	539332	220,50	0.77	no	151	120	154	79	60	2.3	>0.90	EEI=A3
70/40\%	HS	0.98	PRKUNaH 70/40\%.525	538690	230,50	0.38	yes	117	86	151	76	60	1.5	>0.90	EEI=A3
100/40\%	HS	1.20	PRKUNaH 100/40\%. 522	538691	230,50	0.56	yes	123	92	151	76	60	1.7	> 0.90	EEI=A3
150/40\%	HS	1.80	PRKUNaH 150/40\%. 142	538692	230,50	0.77	yes	151	120	154	79	60	2.3	> 0.90	EEI=A3
70/40\%	HS	0.98	PRKUNaH 70/40\%.525	538700	220,60	0.38	no	117	86	151	76	60	1.5	>0.90	EEI=A3
100/40\%	HS	1.20	PRKUNaH 100/40\%. 522	538701	220,60	0.56	no	123	92	151	76	60	1.7	>0.90	EEI=A3
150/40\%	HS	1.80	PRKUNaH 150/40\%. 142	538702	220,60	0.77	no	151	120	154	79	60	2.3	> 0.90	EEI=A3

Power reduction with control phase - Power switch PU 12 K

$70 / 40 \%$	HS	0.98	PRKUNaH 70/40\%.525	$\mathbf{5 3 9 3 2 9}$	220,50	0.38	no	117	86	151	76	56	1.5	>0.90	EEI=A3
$100 / 40 \%$	HS	1.20	PRKUNaH 100/40\%.522	$\mathbf{5 3 9 3 3 1}$	220,50	0.56	no	123	92	151	76	56	1.7	>0.90	EEI $=$ A3
$150 / 40 \%$	HS	1.80	PRKUNaH 150/40\%.142	$\mathbf{5 3 9 3 3 3}$	220,50	0.77	no	151	120	154	79	56	2.3	>0.90	EEI=A3
$70 / 40 \%$	HS	0.98	PRKUNaH 70/40\%.525	$\mathbf{5 3 8 6 9 5}$	230,50	0.38	yes	117	86	151	76	56	1.5	>0.90	EEI=A3
$100 / 40 \%$	HS	1.20	PRKUNaH 100/40\%.522	$\mathbf{5 3 8 6 9 6}$	230,50	0.56	yes	123	92	151	76	56	1.7	>0.90	EEI=A3
$150 / 40 \%$	HS	1.80	PRKUNaH 150/40\%.142	$\mathbf{5 3 8 6 9 7}$	230,50	0.77	yes	151	120	154	79	56	2.3	>0.90	EEI=A3
$70 / 40 \%$	HS	0.98	PRKUNaH 70/40\%.525	$\mathbf{5 3 8 7 0 5}$	220,60	0.38	no	117	86	151	76	56	1.5	>0.90	EEI=A3
$100 / 40 \%$	HS	1.20	PRKUNaH 100/40\%.522	$\mathbf{5 3 8 7 0 6}$	220,60	0.56	no	123	92	151	76	56	1.7	>0.90	EEI=A3
$150 / 40 \%$	HS	1.80	PRKUNaH 150/40\%.142	$\mathbf{5 3 8 7 0 7}$	220,60	0.77	no	151	120	154	79	56	2.3	>0.90	EEI=A3

[^28]
Compact

Power Reduction Kits for HS Lamps 250 and 400 W

Ballast shape: 71x75 mm

For high pressure sodium lamps (HS) Compact power reduction kit with ballast with or without thermal cut-out with automatic reset, superimposed ignitor, power switch and compensation capacitor
With luminaire terminal block:
screw terminal 0.75-2.5 mm²
With earth terminal
Permissible load capacity: 20-100 pF Lead length to the lamp: max. 1.5 m tw 130
Further outputs and voltages on request With digital timer ignitor on request

As individual components no longer need to be wired, there is a significant reduction in assembly time and costs.

Power reduction without control phase - Intelligent power switch PR $\mathbf{1 2}$ K LC (Light Control)

250/40\%	HS	3.00	PRKUNaH 250/40\%.936	543386	220,50	1.26	no	141	110	171	91	71	3.3	> 0.90	EEI=A3
400/40\%	HS	4.45	PRKUNaH 400/40\%.906	543389	220,50	1.95	no	171	140	171	91	71	5.3	> 0.90	A2
250/40\%	HS	3.00	PRKUNaH 250/40\%.936	543745	230,50	1.26	yes	141	110	171	91	71	3.3	> 0.90	EEI=A3
400/40\%	HS	4.45	PRKUNaH 400/40\%.906	543746	230,50	1.95	yes	171	140	171	91	71	5.3	> 0.90	A2

Power reduction without control phase - Power switch PR 12 KD with selectable switching time

$250 / 40 \%$	HS	3.00	PRKUNaH 250/40\%.758	$\mathbf{5 4 6 5 8 5}$	220,50	1.26	no	171	140	171	91	71	5.3	>0.90	EEI=A3
$250 / 40 \%$	HS	3.00	PRKUNaH 250/40\%.936	$\mathbf{5 3 9 3 3 4}$	220,50	1.26	no	141	110	171	91	71	3.3	>0.90	EEI=A3
$400 / 40 \%$	HS	4.45	PRKUNaH 400/40\%.906	$\mathbf{5 3 9 3 3 5}$	220,50	1.95	no	171	140	171	91	71	5.3	>0.90	A2
$250 / 40 \%$	HS	3.00	PRKUNaH 250/40\%.936	$\mathbf{5 3 8 6 9 3}$	230,50	1.26	yes	141	110	171	91	71	3.3	>0.90	EEI=A3
$400 / 40 \%$	HS	4.45	PRKUNaH 400/40\%.906	$\mathbf{5 3 8 6 9 4}$	230,50	1.95	yes	171	140	171	91	71	5.3	>0.90	A2
$250 / 40 \%$	HS	3.00	PRKUNaH 250/40\%.983	$\mathbf{5 3 8 7 0 3}$	220,60	1.26	no	141	110	165	86	71	3.3	>0.90	EEI=A3
$400 / 40 \%$	HS	4.45	PRKUNaH 400/40\%.937	$\mathbf{5 3 8 7 0 4}$	220,60	1.95	no	171	140	171	91	71	5.3	>0.90	A2

Power reduction with control phase - Power switch PU 12 K

$250 / 40 \%$	HS	3.00	PRKUNaH 250/40\%.936	$\mathbf{5 3 9 3 3 6}$	220,50	1.26	no	141	110	171	91	71	3.3	>0.90	EEI=A3
$400 / 40 \%$	HS	4.45	PRKUNaH 400/40\%.906	$\mathbf{5 3 9 3 3 7}$	220,50	1.95	no	171	140	171	91	71	5.3	>0.90	A2
$250 / 40 \%$	HS	3.00	PRKUNaH 250/40\%.936	$\mathbf{5 3 8 6 9 8}$	230,50	1.26	yes	141	110	171	91	71	3.3	>0.90	EEI=A3
$400 / 40 \%$	HS	4.45	PRKUNaH 400/40\%.906	$\mathbf{5 3 8 6 9 9}$	230,50	1.95	yes	171	140	171	91	71	5.3	>0.90	A2
$250 / 40 \%$	HS	3.00	PRKUNaH 250/40\%.983	$\mathbf{5 3 8 7 0 8}$	220,60	1.26	no	141	110	165	86	71	3.3	>0.90	EEI=A3
$400 / 40 \%$	HS	4.45	PRKUNaH 400/40\%.937	$\mathbf{5 3 8 7 0 9}$	220,60	1.95	no	171	140	171	91	71	5.3	>0.90	A2

[^29]
Ballasts for

Power Reduction of HS Lamps 70 to 250 W

Shape: $53 \times 66 \mathrm{~mm}$
For high pressure sodium lamps (HS)
Vacuum-impregnated with polyester resin
Screw terminals: 0.5-2.5 mm²
Protection class 1
tw 130

Lamp		Ballast										Capacitor	
Output W	Current A	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \text { V, Hz } \end{aligned}$	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{array}{\|l\|} \hline \Delta t \\ K \\ \hline \end{array}$	Power factor λ	Energy efficiency*	$\begin{aligned} & \mathrm{Cp}_{p} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
70 (42)	0.98	UNaH 70/40\%.501	534128	220, 50	108	86	42	1.23	65	0.39	EEI=A3	12	0.40
$70 \quad 142)$	0.98	UNaH 70/40\%.525	535348	230,50	108	86	42	1.23	70	0.38	EEI=A3	12	0.38
70 (42)	0.98	UNaH 70/40\%.691	161460	220,60	108	86	48	1.39	60	0.42	EEI=A3	10	0.40
$100 \quad 160)$	1.20	UNaH 100/40\%.452	533947	220,50	117	92	55	1.52	65	0.43	EEI=A3	12	0.55
$100 \quad 160)$	1.20	UNaH 100/40\%.522	535347	230,50	117	92	55	1.52	70	0.42	EEI=A3	12	0.55
100 (60)	1.20	NaHJ 100/70.709	161471	220,60	145	120	55	1.55	60/50	0.44	EEI=A3	10	0.57
150 (90)	1.80	UNaH 150/40\%.453	533948	220,50	145	120	75	2.03	75	0.42	EEI=A3	20	0.80
150 (90)	1.80	UNaH 150/40\%. 142	535333	230,50	145	120	75	2.03	75	0.40	EEI=A3	20	0.77
150 (90)	1.80	UNaH 150/40\%.717	161475	220,60	145	120	75	2.03	70	0.44	EEI=A3	20	0.77
250 (150)	3.00	UNaH 250/40\%.454	533949	220,50	180	155	110	2.88	80	0.42	EEI=A3	32	1.32
250 (150)	3.00	UNaH 250/40\%.983	169892	220,60	145	120	75	2.03	75	0.40	EEI=A3	32	1.32

[^30]
Ballasts with

Thermal Cut-out for
Power Reduction of HS Lamps
50 to 150 W

Shape: $53 \times 66 \mathrm{~mm}$

For high pressure sodium lamps (HS) Vacuum-impregnated with polyester resin Thermal cut-out with automatic reset Protection class I
tw 130

A Push-in terminals: $0.5-1.5 \mathrm{~mm}^{2}$

B Screw terminals: 0.5-2.5 mm^{2}

Lamp		Ballast											Capacitor	
Output W	Current A	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \text { V, Hz } \end{aligned}$	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Drawing	Weight kg	$\begin{aligned} & \Delta t \\ & K \\ & \hline \end{aligned}$	Power factor λ	Energy efficiency*	$\begin{gathered} C_{p} \\ \mu \mathrm{~F} \end{gathered}$	$\begin{array}{\|l\|} \mathrm{IN} \\ \mathrm{~A} \end{array}$
With pus	n termin	als: 0.5-1.5 mm ${ }^{\mathbf{2}}$												
70 (42)	0.98	UNaH 70/40\%.525	544728	230,50	108	86	42	A	1.23	70	0.38	EEI=A3	12	0.38
100 (60)	1.20	UNaH 100/40\%.522	544730	230,50	117	92	55	A	1.55	70	0.42	EEI=A3	12	0.55
150 (90)	1.80	UNaH 150/40\%. 142	544729	230,50	145	120	75	A	2.10	75	0.40	EEI=A3	20	0.77
150 (101)	1.80	UNaH 150/100.722	539050	230/240, 50	160	135	95	A	2.50	65/50	0.41	EEI=A3	20	0.77
150 (101)	1.80	UNaH 150/100.722	507627	230/240, 50	180	155	95	A	2.50	65/50	0.41	EEI=A3	20	0.77

With screw terminals: $\mathbf{0 . 5 - 2 . 5} \mathbf{~ m m}^{\mathbf{2}}$

50 (33)	0.76	$\mathrm{NaH} 50 / 35.797$	539515	230,50	108	86	36	B	1.07	70/45	0.37	EEI=A3	6	0.22
70 (44)	0.98	$\mathrm{NaHJ} 70 / 50.695$	503136	230,50	108	86	48	B	1.34	70/50	0.37	EEI=A3	12	0.38
100 (64)	1.20	NaHJ 100/70.703	504131	230,50	117	92	55	B	1.55	70/60	0.43	EEI=A3	12	0.55
150 (101)	1.80	NaHJ 150/100.973	504135	230,50	145	120	75	B	2.10	75/55	0.41	EEI=A3/A2	20	0.77

* Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

Ballasts with
 Thermal Cut-out for Power Reduction of HS Lamps
 70 to 150 W,

 Protection Class IIEncapsulated ballast in compact plastic casing
Shape: $61 \times 72 \mathrm{~mm}$
For high pressure sodium lamps (HS)
With cable holder
Thermal cut-out with automatic reset
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$

Protection class II

tw 130

Lamp			Ballast									Capacitor	
Output W	Type	Current A	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \mathrm{V}, \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{array}{\|l\|} \hline \Delta t \\ K \\ \hline \end{array}$	Power factor λ	Energy efficiency*	$\begin{aligned} & C_{p} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{IN} \\ \mathrm{~A} \\ \hline \end{array}$
70 (44)	HS	0.98	NaHJZ 70/50.520	533395	230,50	134	125	1.60	65/45	0.36	EEI=A3	12	0.38
100 (64)	HS	1.20	NaHJZ 100/70.519	533396	230,50	161	152	2.10	60/45	0.42	EEI=A3	12	0.55
150(101)	HS	1.80	NaHJZ 150/100.466	533398	230,50	161	152	2.30	70/45	0.39	EEI=A3	20	0.77

[^31]Ballasts for
Power Reduction of HS Lamps 250 to 600 W

Shape: 71×75 mm
Shape: 92×102 mm

For high pressure sodium lamps (HS)
Vacuum-impregnated with polyester resin Screw terminals: 0.75-2.5 mm²
Protection class I
tw 130

B

Lamp			Ballast											Capacitor	
Output W	Type	Current A	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \text { V, Hz } \end{aligned}$	Drawing	mm	b mm	mm	Weight kg	Δt	Power factor λ	Energy efficiency*	C_{p} jF	I_{N} A
250 (150)	HS	3.00	UNaH 250/40\%.746	539283	220,50	A	135	115	68	2.85	75	0.42	EEI=A3	32	1.35
250 (150)	HS	3.00	UNaH 250/40\%.936	543747	230,50	A	135	115	68	2.85	75	0.40	EEI=A3	32	1.30
250 (150)	HS	3.00	UNaH 250/40\%.747	539517	220,60	A	135	115	68	2.85	75	0.42	EEI=A3	25	1.40
400 (240)	HS	4.45	UNaH 400/40\%.892	538592	220,50	A	165	145	103	4.13	75	0.44	A2	45	2.10
400 (240)	HS	4.45	UNaH 400/40\%.906	543748	230,50	A	165	145	103	4.13	75	0.42	A2	45	2.00
400 (240)	HS	4.45	UNaH 400/40\%.937	538715	220,60	A	165	145	103	4.13	75	0.44	A2	40	2.05
600 (360)	HS	6.20	UNaH 600/40\%.060	539384	230/240, 50	B	173	160	108	6.80	75	0.44	A2	75	2.80

* Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

With Thermal Cut-out

Thermal cut-out with automatic reset

Lamp			Ballast											Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC $\mathrm{V}, \mathrm{~Hz}$	Drawing	a mm	b mm	c mm	Weight kg	$\left.\right\|^{\Delta t}$	Power factor λ	Energy efficiency*	C_{p} رF	IN A
250 (150)	HS	3.00	UNaH 250/40\%.936	538711	230,50	A	135	115	68	2.85	75	0.40	EEI=A3	32	1.30
400 (240)	HS	4.45	UNaH 400/40\%.906	538710	230,50	A	165	145	103	4.13	75	0.42	A2	45	2.00

[^32]
SUPERIMPOSED, PULSE AND INSTANT RESTRIKE

ELECTRONIC IGNITORS

Superimposed ignitors

Superimposed ignitors work independently of ballasts and generate defined ignition pulses during every half-wave within the stipulated voltage ranges. As the mains frequency only plays a subordinate role, these systems work equally well at 50 Hz and 60 Hz .

Superimposed ignitors should be mounted near the lampholder. The clearance needed between the ignitor and the lamp is determined by the respective maximum load capacitance, which is specified for each ignitor in the technical details. The capacitive load of the cable is dependent on its physical properties and wiring layout; this value usually ranges between 70-100 pF per metre.

Pulse ignitors

As pulse ignitors use the winding of an inductive ballast to generate the requisite pulse voltage, such ballasts must be designed to withstand these high ignition voltages.

Instant restrike ignitors

Instant restrike ignitors are a special type of ignitor for high-pressure discharge lamps. In comparison to superimposed and pulse ignitors, instant restrike ignitors have a very specified field of application. However, safety-relevant lighting systems, e.g. in power plants, stadiums, but also in television studios, make instant re-ignition of hot high-pressure discharge lamps necessary.

On the following pages, Vossloh-Schwabe presents an extensive range of ignitors for all areas of application.
Electronic superimposed ignitors 50-58
Pulse ignitors 59-60
Instant restrike ignitors 61-62
Electronic power switches 63
Electronic superimposed ignitors with power switch 64
Switch units for electronic operating devices with 1-10 V interface 65
Start-up switches 66-67
Electronic discharge units 68
Technical details for discharge lamps 89-131
General technical details 394-401
Glossary 402-404

Electronic
Superimposed
Ignitors
for HS Lamps
up to 70 W
Standard version or with automatic switch-off For high pressure sodium lamps (HS) and ceramic discharge lamps C-HI-TT/ET with base E27
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

Al casing

PC casing - K

PC casing - K D20

PC casing - with push-in terminals

Type	Ref. No.	Voltage AC $50-60 \mathrm{~Hz}$ V	Max. lamp A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time$\mathrm{sec} . / \mathrm{Hz}$	Casing				Weight
									d (\varnothing)	a	b	c	
									mm	mm	mm	mm	

Aluminium casing (AI) with screw terminals: $\mathbf{0 . 7 5 - 4} \mathbf{~ m m}^{\mathbf{2}}$

Z 70 S	140413	220-240	2	< 0.6	< 5	1.8-2.3	20-200	-	35	76	-	-	135
Plastic casing (PC) with screw terminals: $\mathbf{0 . 7 5 - 4} \mathbf{~ m m}^{\mathbf{2}}$													
Z 70 K	140481	220-240	2	< 0.6	< 5	1.8-2.3	20-200	-	-	78	34	27	125
Z 70 K D20	141580*	220-240	2	< 0.6	< 5	1.8-2.3	20-200	1216/50-60	-	80	34	30	145

Plastic casing (PC) with push-in terminals: $\mathbf{0 . 5 - 2 . 5} \mathbf{~ m m}^{\mathbf{2}}$

Z 70 K	142320	220-240	2	< 0.6	< 5	1.8-2.3	20-200	-	-	81	34	27	125
Z 70 K D20	142330*	220-240	2	< 0.6	< 5	1.8-2.3	20-200	1216/50-60	-	83	34	30	145

[^33]Ignitors and Accessories for Discharge Lamps

Electronic
Superimposed Ignitors
for HS Lamps
70 (DE) to 250 W
and HI Lamps
35 to 250 W

Standard version or with automatic switch-off For high pressure sodium lamps (HS), metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

PC casing - K D20

PC casing - with push-in terminals

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time $\text { sec. } / \mathrm{Hz}$	Casing d (\varnothing) mm	a	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight g
Z 250 S	140425	220-240	3.5	< 1.8	<20	4-5	20-100	-	35	76	-	-	140
Plastic casing (PC) with screw terminals: $\mathbf{0 . 7 5 - 4} \mathbf{~ m m}^{\mathbf{2}}$													
Z 250 K	140489	220-240	3.5	< 1.8	<20	4-5	20-100	-	-	78	34	27	130
Z 250 K D20	141581*	220-240	3.5	< 1.8	<20	4-5	20-100	1216/50-60	-	80	34	30	145

Plastic casing (PC) with push-in terminals: $\mathbf{0 . 5 - 2 . 5} \mathbf{~ m m}^{\mathbf{2}}$

Z 250 K	142340	220-240	3.5	< 1.8	< 20	4-5	20-100	-	-	81	34	27	130
Z 250 K D20*	142350*	220-240	3.5	< 1.8	< 20	4-5	20-100	1216/50-60	-	83	34	30	145

[^34]

Ignitors and Accessories for Discharge Lamps

Electronic
Superimposed
Ignitors
for HS Lamps
70 (DE) to 400 W
and HI Lamps

35 to 400 W

Standard version or with automatic switch-off
For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and 240-270 ${ }^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$

Al casing

Screw terminals: 0.75-4 mm²
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	$\begin{array}{\|l} \hline \text { Internal } \\ \text { loss } \\ \text { W } \\ \hline \end{array}$	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time $\text { sec. } / \mathrm{Hz}$	Casing d (\varnothing) mm	a	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	mm	Weight g
Aluminium casing (AI)													
Z 400 S	140427	220-240	5	< 3	<25	4-5	20-100	-	45	76	-	-	250
Z 400 S D20	141583*	220-240	5	<3	<25	4-5	20-100	1216/50-60	45	90	-	-	280

[^35]Ignitors and Accessories for Discharge Lamps

Electronic

Superimposed Ignitors
for HS Lamps
70 (DE) to 400 W
and HI Lamps
35 to 400 W

Standard version or with automatic switch-off
Compact shape
For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Ignition voltage: 4-5 kV
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II
For luminaires of protection class I
(140594, 147707)

2

Al casing PC casing - K

PC casing - K D20

PC casing - with push-in terminals

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time sec. $/ \mathrm{Hz}$	Casing d (\varnothing) mm	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight

Aluminium casing (Al) with screw terminals: $\mathbf{0 . 7 5 - 4} \mathbf{~ m m}^{\mathbf{2}}$

Z 400 M	140594	220-240	5	< 3	< 35	4-5	20-50	-	35	76	-		140
Z 400 M VS-Power	147707**	220-240	5	< 3	< 35	4-5	20-50	-	35	76	-	-	140
Z 400 M S	140693	220-240	5	< 3	<35	4-5	20-50	-	35	76	-	-	140

Plastic casing (PC) with screw terminals: $\mathbf{0 . 7 5 - 4} \mathbf{~ m m}^{\mathbf{2}}$

Z 400 M K	140597	220-240	5	<3	< 35	4-5	20-50	-	-	78	34	27	130
Z 400 M K VS-Power	142897**	220-240	5	<3	< 35	4-5	20-50	-	-	78	34	27	130
Z 400 M K D20	141582*	220-240	5	<3	< 35	4-5	20-50	1216/50-60	-	80	34	30	145

Plastic casing (PC) with push-in terminals: $0.5-2.5 \mathbf{~ m m}^{2}$

Z 400 MK	142360	220-240	5	< 3	< 35	4-5	20-50	-	-	81	34	27	130
Z 400 M K VS-Power	142361**	220-240	5	<3	< 35	4-5	20-50	-	-	81	34	27	130
Z 400 M K D20	142370*	220-240	5	< 3	< 35	4-5	20-50	1216/50-60	-	83	34	30	145

Recommended for outdoor lighting

* With IPP technology
** Not suitable for C-HI lamps

Ignitors and Accessories for Discharge Lamps

Electronic

Superimposed

Ignitors

for HS Lamps 600 and 750 W

Standard version
For high pressure sodium lamps (HS)
Al casing
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: 0.75-4 mm²
Fastening: male nipple with pre-assembled
washer and nut

For luminaires of protection class I and II

Type	Ref. No.	Voltage AC $50-60 \mathrm{~Hz}$ V	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time $\text { sec. } / \mathrm{Hz}$	Casing d (\varnothing) mm			$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight g
Aluminium casing (Al)													
Z 750 S	146990	220-240	8	< 3	<20	4-5	20-100	-	50	90	-	-	360

Ignitors and Accessories for Discharge Lamps

Electronic
Superimposed

Ignitors

for HS and
HI Lamps
250 to 1000 W

Al casing

Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$

$$
\text { (Z } 1000 \text { S: 0.75-4 mm²) }
$$

Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

Al casing - D20

Z 1000 TOP

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time$\text { sec. } / \mathrm{Hz}$	Casing				$\begin{aligned} & \text { Weight } \\ & g \end{aligned}$
									d (\varnothing)	a	b	c	
										mm	mm	mm	

Aluminium casing (Al)

Z 1000 S	140430	220-240	12	<6	< 35	4-5	20-100	-	50	80	-	-	340
Z 1000 TOP	140607**	220-240	12	< 6	< 35	4-5	20-100	-	-	83	83	68	620
Z 1000 S D20	141584*	220-240	12	< 6	< 35	4-5	20-100	1216/50-60	50	89	-	-	340

[^36]Electronic
Superimposed
Ignitors for HS and
HI Lamps
up to 1000 W
Standard version
For high pressure sodium lamps (HS)
and metal halide lamps (HI)

For long lead lengths

Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: 0.75-2.5 mm^{2}
Fastening: male nipple with pre-assembled
washer and nut

Al casing

For HS and HI lamps 150 to 1000 W

Phasing of the ignition voltage: $60-90^{\circ} \mathrm{el}$
For luminaires of protection class 1

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time sec. $/ \mathrm{Hz}$	Casing $d(\varnothing)$ mm	$\begin{aligned} & a \\ & m m \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}\right.$	Weight

Aluminium casing (Al)

[^37]For HS lamps 600 to 1000 W/400 V
and HI lamps 1000 W/400 V
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
For luminaires of protection class I and II

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time $\text { sec. } / \mathrm{Hz}$	Casing d (\varnothing) mm		$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight g
Aluminium casing (AI)													
Z 1000 S/400 V	140496	380-415	6	< 3.3	<28	4-5	20-2000	-	45	100	-	-	295

Ignitors and Accessories for Discharge Lamps

Electronic

Superimposed Ignitors for
Projection Lamps up to 1200 W

Standard version
For high-pressure discharge lamps
Phasing of the ignition voltage: $60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: 0.75-2.5 mm²
Fastening: male nipple with pre-assembled washer and nut
For luminaires of protection class I

Al casing

Type	Ref. No.	Voltage AC $\begin{aligned} & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time $\text { sec. } / \mathrm{Hz}$	Casing $d(\varnothing)$ mm	a mm	b mm	c mm	Weight g
Aluminium casing (AI)													
Z 1200/2.5	140608*	220-240	15	< 7.5	< 40	2-2.5	20-200	-	50	87	-	-	330
Z 1200/9	140609**	220-240	15	< 10	< 40	7-8	20-50	-	50	135	-	-	650

** For lamps, e.g. HMI, HTI, CDI, RSI, CSR

Ignitors and Accessories for Discharge Lamps

Electronic

Superimposed

Ignitors

for HI Lamps
up to 3500 W
Standard version
For metal halide lamps (HI)
Phasing of the ignition voltage: $60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: 0.75-2.5 mm²
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

A

B

Type	Ref. No.	Voltage AC $50-60 \mathrm{~Hz}$ V	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time sec. $/ \mathrm{Hz}$	Drawing	Casing d (\varnothing) mm	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	b mm	c	Weight

Aluminium casing (Al)

Z 2000 S	140432	220-240	20	<6	< 30	4-5	20-100	-	A	65	96	-	-	640
Z 2000 S/400 V	140497	380-415	12	< 5	< 32	4-5	20-2000	-	B	50	98	-	-	340
Z $3500 \mathrm{~S} / 400 \mathrm{~V}$	140499	380-415	20	< 7	< 35	4-5	20-100	-	A	65	96	-	-	650

Pulse Ignitors

for HS and
HI Lamps up to 1000 W

With automatic switch-off
For high pressure sodium lamps (HS),

metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Max. permitted casing temperature: $95^{\circ} \mathrm{C}$
Screw terminals: 0.75-2.5 mm²
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I
This pulse ignitor is only for use with ballasts that have a dedicated tapping, as this determines the size of the ignition voltage.

Al casing

PC casing

For HS lamps 50 to 1000 W,
HI lamps 35 to 1000 W and C-HI lamps 35 to 400 W

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of ignition pulses per mains period	Ignition voltage kV	Load capacity pF	Programmed switch-off time sec./ Hz	Casi a mm	b mm	c mm	Weight g
Plastic casing (PC)										
PZ 1000 K D20	142784*	220-240 $\pm 10 \%$	≥ 2	1.8-2.3/4-5	20-1000	1216/50-60	74	34	27	100

With IPP technology

* Suitable ballasts (type: NaHJ...PZT) are available on request

For HS lamps 600 to 1000 W/400 V
and HI lamps 1000 W/400 V

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	Number of ignition pulses per mains period	Ignition voltage kV	Load capacity pF	Programmed switch-off time sec./ Hz	Casing d (\varnothing) mm	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	c	Weight g

Aluminium casing (AI)

* Suitable ballasts (type: NaHJ...PZT) are available on request

Ignitors and Accessories for Discharge Lamps

Pulse Ignitors for HS Lamps 50 to 1000 W

Standard version
For standard high pressure sodium lamps (HS)
Max. permitted casing temperature: $95^{\circ} \mathrm{C}$
Screw terminals: 0.5-1.5 mm²
Fastening: male nipple with pre-assembled
washer and nut

For luminaires of protection class I

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of ignition pulses per mains period	Ignition voltage kV	Load capacity pF	Programmed switch-off time sec.	Casing d (\varnothing) mm	$\begin{aligned} & a \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight g
Plastic casing (PC)											
PZS 1000 K	140613	220-240	approx. 1/sec.	approx. 4	20-4000	-	-	50	28	27	50

Not suitable for HS lamps types Plus, Super, XL, HO
Suitable ballasts (type: NaH ...P) are available on request

Pulse Ignitors for HI Lamps
 $\mathbf{2 5 0}$ to $\mathbf{2 0 0 0}$ W, Ignition Voltage up to $\mathbf{1}$ kV

Standard version
For metal halide lamps (HI)
with ignition voltage of 0.9 kV
Max. permitted casing temperature: $95^{\circ} \mathrm{C}$
Screw terminals: 0.5-2.5 mm²
Fastening: male nipple with pre-assembled
washer and nut

For luminaires of protection class I

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of ignition pulses per mains period	Ignition voltage kV	Load capacity pF	Programmed switch-off time sec.	Cas a mm	$\begin{aligned} & \mathrm{ng} \\ & \mathrm{~b} \\ & \mathrm{~mm} \end{aligned}$	c	Weight g
Plastic casing (PC)										
PZI 1000/1 K	140617	220-240	≥ 1	0.7-0.9	max. 10000	-	57	28	27	50

[^38]Ignitors and Accessories for Discharge Lamps

Instant Restrike

Ignitors for
High-pressure Discharge Lamps up to 600 W

For high pressure sodium lamps (HS), metal halide lamps (HI), ceramic discharge lamps (C-HI) and projection lamps in accordance with the lamp table shown below For installation as a symmetric ignition device (whereby the ignition voltage is split equally over both lamp electrodes)
For installation in luminaires of protection class I Max. permitted ambient temperature $t_{a}: 60^{\circ} \mathrm{C}$ Mains connection: screw terminal 3-poles,

$$
0.75-2.5 \mathrm{~mm}^{2}
$$

Lamp connection: screw terminal 0.75-2.5 mm² for circuit 1 and 2
Fastening: 2 mounting slots for screws M4 Material: plastic casing made of $A B S$

CAUTION

Defective lamps must be replaced immediately

Circuit 1

Circuit 2

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage* kV	Ignition time sec.	Load capacity pF	Casi a mm	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}\right.$	Weight 9
HZ 600 K	147790	230 $\pm 10 \%$	8	< 4	< 10	20-30	approx. 6	5-30	247	66	47	1000

* Depending on the respective circuit; the ignition voltage is split equally over both lamp electrodes

Lamp table						
Circuit 1				Circuit 2		
Lamp type	Base	VS lampholder type	Catalogue page	Lamp type	Base	VS lampholder type
CDM-TD 70 W	RX7s	306	86	HBO 50 W	SFa8-2	-
HCI-TS 70 W	RX7s	306	86	MSR 125 HR	GZX9.5	-
HI 70 W (DE)	RX7s	306	86	HBO 200 W	SFc 10-4	-
HS 70 W (DE)	RX7s	306	86	HBO 200 W	SFc 10-4	-
RCI-TS 70 W	RX7s	306	86	MSR 200 HR	GZX9.5	-
HS 150 W (DE)	RX7s	306	86	HTI 250 W	FaX1.5	-
HMI 200 W	$\times 515$	-		HMI 400 W/SE	GZZ9.5	-
HMM 200 W/X	GZY9.5	-		HMP 400 W	FaX1.5	-
MSI 200 W	GZY9.5	-		HTI 400 W	FaX1.5	-
RSI 200 W	$\times 515$	-		RSI 400 W	GZX9.5	-
HS 250 W (DE)	Fc2	025	86-87	HBO 500 W	SFcY13-5	-
HS 400 W (DE)	Fc2	025	86-87	HMP 575 W	SFc10-4 / G22	-
MSR 400 HR	GZZ9.5	-		HMI 575 W	SFc 10-4	-
MSI 575 W	SFc10	-		RSI 575 W	G22	-
MSR 575 HR	G22	-		HTI 600 W	FaX1.5	-

Instant Restrike

Ignitors for
High-pressure Discharge Lamps 1000 W/230 V and $2000 \mathrm{~W} / 400 \mathrm{~V}$

For high pressure sodium lamps (HS), metal halide lamps (HI), ceramic discharge lamps (C-HI) in accordance with the lamp table shown below For installation as a symmetric ignition device Iwhereby the ignition voltage is split equally over both lamp electrodes)
Degree of protection: IP65
For installation in luminaires of protection class 1 Max. permitted ambient temperature ta: $60^{\circ} \mathrm{C}$ Mains connection: screw terminal 3-poles, max. $4 \mathrm{~mm}^{2}$
Earth connection: screw terminal max. $4 \mathrm{~mm}^{2}$ Lamp connection: screw terminal max. $4 \mathrm{~mm}^{2}$ Fastening: 4 holes $\varnothing 6.3 \mathrm{~mm}$ in the base of casing Material: casing made of fibreglass-reinforced polyester

CAUTION

Defective lamps must be replaced immediately

Circuit diagram HZ 1000 K/230V

Circuit diagram HZ 2000 K/400 V

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage* kV	$\begin{aligned} & \text { Ignition } \\ & \text { time } \\ & \text { sec. } \end{aligned}$	Load capacity pF	Casing			Weight 9
									a	b	c	
									mm	mm	mm	
HZ 1000 K	147791	$230 \pm 10 \%$	12	< 5	< 10	36	approx. 6	5-50	218	120	92	3745
HZ $2000 \mathrm{~K} / 400 \mathrm{~V}$	147793	400 $\pm 10 \%$	12	< 5	< 10	36	approx. 6	5-30	218	120	92	3745

* The ignition voltage is split equally over both lamp electrodes

Lamp table HZ 1000 K								
Lamp type	Lamp manufacturer	Base	VS lampholder type	Catalogue page	Lamp type	Base	VS lampholder type	Catalogue page
CDM-TD 150 W	Philips	RX7s	306	86	HI 400 W (DE)	Fc2	025	86-87
HCI-TS 150 W	Osram	RX7s	306	86	HS 400 W (DE)	Fc2	025	86-87
HI 150 W (DE)		RX7s	306	86	HI 1000 W (DE)	Fc2	025	86-87
HS 150 W (DE)		RX7s	306	86	HS 1000 W (DE)	Cable, K12s-7	211	88
HI 250 W (DE)		Fc2	025	86-87	-	-	-	-
HS 250 W (DE)		Fc2	025	86-87	-	-	-	-

Lamp table HZ 2000 K/400 V				
Lamp type	Base	VS lampholder type	Catalogue page	Note
HI 2000 W (DE)	Cable, K12s-7	211	88	not suitable for HRI-TS 2000 W/N/L, HQI-TS 2000 W/N/L

Electronic

Power Switches for HS Lamps up to 600 W and HM Lamps up to 700 W

For high pressure sodium lamps (HS) and mercury vapour lamps (HM) For power reduction by using ballasts with multiple voltage tapping and

PU 12 K/PR 12 KD/PR 12 K LC

superimposed ignitors
PR $12 \mathrm{~K} L C$ and PR 12 KD are also suitable for
power switching of LED drivers and electronic ballasts.
Casing: PC
PU 120 K
Max. permitted casing temperature tc: $80^{\circ} \mathrm{C}$
Screw terminals: 0.75-2.5 mm^{2}
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

Circuit diagrams for power reduction
see pages 106-107.

Advantages of PR 12 K LC

- intelligent, auto-adaptive concept
- eliminates the time-consuming task of continually adjusting the times of power-reduced operation to suit constantly changing day-night cycles
- removes the need for making adjustments due to daylight-saving times
- easy programming via dial
- no additional control line necessary
- optimal suitable for the supplementary integration into existing luminaires
- suitable for luminaires of protection class I and II

Type	Ref. No.	Voltage AC	Max. contact current		Inherent	Integrated delay	Control phase	Casing			Weight
					heating				b	c	
		V, Hz		λ		switching	(circuitry logic)	mm	mm	mm	

Power reduction with control phase

PU 12 K	140621	230,50 / 220,60	8/0.5	12/1	<25	-	disconnect or connect	74	34	27	100
PU 120 K	140622*	230, $50 / 220,60$	8/0.5	12/1	< 10	327 sec .	disconnect	74	34	27	100
PU 121 K	140623*	230,50 / 220,60	8/0.5	12/1	<25	327 sec .	connect	74	34	27	100

Power reduction without control phase

PR 12 KLC	142170**	$\begin{aligned} & 220-230 \pm 10 \%, 50 \\ & 220 \pm 10 \%, 60 \end{aligned}$	8/0.5	12/1	< 12	selectable	without control phase	76	34	31	100
PR 12 KD	142150***	$\begin{aligned} & 220-230 \pm 10 \%, 50 \\ & 220 \pm 10 \%, 60 \end{aligned}$	8/0.5	12/1	< 12	selectable	without control phase	76	34	31	100

[^39]** Time of power-reduced operation selectable, starting point of switching-time changes automatically to suit constantly changing day-night cycles
*** Power reduction after a constant switching-time (delay switching);
swichting-time selectable: $3|3.5| 4|4.5| 5|5.5| 6$ hrs at 50 Hz

PU 121 K

Electronic

Superimposed Ignitors with Power Switch for HS Lamps 50 to 250 W

For ignition and power reduction of high pressure sodium lamps (HS)
Casing: PC
Control voltage: $230 \mathrm{~V} \pm 10 \%$
Response/cut-out voltage: 170-198 V
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature $t_{c}: 80^{\circ} \mathrm{C}$
Push-in terminals: 0.75-1.5 mm²

Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

Applicable for positive switch logic allowing for terminal
pin assignment of power switch

- Full load lamp start is guaranteed
- Switching to power reduced operation after delay time of approx. 5 min .

Type	Ref. No.	Voltage AC	Max. lamp current	Number of ignition pulses per mains	Internal loss	Inherent heating	Ignition voltage	Load capacity	Programmed switch-off time	Casing			Weight
											b	c	
		V, Hz		period	W	K	kV	pF	sec. $/ \mathrm{Hz}$	mm	mm	mm	g

HS lamps 50 and 70 W

ZPU 70 K D20	$\mathbf{1 4 2 0 9 8}$
HS lamps 70 (DE) to $\mathbf{2 5 0} \mathbf{W}$	

Circuit diagrams see page 107

Switch Units for Electronic Operating Devices with 1-10 V Interface

Vossloh-Schwabe's switch units are designed to enable one-step power reduction of lamps (FL, CFL, LED, HS, HI and C-HII with the help of the respective electronic ballast or converter.

To this end, the switch units utilises the $1-10 \mathrm{~V}$ interface of the control gear unit. The switch unit is mainly intended for outdoor luminaires in systems with or without a control phase.

Shape: $56 \times 28 \times 27 \mathrm{~mm}$
Casing: PC
Screw terminals: 0.75-2.5 mm²
Max. permissible casing temperature tc: $80^{\circ} \mathrm{C}$ Min. permissible ambient temperature $t_{a}:-30^{\circ} \mathrm{C}$ Fastening: plastic male nipple with pre-assembled washer and nut

Power reduction SU 1-10 V K for lighting systems featuring an $\mathbf{L}_{\text {ST }}$ control phase

The switch unit employs a positive switching to reduce power, i.e. power is reduced when the control phase is switched off $\left(L_{S T}=0 \mathrm{~V}\right)$.
The $1-10 \mathrm{~V}$ interface of the electronic ballast is addressed at the moment that power reduction is effected.

Power reduction PR 1-10 V K LC for

 lighting systems without a control phaseThis switch unit can be used to effect power reduction in lighting systems that do not feature a control phase.

The $1-10 \mathrm{~V}$ interface is addressed on the basis of the fundamental operating principle used by VosslohSchwabe's PR 12 K LC power switch (details of which can be made available on request). This power switch is capable of determining the starting time of reduced-power operation over the measured operating time of a lighting system. As a result, it is no longer necessary to spend valuable time modifying
 the power-reduction unit to suit the continually changing day-night cycle; changing the clocks in line with daylight saving measures in the summer and winter is equally unnecessary. The $1-10 \mathrm{~V}$ interface of the electronic ballast is addressed as soon as the system is switched to reduced power.

Circuit diagram PR 1-10 V K LC

Circuit diagram SU 1-10 V K

Type	Ref. No.	Control voltage LST $\mathrm{V}, 50 / 60 \mathrm{~Hz}$	Externally (on site) connected resistor ($R_{\text {ext. }}$) $\mathrm{k} \Omega(\min .0 .1 \mathrm{~W})$	Self-heating K	Weight g
For lighting systems with control phase					
SU 1-10VK	149992	220-240 V $\pm 10 \%$	1-70	< 10	50
For lighting systems without control phase					
PR 1-10VKLC	149993	-	1-70	< 10	50

Start-up Switches for
 HS and HI Lamps 35 to 1000 W and HM Lamps 50 to 700 W

To bridge a phase of darkness during the starting-up period of high-pressure discharge lamps and also after a brief interruption of the power supply until the high-pressure discharge lamps are restarted

For mercury vapour lamps (HM),
high-pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
For HS, HI and $\mathrm{C}-\mathrm{HI}$ lamps only if used
together with a superimposed ignitor
Nominal voltage/frequency:
$220-230 \mathrm{~V} \pm 10 \% / 50-60 \mathrm{~Hz}$
$240 \mathrm{~V} \pm 10 \% / 50 \mathrm{~Hz}$
Max. permitted casing temperature $\mathrm{t}_{\mathrm{c}}: 85^{\circ} \mathrm{C}$
Screw terminals: 0.75-2.5 mm^{2}
Fastening: male nipple with pre-assembled
washer and nut
Max. wattage of incandescent lamp: 1000 W
Automatic switch-off at 60% of the discharge
lamp's luminous flux

Circuit for HM Iamps

AS 1000 K

Casing: PC
Weight: 100 g
Internal loss: $<0.8 \mathrm{~W}$
Inherent heating: < 10 K
Type: AS 1000 K
Ref. No.: 140627

The time diagram shows some typical switching examples of a luminaire equipped with a highpressure discharge lamp, incandescent lamp and start-up switch AS 1000 K.

During the ignition and start-up period, the start-up switch activates an incandescent lamp to provide a basic level of lighting. After a brief interruption in the supply voltage during the re-ignition of the discharge lamp, the integrated control electronics also bridges the phase of darkness by switching on the auxilliary lighting. The incandescent lamp is automatically switched off when the discharge lamp has achieved a sufficient luminous flux (approx. 60\%).

Circuit for HS and HI lamps

AS 1000 K A 10

Specially for using with electronic ballasts or pulse ignitors for high-
pressure discharge lamps
Casing: PC
Delayed switching: $655 \mathrm{sec} .(50 \mathrm{~Hz})$
For luminaires of protection class I and II

Max. contact current: 6 A at $\lambda 0.5,10 \mathrm{~A}$ at $\lambda 1$
Internal loss: < 1 W
Inherent heating: < 12 K
Weight: 100 g
Type: AS 1000 K A 10

Ref. No.: 141193

Circuit with electronic ballast

The time diagram shows some typical switching examples of a luminaire equipped with a highpressure discharge lamp, incandescent lamp and start-up switch AS 1000 K A10.

Electronic Discharge Units

for Parallel Connected Capacitors 0.1 to $100 \mu \mathrm{~F}$

On luminaires with parallel compensation and designed for plug connection to the mains supply, the plugs retain their charge for a relatively long time after disconnection from the power supply. The discharge resistors built into the compensation capacitor are designed for stationary lamps and when disconnected from the mains permit a voltage reduction to 50 V after 1 minute at the earliest.

According to European standard EN 60598-1 the compensation capacitor on mobile lamps must be discharged to 34 V within 1 second. Until now so-called discharge chokes built like conventional ballasts have been used for this purpose. These conventional discharge chokes are connected in parallel to the compensation capacitor and after disconnection from the power supply rapidly discharge the capacitor owing to their low ohmic resistance.

In their rated operating conditions, conventional discharge chokes exhibit a considerable inductive reactance which diminishes the effect of the compensation capacitor particularly if it has a low capacitance.

Furthermore, conventional discharge chokes cause considerable losses and feature high weight.

CE 50

All electronic, wear resistant switching element
Casing: aluminium
Nominal voltage: 34-264 V
Nominal frequency: $50-60 \mathrm{~Hz}$
Internal loss: $<0.5 \mathrm{~W}$
Inherent heating: < 6 K
Max. permitted casing temperature: $95^{\circ} \mathrm{C}$
Push-in terminals: $1 \mathrm{~mm}^{2}$
Fastening: male nipple with pre-assembled washer and nut
Weight: 40 g
Type: CE 50
Ref. No.: 140537

With the aid of the electronic discharge unit CE 50, it is possible to discharge a capacitor with a capacitance of up to $100 \mu \mathrm{~F}$ to 34 V within 1 second, i.e. within the time specified in EN 60598-1.

Thanks to its high reliability, low inherent losses, small dimensions and low weight, the CE 50 represents an inexpensive solution to the problem of capacitor discharge.

Ignitors and Accessories for Discharge Lamps

THERMOPLASTICS AND PORCELAIN

THE RIGHT MATERIAL MIX SPELLS A DECISIVE ADVANTAGE

The lampholders presented in this chapter are designed for high-pressure discharge lamps, for which high ignition voltages and high starting currents are characteristic. High temperatures can also occur with higher lamp outputs.

Vossloh-Schwabe therefore attaches great importance to ensuring casings, contacts and cables are made of high-grade materials.

Owing to the high ignition voltages, these lampholders are also governed by stricter requirements regarding creepage and air clearance distances.

When operating high-pressure discharge lamps with E27 and E40 Edison bases, care must be taken to ensure that the respective lampholders are approved for use with discharge lamps. Lampholders that are suitable in this respect are marked with " 5 kV ".

Lampholders with E26 and E39 bases and UL-approved wiring can be found under www.unvlt.com.

2 Lampholders for Discharge Lamps

E27 lampholders 72-74
E40 lampholders 75-76
G8.5 lampholders 77
GX8.5 lampholders, accessories 77
GU6.5 lampholders 78
PGJ5 lampholders 79
GX 10 lampholders 80
GY9.5 lampholders 81
G 12, GX 12-1, PG 12-1, PG 12-2 lampholders 81-82
RX7s lampholders 83-86
Fc2 lampholders 86-87
K 12×30s lampholders 88
K 12s-7 support 88
Technical details for discharge lamps 89-131
General technical details 394-401
Glossary402-404

E27 Lampholders

For discharge lamps with base E27

E27 lampholders, for cover caps (see p. 113)
Profiled shape, external thread 40×2.5 IEC 60399
Nominal rating: 4/250/5 kV
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $15 / 16.5 \mathrm{~g}$, unit: 500 pcs.
Type: 64719

Ref. No.: $\mathbf{5 0 5 7 2 1}$ PET GF, black, T210
 Ref. No.: $\mathbf{5 0 5 7 2 0 \text { LCP, black, T270 }}$

E27 lampholders, for cover caps (see p. 113)
Profiled shape, plain
Nominal rating: 4/250/5 kV
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: 15 g , unit: 500 pcs.
Type: 64770
Ref. No.: 505389 PET GF, black, T210
Ref. No.: 505014 LCP, black, T270
E27 lampholders
Casing: PPS, black, T230
Nominal rating: 4/500/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing holes for screws M4 and M5
Weight: 35/35.4 g, unit: 250 pcs.
Type: 62150

Ref. No.: 108718

Type: 62151 with lamp safety catch

Ref. No.: 108719

E27 lampholders
Casing: porcelain, white, T210
Nominal rating: $4 / 250 / 5 \mathrm{kV}$
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Oblong holes for screws M4
Weight: 65/67.7 g, unit: 200 pcs.
Type: 62600
Ref. No.: 102635
Type: 62601 with lamp safety catch
Ref. No.: 102637

E27 lampholder
Casing: porcelain, white, T210
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Threaded bushes for screws M3
Weight: 69.3 g , unit: 200 pcs.
Type: 62622
Ref. No.: 108416

E27 lampholders

Casing: porcelain, white, T210
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Oblong holes for screws M4, length max. 15 mm
Weight: 106.8/103.9 g, unit: 100 pcs.
Type: 62104

Ref. No.: 102615

Type: 62105 with lamp safety catch

Ref. No.: 102617

E27 lampholders

Casing: porcelain, white, T210
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing bracket with slot for screws M5
Weight: 113 g , unit: 100 pcs.
Type: 62110

Ref. No.: 106585

Type: 62111 with lamp safety catch

Ref. No.: 109568

E27 lampholders

Casing: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 60.6 g , unit: 200 pcs .
Type: 62050

Ref. No.: 102599

Type: 62010 with lamp safety catch (with spring)

Ref. No.: 102577

Type: 62009 with lamp safety catch (with crushing)

Ref. No.: 544605

E27 lampholder
Casing: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fastening bushes for screws M3
Weight: 66.3 g , unit: 200 pcs.
Type: 62015
Ref. No.: 102582

5

E27 lampholder, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 60.5 g , unit: 200 pcs.
Type: 62070
Ref. No.: 543304

E27 lampholder
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
With lateral fixing flange,
tilt angle: 15°
Spring loaded central contact
Fixing hole for screw M4
Weight: 67.6 g , unit: 200 pcs.
Type: 62415

Ref. No.: 543414

E27 lampholder, for cover caps (see page 336-338)
Casing: porcelain, white, T270
Nominal rating: $4 / 250 / 5 \mathrm{kV}$
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 66.5 g , unit: 150 pcs.
Type: 62310

Ref. No.: 102624

E27 lampholder

For cover caps type 80010, 97735
and 97742 (see page 344)
Casing: porcelain, white, T270
Nominal rating: $4 / 250 / 5 \mathrm{kV}$
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing oblong holes for screw M4
Weight: 66.5 g , unit: 200 pcs.
Type: 62370
Ref. No.: 543303

E40 Lampholders

For discharge lamps with base E40

Nominal rating: $18 / 500 / 5 \mathrm{kV}$
Screw terminals: $1.5-4 \mathrm{~mm}^{2}$
Spring loaded central contact

E40 lampholders

Casing: PPS, black, T240
Oblong holes for screws M5
Weight: $111.7 / 112.1 \mathrm{~g}$, unit: 40 pcs.
Type: 12600/12601

Ref. No.: 400913

Ref. No.: 400914
with lamp safety catch
With steel thread
Ref. No.: 533428
Ref. No.: 533429
with lamp safety catch

E40 lampholders

Casing: PPS, black, T240
Fixing bracket with slots for screws M5
Weight: 122.3/122.7 g, unit: 40 pcs.
Type: 12610/12611
Ref. No.: 400915
Ref. No.: 400916 with lamp safety catch
With steel thread
Ref. No.: 533430
Ref. No.: 533431
with lamp safety catch

E40 lampholders

Casing: PPS, black, T240
Fixing bracket with tapped fixing holes M5
Weight: $122.9 / 123.3 \mathrm{~g}$, unit: 40 pcs.
Type: 12614/12612
Ref. No.: 400917
Ref. No.: 400918 with lamp safety catch
With steel thread
Ref. No.: 536220
Ref. No.: 533432 with lamp safety catch

E40 lampholders

Casing: porcelain, white, T270
Oblong holes for screws M5
Weight: 224/229.3 g, unit: 48 pcs.
Type: 12800/12801
Ref. No.: 108208
Ref. No.: 107780
with lamp safety catch
With steel thread
Ref. No.: 532602
Ref. No.: 532603
with lamp safety catch

E40 lampholders
Casing: porcelain, white, T270
Fixing bracket with slots for screws M5
Weight: 252.3/243 g, unit: 48 pcs.
Type: 12810/12811
Ref. No.: 108374
Ref. No.: 108375
With steel thread

Ref. No.: 532604

Ref. No.: 532605 with lamp safety catch

E40 lampholders

Casing: porcelain, white, T270
Fixing bracket with tapped fixing holes M5
With lamp safety catch
Weight: 252.8 g , unit: 48 pcs .
Type: 12812
Ref. No.: 108373
With steel thread
Ref. No.: 532606

E40 lampholders

Only for lamps with base E40/E45
Casing: porcelain, white, T270
Oblong holes for screws M5
Weight: 206 g , unit: 50 pcs.
Type: 12900/12901

Ref. No.: 528252

Ref. No.: 528958 with lamp safety catch

E40 lampholders
Only for lamps with base E40/E45
Casing: porcelain, white, T270
Fixing bracket with slots for screws M5
Weight: 217 g , unit: 50 pcs.
Type: 12910/12911
Ref. No.: 528253
Ref. No.: 528254
with lamp safety catch

G8.5 Lampholders

For discharge lamps with base G8.5

Nominal rating: 2/500/5 kV
Multipoint contacts: CuNiZn
Fixing holes for screws M3

G8.5 lampholders

Push-in terminals for stranded conductors with ferrule bare end of cores $\varnothing 1.4-1.8 \mathrm{~mm}$
Type: 33600 casing: LCP, black, T270
Weight: 5 g , unit: 1000 pcs.

Ref. No.: 502394

Type: 33650 casing: ceramic, T300
Weight: 12.6 g , unit: 150 pcs.
Ref. No.: 554542

G8.5 lampholder

Casing: ceramic, T300
Welded leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 300 mm
Weight: 26.4 g , unit: 100 pcs.
Type: 33671

Ref. No.: 554543

GX8.5 Lampholders, Accessories

For discharge lamps with base GX8.5

GX8.5 lampholders
Casing: LCP, cover material: LCP, T270
Nominal rating: 2/500/5kV
Push-in terminals for stranded conductors
with ferrule bare end of cores $\varnothing 1.8 \mathrm{~mm}$
Weight: 11.9/12.6, unit: 50 pcs.
Type: 34650/34651
Ref. No.: 547807
Ref. No.: 547808
fixing holes for screws M3
threaded bushes M3

Cover cap for GX8. 5 lampholders type 346
For luminaires of protection class II
Material: LCP, black
Weight: 5.4 g , unit: 50 pcs .
Type: 97685
Ref. No.: 532521

GU6.5 Lampholders

For discharge lamps with base GU6.5

Suitable for luminaries of protection class II
Casing: ceramic, cover: PPS, T250
Nominal rating: 2/250/5 kV
Leads: Cu nickel-plated, stranded conductors $0.75 \mathrm{~mm}^{2}$, double PTFE-insulation, length: 250 mm

GU6.5 lampholders

Weight: 13.8 g, unit: 100 pcs.
Type: 34510 fixing holes for screws M3
Ref. No.: 533957
Type: 34511 threaded bushes for screws M3

Ref. No.: 534220

GU6. 5 lampholder

Fixing holes for screws M3
Identical mounting hole layout and lamp focus of the PGJ5 lampholder 34120 offer an effortless interchangeability of both lamp technologies.
Weight: 15 g , unit: 100 pcs.
Type: 34520
Ref. No.: 539497

PGJ5 Lampholders

For discharge lamps with base PGJ5

Nominal rating: 2/300/2.5 kV
Fixing holes for screws M3

PGJ5 lampholders with cover plate
Casing: ceramic, cover plate: LCP, T270
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 250 mm
Weight: 9.2 g , unit: 100 pcs.
Type: 34105/34106
Ref. No.: 534080
Ref No. 534081

PGJ5 lampholders with cover plate Suitable for luminaires protection class II
Casing: ceramic, cover plate: LCP, T270
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, double PTFE-insulation, length: 250 mm
Weight: 10.6 g , unit: 100 pcs.
Type: 34110/34111
Ref. No.: 534016 lateral lead exit
Ref. No.: 534017
central lead exit

PGJ5 lampholder with cover plate
Suitable for luminaires protection class II
Casing: ceramic, cover plate: LCP, T270
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, double PTFE-insulation, length: 250 mm
Identical mounting hole layout and lamp focus like for GU6.5 lampholder 34520 offer an effortless interchangeability of both lamp technologies.
Weight: 11.5 g, unit: 100 pcs., type: 34120

Ref. No.: 534979

PGJ5 lampholders with cover plate
Suitable for luminaires protection class II
Casing: ceramic, cover plate: mica, T270
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, double PTFE-insulation, length: 250 mm
Weight: 10.8 g , unit: 100 pcs.
Type: 34150/34151
Ref. No.: 536428
Ref. No.: 536429
lateral lead exit
central lead exit

GX 10 Lampholders

For discharge lamps with base GX10

GX 10 lampholder, for luminaires of protection class II
Casing: PPS, black, T240, nominal rating: 2/250/5 kV
Push-in twin terminals for stranded conductors

with ferrule bare end of cores max. $\varnothing 1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 9 g, unit: 100 pcs.. Type: 31400

Ref. No.: 509356

GX10 lampholder, for luminaires of protection class II
Casing: steatite, cover plate: PPS
T240, nominal rating: 2/500/5 kV
Push-in terminals for stranded conductors
with ferrule bare end of cores $\varnothing 1.5-1.8 \mathrm{~mm}$
For leads with outer diameter: max. 3 mm
Fixing holes for screws M3
Weight: 14 g , unit: 100 pcs.
Type: 31500
Ref. No.: 536469

GX10 lampholder

Casing: steatite, cover plate: PPS
T240, nominal rating: 2/500/5 kV
Welded leads: $2 \times 0.75 \mathrm{~mm}^{2}$, stranded conductors, length: 400 mm
5 kV: Cu nickel-plated, PTFE-insulation,
Cu tinned, Si-insulation
Fixing holes for screws M3
Weight: 36.3 g , unit: 100 pcs.
Type: 31500

new Ref. No.: 549999

GX10 lampholder, for luminaires of protection class II
Casing: steatite, cover plate: PPS
T240, nominal rating: 2/500/5 kV
Welded leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, double PTFE-insulation, length: 250 mm
Fixing holes for screws M3
Weight: 23.3 g , unit: 100 pcs.
Type: 31530
Ref. No.: 543267

G 12, GX 12-1, PG 12-1, PG 12-2 Lampholders

GY9.5 Lampholders

For discharge lamps with base GY9.5

GY9. 5 lampholder

Casing: ceramic, cover plate: PPS, black
T240, nominal rating: $10 / 500 / 5 \mathrm{kV}$, contacts: Ni
Leads: Cu tinned, stranded conductors
$5 \mathrm{kV}: 1 \mathrm{~mm}{ }^{2}$, Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$,
length: 300 mm and Cu tinned,
stranded conductors $0.75 \mathrm{~mm}^{2}$, Si-insulation,
length: 300 mm
Fixing holes for screws M3
Weight: 48 g , unit: 150 pcs.

Type: 37001
Ref. No.: 533663

2

For discharge lamps with base G 12, GX 12 and PG 12

G12 lampholders
Casing: ceramic, cover plate: LCP
T250, nominal rating: 5/500/5 kV
Contacts: CrNi
Push-in terminals for leads with
ferrule bare end of cores max. $\varnothing 1.8 \mathrm{~mm}$
Weight: 30.7 g , unit: 25 pcs.
Type: 42200/42210
Ref. No.: 535750 fixing holes $\varnothing 4.2$ mm
Ref. No.: $\mathbf{5 3 5 7 5 1}$ threaded bushes M3

G12 lampholders
Casing: ceramic
T250, nominal rating: 5/500/5 kV
Contacts: CrNi
Welded leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$
Si-insulation, white, length: 300 mm
Weight: 43/52 g, unit: 25 pcs.
Type: 42222/42242
Ref. No.: 535755
cover plate: LCP
Ref. No.: 543643 cover plate: ceramic

G12 lampholder
Casing: LCP, black
T250, nominal rating: 2/500/5 kV
Contacts: CrNi
Push-in terminals for leads with
ferrule bare end of cores max. $\varnothing 1.8 \mathrm{~mm}$
For tinned lead ends: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Weight: 13.6 g , unit: 250 pcs.
Type: 42000
Ref. No.: 509213

GX12-1 lampholder

Casing: ceramic, cover plate: PPS, black
T220, nominal rating: 2/500/5 kV, contacts: Ni
Welded leads: Cu tinned, stranded conductors
$5 \mathrm{kV}: 1 \mathrm{~mm}^{2}$, Si-insulation, white,
$\mathrm{N}: 0.75 \mathrm{~mm}^{2}$, Si-insulation, brown,
length: 300 mm
Fixing holes for screws M4
Weight: 58.5 g , unit: 25 pcs .
Type: 41900

Ref. No.: 507656

GX12-1 lampholder
Casing: LCP, black
T250, nominal rating: 2/500/5 kV
Contacts: CrNi
Push-in terminals for leads with
ferrule on bare end of core max. $\varnothing 1.8 \mathrm{~mm}$ or for tinned lead ends: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Weight: 13.6 g , unit: 50 pcs.
Type: 42100

Ref. No.: 509214

PG12-1 lampholder
Casing: PPS, black, T220
Nominal rating: 4/500/5 kV, contacts: CrNi
Push-in terminals for leads with
ferrule on bare end of core max. $\varnothing 1.8 \mathrm{~mm}$
or for tinned lead ends: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Weight: 20.2 g, unit: 100 pcs.
Type: 31981
Ref. No.: 505030

PG12-1 lampholder

For cover caps (see p. 113)
Casing: PPS, black, T220
Nominal rating: 4/500/5 kV, contacts: CrNi
Push-in terminals for leads with
ferrule on bare end of core max. $\varnothing 1.8 \mathrm{~mm}$ or for tinned lead ends: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 23 g , unit: 100 pcs.
Type: 31980
Ref. No.: 505029

RX7s Lampholders

If the central hole on the bracket is used for fixing it has to be ensured by an additional support within the luminaire that the bracket cannot be deformed. If the lampholders are used for lamps with ignition voltage max. 20 kV the luminaire manufacturer is responsible for sufficient creepage distances and clearances.

RX7s lampholders

Contact pin: Ni, nominal rating: 2/500/5 kV Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,

Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 300 mm
Fixing holes for screws M4
Weight: 23.3/20.1 g, unit: 25 pcs.
Type: 31662/31672 PPS, black, T220
Ref. No.: 107065 lead exit right
Ref. No.: 107066 lead exit left
Type: 31695/31696 LCP, black, T270
Ref. No.: 504416 lead exit right
Ref. No.: 504669 lead exit left

RX7s lampholder
Casing: PPS, black, T220
Contact pin: Cu, silver bulb
Nominal rating: 2/250/5 kV
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
With screw M4
Weight: 14 g , unit: 300 pcs.
Type: 34301

Ref. No.: 509117

RX7s lampholder
Casing: PPS, black, T220
Contact pin: Cu, silver bulb
Nominal rating: 2/250/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central hole for screw M4
Other bracket versions on request
Weight: 43.8 g , unit: 200 pcs.
Type: 34311 contact distance 114.2 mm

Ref. No.: 529841

RX7s lampholder
Casing: PPS, black, T220
Contact pin: Cu, silver bulb
Nominal rating: 2/250/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central tapped hole M4
Weight: 47.5 g , unit: 200 pcs.
Type: 34326 contact distance: 132 mm
Ref. No.: 529845

Remark on lampholders type

 323 and 343:The luminaire design must ensure protection from electric shock as well as sufficient creepage distances and clearances from live parts on the back of lampholder.

Type 343:

With doubled insulated leads suitable for luminaires of protection class II

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6$ mm, length: 200 mm
Fixing screw M4
Weight: 26.2 g , unit: 300 pcs.
Type: 32301
Ref. No.: 100913

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central hole for screw M4
Weight: 74.8 g , unit: 200 pcs.
Type: 32311 contact distance: 114.2 mm
Ref. No.: 100921

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central tapped holes M4
Weight: 76 g, unit: 200 pcs.
Type: 32321 contact distance: 114.2 mm

Ref. No.: 100922

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$, Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central hole for screw M4
Weight: 74 g, unit: 200 pcs.
Type: 32341 contact distance: 114.2 mm

Ref. No.: 100932

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 75.5 g , unit: 200 pcs.
Type: 32361 contact distance: 114.2 mm
Ref. No.: 100934

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$, Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 76.4 g , unit: 200 pcs.
Type: 32381 contact distance: 114.2 mm

Ref. No.: 100937

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central tapped hole M4
Weight: 78.3 g , unit: 200 pcs.
Type: 32326 contact distance: 132 mm

Ref. No.: 100925

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 77.6 g , unit: 200 pcs.
Type: 32330 contact distance: 132 mm

Ref. No.: 100928

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$, Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 75.7 g, unit: 200 pcs.
Type: 32336 contact distance: 132 mm

Ref. No.: 100931

Protection caps for RX7s lampholders
For push-fit onto lampholders type 323
Protection against electrical shock
on the rear side of the lampholder
Lampholders with assembled protection cap on request
Weight: $0.7 / 0.6 \mathrm{~g}$, unit: 1000 pcs.
Type: 97528
Ref. No.: 507592
LCP, natural
Ref. No.: 507593 PET, white

RX7s lampholder
Casing: ceramic, T250
Contact pin: Ni
Nominal rating: 10/500/5 kV
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 300 mm
Fixing holes for screws M4
Weight: 72 g, unit: 25 pcs.
Type: 30602
Ref. No.: 100723

RX7s lampholder

Casing: ceramic, T250, contact pin: Ni
Nominal rating: 10/500/20 kV
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation with spun glass filler $\varnothing 7 \mathrm{~mm}$,
for ignition voltage: max. 20 kV ,
length: 1000 mm
Fixing holes for screws M4
Weight: 120 g, unit: 25 pcs.
Type: 30620
Ref. No.: 100741

Fc2 Lampholders

For discharge lamps with base Fc2

If the lampholders are used for lamps with ignition voltage max. 20 kV the luminaire manufacturer is responsible for sufficient creepage distances and clearances.

Fc2 lampholder

Casing: ceramic, T250
Nominal rating: 10/500/5 kV
Contacts: Ni
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 300 mm
Fixing holes for screws M4
Weight: 100 g , unit: 200 pcs.
Type: 02500
Ref. No.: 108937

Fc2 lampholder

Casing: ceramic, T250
Nominal rating: 10/500/5 kV, contacts: Ni
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 300 mm
Fixing screws M4, captive
Weight: 102 g, unit: 25 pcs.
Type: 02574 rigid fixing
Ref. No.: 100096

Fc2 lampholde
Casing: ceramic, T250
Nominal rating: 10/500/5 kV, contacts: Ni
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 300 mm
Fixing screws M4, captive
Weight: 102 g , unit: 25 pcs.
Type: 02575 adjustable fixing
Ref. No.: 100098

Fc2 lampholder
Casing: ceramic, T250
Nominal rating: 10/500/20 kV, contacts: Ni
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation with spun glass filler $\varnothing 7 \mathrm{~mm}$,
for ignition voltage: max. 20 kV ,
length: 500 mm
Fixing screws M4, captive
Weight: 120 g , unit: 25 pcs.
Type: 02525 rigid fixing
Ref. No.: 100082

Fc2 lampholder
Casing: ceramic, T250
Nominal rating: 10/500/20 kV, contacts: Ni
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation with spun glass filler $\varnothing 7 \mathrm{~mm}$,
for ignition voltage: max. 20 kV ,
length: 500 mm
Fixing screws M4, captive
Weight: 120 g , unit: 25 pcs.
Type: 02543 adjustable fixing
Ref. No.: 100086
Lamp safety catch
For push-fit onto the lampholders 100082,
100086, 100096 and 100098
Casing: ceramic
Spring: stainless steel
Weight: 21 g , unit: 50 pcs.
Type: 86037
Ref. No.: 103818

K 12×30s Lampholders

For discharge lamps with base $\mathrm{K} 12 \times 30$ s

$\mathrm{K} 12 \times 30$ s lampholders

Suitable for luminaires of protection class II
Casing: LCP, black, T150
Nominal rating: 4/500/3 kV
Contacts: CuSn6, silver plated
Leads: Cu tinned, stranded conductors 1 mm²
Si-insulation, doubled insulated
Rear recess M4, wrench size 7
Rear and bottom fixing holes for screws M5
Weight: 75.9/61.5 g, unit: 100 pcs.
Type: 13010
Ref. No.: $\mathbf{5 3 2 4 3 0}$ lead length: 705 mm
Ref. No.: $\mathbf{5 3 2 4 3 1}$ lead length: 155 mm

K 12s-7 Support

For metal halide lamps 1000 and 2000 W Type Osram HQI TS and Radium HRI TS

The luminaire design must ensure protection from electric shock as well as sufficient creepage and clearance distances.

K12s-7 support
Cable connection on cable lug for lead $0.75-2.5 \mathrm{~mm}^{2}$
Casing: ceramic, T300
Support: stainless steel, heat-resistant
Oblong holes for screws M5
Weight: 70 g , unit: 25 pcs.
Type: 21100
Ref. No.: 107677

Technical Details

2

Components for Discharge Lamps

Electronic ballasts 90
Assembly instructions for mounting and installing 91-96 96
Circuit diagrams
Circuit diagrams
Electromagnetic ballasts 96
Power reduction 97Assembly instructions for mounting and installing101-104
Electromagnetic control gear units 98
Assembly instructions for mounting and installing 98-101
Circuit diagrams - Electromagnetic ballasts 105-107
Lampholders for high-pressure discharge lamps 108-109
Ignitors 109-111
Assembly instructions for mounting and installing 112-114
Power switches 115-117
Switch units 117-118
Lamp table 119-129
Energy efficiency classification 130
General technical details 394-401
Glossary 402-404

If the electrical current through a discharge lamp is increased, a discharge channel with very high luminous efficiency is created in the discharge chamber. Luminous flux and light output increase substantially. The internal pressure of the discharge chamber rises and attains between 1 and 10 bar - these are so-called high-pressure discharge lamps or simply discharge lamps. The light output and colour rendition of high-pressure lamps vary considerably depending on the lamp family.

Discharge lamps can only be operated with ballasts. Ignitors are additionally required for sodium lamps and metal halide lamps. Furthermore, to compensate blind current when using magnetic ballasts, compensation capacitors must be fitted. The lampholders enable the lamp to be fixed in the luminaire and ensure simple exchange of lamps at the end of their service life

As well as stabilising the lamp's operating point, ballasts also influence the lamp's output and luminous flux, the system's light output, the service life of the lamps as well as the colour temperature of the light.

The following chapters provide technical information regarding VS components for

- High-pressure sodium lamps
(HS lamps)
- Metal halide lamps
- Metal halide lamps with a ceramic discharge tube
- Mercury vapour lamps
- Low-pressure sodium lamps
(HI lamps)
(C-HI lamps)
(HM lamps)
(LS lamps)

Electromagnetic or electronic ballasts can be used for high-pressure discharge lamps. Unlike with fluorescent lamps, lamp efficiency is not decisively altered by the use of electronic ballasts. In contrast, electronic ballasts lead to a reduction of the inherent losses and thus to an increase in system efficiency. In addition, electronic ballasts ensure gentle lamp operation, which increases the lamp's service life.

Independent electronic and electromagnetic ballasts have also been developed, which in the form of control gear units then provide special advantages during application.

Electronic Ballasts for HI and C-HI Lamps

Electronic ballasts are fitted with all the components required to operate discharge lamps. Furthermore, they safely shut down lamps at the end of their service life to prevent high temperatures from being generated within the luminaires that could influence the service life of the luminaires and components.

By adding a strain-relief module, VS electronic built-in ballasts turn into independent operating devices that can, for instance, be used as a power unit and can also be installed in intermediate ceilings in this form.

Dimmable electronic ballasts

The series of dimmable electronic ballasts for discharge lamps has been optimised in terms of efficiency and cost-effectiveness. A 40\% drop in power consumption can be achieved thanks to these dimmable electronic devices. In addition, maintenance work required on site can also be reduced since, when integrated into a networked lighting system, these EBs provide feedback on possible problems, which in turn enables targeted maintenance work.

The low weight and compact dimensions of these devices provide further advantages over conventional solutions.

The electronic ballasts are fitted with a dimmer interface that can be connected both to DALI and the MidNight module. In accordance with the lamp specifications of leading lamp manufacturers, lighting levels can be dimmed by up to 50%. If no dimming signal is applied, the lighting level of the luminaire will remain at 100%.

MidNight - Multi-Step dimming

The MidNight concept is based on dimmable ballasts for integration in lampposts; these ballasts can be programmed to create different light scenes with different dimm settings.

The simplicity of MidNight makes it a most innovative solution for street lighting as there is no need to install complex systems.

DALI

This dimming mode is characterised by immunity to interference and precise addressing via the DALI interface, error feedback, programmable operating parameters in DALI mode and stepless dimming range of up to 50%. The EHXd-DALI provides advanced functionality and makes it the perfect fit for current and future indoor and street lighting applications.

Standardisation Ballasts fully comply with the new DALI IEC 62386 standard.

Extensive protocol (optional)
Advanced control and monitoring commands that comply with Part X. 203 of the DALI standard.

Various DALI devices
Compliance with all standard DALI controllers and device as well as all Lonmark® DALI devices.
Super-low communication-noise mechanism
Years of working with various DALI nodes in the market have positioned the EHXd-DALI as a device that causes one of the lowest degrees of communication interference.

Up-to-date and debugged
Ballast firmware can be upgraded remotely (using the DALI terminals).

Assembly Instructions for Electronic Ballasts

Assembly instructions for mounting and installing electronic ballasts for high-pressure discharge lamps

Mandatory regulations

DIN VDE 0100 Erection of low voltage installations

EN 60598-1 Luminaires - part 1: general requirements and tests

EN 61347-1 Operating devices for lamps - part 1: general and safety requirements
EN 61347-2-12 Control gear for lamps; part 2-12: Particular requirements for d.c. or a.c. supplied electronic ballasts for discharge lamps (excluding fluorescent lamps)

EN 55015 Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment

EN 61000-3-2 Electromagnetic Compatibility (EMC) - part 3: maximum values - main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)

EN 61547 Installations for general lighting purposes - EMC immunity requirements

Descriptions of VS EBs for discharge lamps

The type designations for VS HID ballasts all follow the same pattern, as follows:

EHXc	70	.326
Electronic ballast for HID lamps	Wattage	Serial number

Mechanical mounting

Surface Firm, flat surface required to ensure good heat transfer. Avoid mounting on protruding surfaces.

Mounting location
Electronic ballasts must be protected against moisture and heat. Installation in outdoor luminaires: water protection rate of >4 (e.g. IP54 required).

Fastening Using M4 screws in the designated holes
Heat transfer If the ballast is destined for installation in a luminaire, sufficient heat transfer must be ensured between the electronic ballast and the luminaire casing. Electronic ballasts should be mounted with the greatest possible clearance to heat sources or lamps. During operation, the temperature measure at the ballast's tc point must not exceed the specified maximum value.

Supplement for independent electronic ballasts

Mounting position Any

Clearance \quad Min. of 0.10 m from walls, ceilings and insulation
Min. of 0.10 m from further electronic ballasts
Min. of 0.25 m from sources of heat (lamp)

Surface Solid; EB must not be allowed to sink into insulation materials

Technical specifications

Type	Operating voltage	Protective	Mean service	Power	Temperature	Possible no. of VS devices/automatic cut-out type			
	range AC: 220 V ... 240 V	conductor mA	$\begin{aligned} & \text { life*** } \\ & \text { hrs. } \end{aligned}$	$\begin{aligned} & \text { factor } \\ & \text { ë } \end{aligned}$	protection*	B (10A)	B (16A)	C (10A)	C (16A)
Standard EB									
EHXc 20.329	+6-10\%	≤ 0.5	50,000 ($\left.\mathrm{t}_{\mathrm{c}} 75^{\circ} \mathrm{C}\right)$	> 0.9	yes	11	18	18	30
EHXc 20.370	$\pm 10 \%$	≤ 0.5	$30,000\left(t_{c} 75^{\circ} \mathrm{C}\right)$	0.95	yes	37	45	37	45
			$50,000\left(t_{c} 70^{\circ} \mathrm{C}\right)$						
$\begin{aligned} & \text { EHXc 35.325 } \\ & (183033 ; 183034) \end{aligned}$	$\pm 10 \%$	≤ 0.5	$32,000\left(t_{c} 85^{\circ} \mathrm{C}\right)$	0.95	yes**	7	12	12	20
			$40,000\left(t_{c} 80^{\circ} \mathrm{C}\right.$)						
			$50,000\left(t_{c} 75^{\circ} \mathrm{C}\right)$						
$\begin{aligned} & \text { EHXc } 35.325 \\ & (183035) \end{aligned}$	$\pm 10 \%$	≤ 0.5	$32,000\left(t_{c} 80^{\circ} \mathrm{C}\right)$	0.95	yes	7	12	12	20
			$40,000\left(t_{c} 75^{\circ} \mathrm{C}\right)$						
			$50,000\left(t_{c} 70^{\circ} \mathrm{C}\right)$						
EHXc 35G. 327	+6-10\%	≤ 0.5	$30,000\left(t_{c} 80^{\circ} \mathrm{C}\right)$	> 0.95	yes	7	12	12	20
EHXc 35.371	$\pm 10 \%$	≤ 0.5	$30,000\left(t_{c} 75^{\circ} \mathrm{C}\right)$	0.95	yes	37	45	37	45
			$50,000\left(t_{c} 70^{\circ} \mathrm{C}\right)$						
EHXe 35.356	$\pm 10 \%$	≤ 0.5	$30,000\left(t_{c} 80^{\circ} \mathrm{C}\right)$	0.95	yes	7	12	12	20
EHXc 235.316	+6-10\%	≤ 0.5	50,000 ($t_{\mathrm{c}} 70^{\circ} \mathrm{C}$)	0.98	yes	7	12	12	20
EHXc 50.358	$\pm 10 \%$	≤ 0.5	$40,000\left(t_{c} 80^{\circ} \mathrm{C}\right)$	0.95	yes**	7	12	12	20
EHXc 50.372	$\pm 10 \%$	≤ 0.5	$30,000\left(t_{c} 75^{\circ} \mathrm{C}\right)$	0.95	yes	28	45	28	45
			50,000 ($\mathrm{t}_{\mathrm{c}} 70^{\circ} \mathrm{C}$)						

[^40]
Technical Details - Components for Discharge Lamps

Type	Operating voltage range AC: 220 V... 240 V	Protective conductor mA	Mean service life*** hrs.	Power factor ё	Temperature protection*	Possible no. of VS devices/automatic cut-out type			
						B (10A)	B (16A)	C (10A)	C (16A)
Standard EB									
EHXc 70.326(183036; 183037)	$\pm 10 \%$	≤ 0.5	$32,000\left(t_{c} 80^{\circ} \mathrm{C}\right.$)	0.95	yes**	7	12	12	20
			$40,000\left(t_{\mathrm{c}} 75^{\circ} \mathrm{C}\right)$						
			$50,000\left(t_{c} 70^{\circ} \mathrm{C}\right)$						
$\begin{aligned} & \text { EHXc } 70.326 \\ & (183038) \end{aligned}$	$\pm 10 \%$	≤ 0.5	26,000 (t $75^{\circ}{ }^{\circ} \mathrm{C}$)	0.95	yes	7	12	12	20
			$40,000\left(t_{c} 65^{\circ} \mathrm{C}\right)$						
			$50,000\left(t_{c} 60^{\circ} \mathrm{C}\right)$						
EHXc 70.373	$\pm 10 \%$	≤ 0.5	$30,000\left(t_{c} 80^{\circ} \mathrm{C}\right)$	0.95	yes	20	32	20	32
			$50,000\left(t_{c} 70^{\circ} \mathrm{C}\right)$						
EHXe 70.357	$\pm 10 \%$	≤ 0.5	$30,000\left(t_{c} 75^{\circ} \mathrm{C}\right)$	0.95	yes	7	12	12	20
EHXc 270.317	+6-10\%	≤ 0.5	$50,000\left(t_{c} 70^{\circ} \mathrm{C}\right)$	0.98	yes	4	7	7	12
EHXc 100.353	$\pm 10 \%$	<2	$50,000\left(t_{c} 70^{\circ} \mathrm{C}\right)$	> 0.95	yes	4	6	6	11
EHXc 150G. 334	+6-10\%	≤ 0.5	50,000 (tc $75^{\circ} \mathrm{C}$)	> 0.98	yes	4	7	7	12
Dimmable DALI/MidNight EB (Dual)									
EHXd 50.360	$\pm 10 \%$	≤ 0.5	50,000 (t $\left.\mathrm{t}_{\mathrm{c}} 80^{\circ} \mathrm{C}\right)$	0.98	yes	30	47	30	47
EHXd 70.361	$\pm 10 \%$	≤ 0.5	$50,000\left(t_{c} 80^{\circ} \mathrm{C}\right)$	0.98	yes	22	35	22	35
EHXd 100.362	$\pm 10 \%$	≤ 0.5	50,000 (tc $75^{\circ} \mathrm{C}$)	0.98	yes	15	24	15	24
EHXd 150.363	$\pm 10 \%$	≤ 0.5	50,000 (t $\left.75^{\circ}{ }^{\circ} \mathrm{C}\right)$	0.98	yes	10	16	10	16
EHXd 250.364	$\pm 10 \%$	≤ 0.5	50,000 (tc $65^{\circ} \mathrm{C}$)	0.98	yes	6	10	6	10

* The devices are fifted with a temperature switch to protect against impermissible overheating.

Once the device has cooled down, it is switched on again. It may prove necessary to briefly dis-and then reconnect the device to the mains voltage.
** The temperature protection inside the luminaire must be checked when using devices without a cap.
***To achieve the mean service life, the max. temperature (tc max.) at the tc point must not be exceeded; failure rate $=0.2 \%$ per 1000 hrs

Product features

Shutdown of defective lamps
In the event of a lamp failing to ignite or of a lamp with an increased operating voltage (end of the lamp's service life), the electronic ballast will switch off after a defined period of time (<20 minutes). The ballast will also shut down if the lamp fails to attain its specified rated output. The ballast can be reset by disconnecting and then reconnecting the mains voltage. The ballast must always be disconnected from the mains prior to changing a lamp.

EOL Effect In high-pressure discharge lamps, the EOL effect manifests itself in a change of the lamp's voltage. These changes can, for instance, occur due to unsealed parts of the burner or the rectifier effect. An These changes can, for instance, occur due to unsealed parts of the burner or the rectifier effect. An
automatic EOL cut-out prevents safety risks at the end of the service life of high-pressure discharge lamps. EOL tests are conducted to check the behaviour of electronic ballasts at the end of a lamp's service life. The EOL cut-out stops the lamp base overheating at the end of a lamp's service life.

Short-circuit resistance
The ballast outputs (to the lamp) are short-circuit-proof. Short-circuits between the lamp connection and the casing (earth conductor) will destroy the ballast.

Temperature protection
To prevent excess temperatures, some ballasts are fitted with temperature protection. A ballast will restart after it has cooled down. It might be necessary to briefly interrupt the supply voltage. The table on page 92-93 contains a list of temperature-protected devices.

Transient mains peak protection
Values are in compliance with EN 61547 (interference immunity).

Technical Details - Components for Discharge Lamps

Electrical installation

Wiring

- The wiring between the mains, electronic ballast and lamp must comply with the respective circuit diagram. Note: the luminaire casing (metal) must be connected to the earth conductor.
- The electronic ballast must be earthed using a toothed washer or similar (protection class I, compliance with RFI/BCl standards).
- To ensure compliance with RFI suppression limits, mains conductors should not be wired parallel to lamp conductors and maximum clearance should be ensured.
- After the installation of electronic ballasts, luminaires must be tested to ensure compliance with maximum values laid down in EN 55015.
It is permissible to connect the protective conductor of the ballast by attaching the ballast to metal conductors that are connected to the protective conductor. In doing so, care must be taken to ensure the protective conductor is contacted in accordance with EN 60598. If, however, a ballast is fitted with a connection terminal for a protective conductor without through-wiring and if this is to be used to connect the protective conductor, this connection terminal may only be used for the ballast itself.

Push-in terminals The used terminals can be connected using rigid or flexible conductors with a section of $0.75-2.5 \mathrm{~mm}^{2}$ (K35 ballasts: $0.5-1.5 \mathrm{~mm}^{2}$). The stripped conductor length is $10-11 \mathrm{~mm}$ (K35 ballasts: 8.5-9.5 mm, K40/41 and M42/M45 ballasts: 5-6 mm) for terminal grid 3.5 mm . Conductors must not be tin-plated.

Error current Impulse-resistant leak-current protection must be installed. Distribute the luminaires to phases L1, L2 and L3; install tri-phase FI switches. If permissible, install FI switches with 30 mA leak current; connect no more than 15 luminaires as FI switches can be triggered at half the leak current value.

Tri-phase connection of luminaires with EB

- Prior to operating newly installed lighting systems: check the mains voltage is appropriate to the electronic ballast's mains voltage range (AC, DC).
- The N-type conductor must be properly connected to all luminaires or ballasts.
- Conductors can only be connected or disconnected if the ballast is disconnected from the mains. Attention: N-type conductors must never be disconnected individually or as the first element.
- Insulation resistance test: from L to PE (L and N must not be connected)
- The neutral conductor must be reconnected after completion of the test.

Electromagnetic Compatibility (EMC)
Vossloh-Schwabe's electronic ballast range was developed in accordance with valid EMC standards (interference, interference immunity and mains harmonics) and specially designed to ensure safe compliance with the limiting values. It is assumed that any remarks regarding conductor wiring and conductor length in the instructions for installing electronic ballasts in luminaires or for independent ballasts will be observed.

Compensation Luminaires with electronic ballasts do not need compensation (power factor ≥ 0.95).

Selection of automatic cut-outs

Dimensioning automatic cut-outs
High transient currents occur when an EB is switched on because the capacitors have to load. Lamp ignition occurs almost simultaneously.This also causes a simultaneous high demand for power. These high currents when the system is switched on put a strain on the automatic conductor cutouts, which must be selected and dimensioned to suit.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B, C characteristics.

No. of electronic ballasts (see table on page 92-93)
The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m [2.5 mm^{2}] of conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of ballasts by 10%.

Additional information

Information on the installation of electronic ballasts for optimising EMC. To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic ballasts:

- Conductors between the EB and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference).
- Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another. The distance between HF and mains conductors should be as large as possible, ideally $>5 \mathrm{~cm}$. (This prevents the induction of interference between the mains and lamp conductors.)
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
- Devices must be properly earthed. EBs require secure contacts to the luminaire casing or must be earthed using a PE connection. This PE connection should be effected using an independent conductor to achieve better dissipation of the leak current. EMC improves at frequencies greater than 30 MHz .
- The mains conductor must not be laid too close to the EB or the lamp (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another if at all possible.
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Temperature Reference point temperature t_{c}
The safe operation of electronic ballasts is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point - t_{c} max. - on all EB casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this tc point. This point is determined by testing the converter during normal, IEC-standardised operation at the specified ambient temperature (ta), which is also indicated on the type plate. As both the design-related ambient temperature and the ballast's inherent heat, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the t_{c} point under real installation conditions.

Ambient temperature t_{a}
The ambient temperature - as specified on every EB - denotes the permissible temperature range within the luminaire.

Reliability and service life
If the max. temperature at the t_{c} reference point (as specified on the type plate and the technical documentation of the ballast) is not exceeded, the defined service life can be expected to be achieved, assuming a switching cycle of 165 minutes on and 15 minutes off. See table on page 92-93 for service life details.

Circuit diagrams for metal halide lamps (HI) and
high-pressure sodium lamps (HS) with electronic ballasts (EB)

20.370, 35.371 $50.372,70.373$

100.353

20.329, 35G.327, 35.325, 35.356, 50.358, 70.326, 70.357, 150G. 334

50.360, 70.361, 100.362, 150.363, 250.364

235.316, 270.317

50.360, 70.361, 100.362, 150.363, 250.364

Electromagnetic Ballasts for Discharge Lamps

Electromagnetic ballasts for HI and HS Lamps

As the lamp manufacturer's reference values regarding lamp current and voltage are generally identical for metal halide (HI) and high-pressure sodium lamps (HS) of the same lamp wattage and the impedance values required for the ballast are also identical, the same ballasts can frequently be used for both lamp types. It should be remembered that HI lamps react sensitively to impedance deviations from the rated value with appreciable colour changes. Vossloh-Schwabe ballasts therefore comply with the lamp's narrower tolerances. Moreover, ballasts remain below the maximum peak DC value for HI lamps. This value is not specified for HS lamps; instead, the maximum stated start-up current must not be exceeded.

In order to keep the temperature of the luminaires and the electrical values of the lamps within tolerable limits, the impedance of the ballasts must remain constant over the entire service life. A so-called service life test (test of thermal durability) provides proof of this requirement having been met.

HI and HS lamps constitute a special case in terms of thermal testing. In rare cases, a safety risk can occur at the end of the service life of lamps fitted with external bulbs. The safery risk is caused by the so-called lamp rectifier effect, which can lead to overheating of ballasts, ignitors, lampholders and conductors and can therefore destroy the luminaire. Against this background, the luminaire standard EN 60598-1 "luminaires; part 1: general requirements and tests" has been supplemented by tests concerning this safety risk. As a result, since 1 September 2002, it has been illegal to market luminaires that do not comply with the new regulations. This means luminaires need to be fitted with thermal protection that prevents a luminaire from overheating in the event of this malfunction.

In this respect, it is recommended to use VS ballasts with temperature switches that have already been tested using this circuit.

Test circuit for thermally protected ballasts

DUT Device under Test
D Diode, 100A, 600V
R Resistor, O... 200 (1/2 lamp output)
$U_{N} \quad 110 \%$ of rated supply voltage

Technical Details - Components for Discharge Lamps

Electromagnetic ballasts for HM lamps

Even in the event of major mains fluctuations (92-106\% of the rated voltage), the ballast must not fall short of the no-load voltage specified by the lamp manufacturer nor exceed a fixed short-circuit current. The start-up current must be high enough to ensure that at least 90% of the lamp's operating voltage is achieved within 15 minutes.

Power reduction with HS and HM lamps

The lamp wattage can be reduced by operating the ballast at a higher impedance value, higher than the rated value. The lamp manufacturer's specifications must be observed in doing so to avoid shortening the lamp's service life. The lamps should be started at the ballast's rated impedance and only switched down to reduced operation after a period of at least five minutes.
The impedance value can be altered by using an additional ballast (high-effort option) or by using a switchable ballast (low-cost option). These ballast models can be switched using either a modern, time-controlled electronic power reduction switch, which is equipped with an additional control conductor (230 V), or a power reduction switch with a constant incentive rate setting (no control conductor).

The construction of power reduction switches with control conductors differs according to the selected increase in impedance.

Power reduction with switchable ballasts

\left.	Ballast type	Tested with	Mains voltage	System output 100\%	Reduced system output	
			Reduced luminous flux			
W (approx. values)						$\right]$
:---						

Example: Osram lamp, type NAV, HQL

Start-up switches

As high-pressure lamps operate with a start-up phase, the lamp's full luminous flux will only be reached after completion of this start-up period. In the event of disconnection from the mains, this start-up phase is dependent on the lamp's temperature. If an additional source of light is desired or required for this start-up period for safety-relevant applications, it is possible to switch on an auxiliary lamp with the help of a start-up switch.
There are two types of start-up switches:

- AS 1000 K for superimposed ignition systems. This switch monitors the lamp's operating voltage. If this is below a defined value (approx. 60\% of the lamp's luminous flux), an auxiliary lamp is switched on.
- AS 1000 K A 10 for pulse ignition systems and electronic ballasts.

This model switches the auxiliary lamp off after a defined period of time (10 minutes), after which the high-pressure lamp will have reached the desired illumination level.

Lamp family	Typical start-up time	Typical restart time (mains interruption at lamp operating temperature)
HS	3 min.	5 min.
$\mathrm{HI} / \mathrm{C}-\mathrm{HI}$	3 min.	10 min.
HM	$4-5 \mathrm{~min}$.	$4-5 \mathrm{~min}$.
LS	10 min.	5 min.

Switching to reduced power using additional impedance (second ballast)

Switching to reduced power using a switchable ballast
(ballast with tapping points)

Control Gear Units for

High-pressure Discharge Lamps

With electromagnetic ballasts

Control gear units with electromagnetic ballasts for high-pressure sodium lamps (HS), metal halide lamps (HI) and metal halide lamps with a ceramic discharge tube (C-HI) are fitted with all the components needed to ensure safe normal operation. Apart from a ballast, control gear units also contain a digital timer ignitor with IPP++ technology (Intelligent-Pulse-Pause-Mode), a compensation capacitor and a temperature switch with automatic reset. As all these components form a matched system, they create optimum operating conditions for lamps and small models. These compact control gear units remove the need for separate installation and wiring of individual components, thus considerably reducing assembly time.

Mandatory regulations

\(\left.\begin{array}{ll}DIN VDE 0100 \& Erection of low voltage installations

EN 60598-1 \& Luminaires - part 1: general requirements and tests\end{array}\right]\)| EN 61347-1 | Operating devices for lamps - part 1: general and safety requirements |
| :--- | :--- |

Technical Details - Components for Discharge Lamps

Technical specifications

Operating voltage range
Control gear units can be operated at the specified mains voltage within a tolerance range of $\pm 10 \%$ for $\mathrm{HS} / \mathrm{HI}$ lamps and $\pm 3 \%$ for C-HI lamps.

Leak current $\leq 0.1 \mathrm{~mA}$

Compensation/power factor
Parallel-compensated control gear units with a power factor of $\lambda<0.9$ ($\lambda<0.85$ for 100 W)
Degree of protection

> IP40, IP65

IP54 for aluminium casing

Protection class Independent, protection class II control gear units (plastic casing)
Independent, protection class I control gear units (aluminium casing)

Max. ambient temperature
See t_{a} value on the type plate of the control gear unit

Lead length to lamp
Max. 10 m
"F" designation Suitable for mounting on surfaces of normal flammability

Mechanical mounting

Mounting position
Any position using the mounting tabs
Clearance \quad Min. of 0.20 m from walls, ceilings and insulation
Min. of 0.20 m from further control gear units
Min. of 0.25 m from sources of heat (lamp)
Surface Solid; control gear unit must not be allowed to sink into insulation materials

Electromagnetic compatibility (EMC)

Interference Interference voltage measurements only have to be taken at the connection terminals for luminaires with electromagnetic control gear units as these systems operate with lamp voltages of under 100 Hz . These low-frequency interference voltages are generally not critical with high-pressure discharge lamps with electromagnetic control gear units.

Interference immunity
Thanks to the robust design and choice of materials, electromagnetic control gear units provide a high degree of interference immunity and are not impaired by normal mains power interference.

Mains Harmonics
After every zero crossing of the lamp current, discharge lamps experience a re-ignition peak as the lamps go out for a brief (imperceptible) moment. These re-ignition peaks of discharge lamps generate mains harmonics that are smoothed by the ballast's impedance. VS electromagnetic control gear units all comply with the stipulated maximum values.

Technical Details - Components for Discharge Lamps

Selection of automatic cut-outs for VS control gear units

Dimensioning automatic cut-outs
When a control gear unit is switched on, high transient current peaks occur due to the smoothing capacitor having to load. The lamps are ignited almost simultaneously, which also causes energy consumption peaks. These high system switch-on currents put a strain on the automatic conductor cut-outs, which must be selected and dimensioned to suit.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11,
for B and C characteristics.

No. of control gear units
The following values are meant as guidelines only and may vary depending on the respective lighting system. The specified maximum number applies to the number of devices that can be switched on simultaneously. Specifications apply to single-pole fuses; using multi-pole fuses reduces the maximum number by 20%. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m [$2.5 \mathrm{~mm}^{2}$] of conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of control gear units by 10%.

Type of control gear unit	Type of automatic cut-out				
	B $(10 \mathrm{~A})$	$\mathrm{B}(16 \mathrm{~A})$	$\mathrm{C}(10 \mathrm{~A})$	$\mathrm{C}(16 \mathrm{~A})$	
VNaHJ 35 PZT	7	12	12	20	
VNaHJ 70 PZT	7	12	12	20	
VNaHJ 100 PZT	6	10	10	16	
VNaHJ 150 PZT	5	8	8	14	
VNaHJ 250 PZT	3	5	5	7	
VNaHJ 400 PZT	2	4	3	5	

Safety functions

Shutdown of defective lamps
In the event of a lamp failing to ignite the control gear unit will automatically shut down after a preset safety period. The programmed switch off time prevents flickering at the end of the lamp's service life. The control gear unit can be reset after shut down and lamp changing by disconnecting and then reconnecting the mains voltage.

Temperature protection
To protect against impermissible excess temperatures, the devices are fitted with a temperature fuse.

Protection against installation and wiring errors
The integrated IPP++ function will prevent the power unit from making any attempt to start the lamp in the event of an installation or wiring error and also if the neutral conductor is dislodged within the existing mains voltage network (three-phase supply network). Should the nominal supply voltage be connected, the power unit will begin starting the lamp immediately.

Reliability and service life

The control gear units can be expected to provide a service life of 50,000 operating hours provided that the assembly instructions are observed and the maximum tw value of the ballast is not exceeded. Failure rate: $<0.1 \% / 1,000 \mathrm{hrs}$

Electrical installation

Connection terminals
Terminals can be contacted with rigid or flexible conductors

- Rigid conductors: max. $2.5 \mathrm{~mm}^{2}$
- Flexible conductors: max. $2.5 \mathrm{~mm}^{2}$
- Stripped lead length: $10-11 \mathrm{~mm}$
- Conductors must not be tin-plated

Connection leads
Admissible diameter 7-9 mm
The suitability of luminaire conductors and cables for use within luminaires with ignition devices must be checked in accordance with luminaire standard EN 60598-1 10.2.2. In general, all silicone and standard PVC cables meet these requirements.

Wiring The wiring between the supply mains, control gear unit and lamp must be in accordance with the circuit diagram shown on the type plate
Note: luminaire casing (metal) must be connected to the protective earth conductor.

Assembly Instructions for Electromagnetic Ballasts

For mounting and installing electromagnetic ballasts for high-pressure discharge lamps

Mandatory regulations

DIN VDE 0100	Erection of low voltage installations
EN 60598-1	Luminaires - part 1: general requirements and tests
EN 61347-1	Operating devices for lamps - part 1: general and safety requirements
EN 61347-2-9	Operating devices for lamps; part 2-9: special requirements for ballasts for discharge lamps (except fluorescent lamps)
EN 60923	Ballasts for discharge lamps - performance requirements
EN 55015	Maximum values and methods of measurement for RFI suppression in electrical lighting installations and similar electrical appliances
EN 61000-3-2	Electromagnetic Compatibility (EMC) - part 3: maximum values - main section part 2: maximum values for mains harmonics Idevice input current up to and including 16 A per conductor)
EN 61547	Installations for general lighting purposes - EMC immunity requirements

Technical Details - Components for Discharge Lamps

Technical specifications

Operating voltage range
The ballasts can be operated at the specified mains voltage within
a tolerance range of $\pm 10 \%$ for $\mathrm{HS} / \mathrm{HI}$ and HM lamps and $\pm 3 \%$ for C-HI lamps.
Leak current $\leq 0.1 \mathrm{~mA}$

Compensation/power factor
Inductive ballasts: $\lambda \leq 0.5$
Parallel-compensated ballasts: $\lambda \geq 0.85$

Mechanical mounting

Mounting position
Any
Mounting location
Ballasts are designed for installation in luminaires or comparable devices. Independent ballasts do not need to be installed in a casing.

Fastening Preferably using M4 to M6 screws, depending on the size of the ballast. Encapsulated ballasts may only be used with flat-headed screws (M5), underlaid with a washer (DIN 9021). (Tightening torque $\approx 2 \mathrm{Nm}$)

Temperature The winding temperature tw must be checked during operation and must not exceed the specified maximum value. It must be tested by using the standardised method of measuring resistance. The Δt marking on the type plate is a measure of the ballast's inherent heating and thus of its power loss. The lower this value is the lower the power loss of the ballast. This value is determined using standardised measuring regulations and constitutes a benchmark for comparing ballasts of the same design for selection purposes.

Electromagnetic compatibility (EMC)

Interference Interference voltage measurements have to be taken at the connection terminals for luminaires with electromagnetic ballasts as these are systems that operate with lamp voltages of under 100 Hz . These low-frequency interference voltages are generally not critical with high-pressure discharge lamps with electromagnetic ballasts.

Interference immunity
Thanks to the robust design and choice of materials, electromagnetic ballasts provide a high degree of interference immunity and are not impaired by normal mains power interference.

Mains Harmonics After every zero crossing of the lamp current, discharge lamps experience a re-ignition peak as the lamps go out for a brief (imperceptible) moment. These re-ignition peaks of discharge lamps generate mains harmonics that are smoothed by the ballast's impedance. VS electromagnetic ballasts all comply with the stipulated maximum values.

Selection of automatic cut-outs for VS electromagnetic ballasts

Dimensioning automatic cut-outs
When a ballast is switched on, high transient current peaks occur due to parasite capacitances that can accumulate with the number of luminaires. These high system switch-on currents put a strain on the automatic conductor cut-outs. For this reason, only surge-current-proof automatic cut-outs should be used for lighting systems.

Technical Details - Components for Discharge Lamps

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B and C characteristics.

No. of ballasts The following values are meant as guidelines only and may vary depending on the respective lighting system. The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to singlepole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m of [$2.5 \mathrm{~m}^{2}$] conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of ballasts by 10%. The values quoted in the following tables are guidelines and can be affected by system-specific factors.

Possible number of ballasts connected to automatic cut-outs with or without compensation

Lamp data			Max. number of ballasts connected to automatic cut-outs - without compensation / with compensation																			
			C10		C13		C16		C20		C25		B10		B13		B16		B20		B25	
W	V	$\mu \mathrm{F}$	without	with																		

Mercury vapour lamps (HM)

50	230	7	10	19	13	25	15	31	18	39	23	49	8	10	11	12	13	15	16	18	20	23
80	230	8	6	12	7	15	9	19	11	24	14	30	6	6	8	7	10	9	12	11	15	14
125	230	10	4	7	5	9	7	12	7	15	9	19	4	4	5	5	7	6	9	7	10	9
250	230	18	2	4	3	5	3	6	3	7	4	9	2	2	3	2	3	3	4	3	5	4
400	230	25	1	2	1	3	2	4	2	5	2	6	1	1	1	1	2	22	3	2	3	2
700	230	40	-	1	-	1	1	2	1	2	1	3	1	-	1	-	1	1	1	1	2	1
1000	230	60	-	1	-	1	-	1	1	2	1	2	-	-	-	-	1	-	1	1	1	1

Metal halide lamps (HI)

35	230	6	11	22	14	29	18	36	23	45	29	50	9	11	12	14	15	18	18	23	23	27
70	230	12	7	12	9	15	11	18	14	23	17	29	5	8	6	10	8	13	9	16	12	20
100	230	12	6	10	7	13	9	16	11	20	14	25	4	7	5	9	6	11	8	14	10	17
150	230	20	4	7	5	9	6	11	7	14	9	17	2	5	3	6	4	8	5	10	6	12
250	230	32	2	5	2	6	3	7	4	9	5	11	1	3	1	4	2	5	3	6	4	8
400	230	35	2	3	2	4	3	5	4	7	5	8	1	2	1	3	2	4	2	5	3	6
1000	230	85	-	1	-	1	1	1	1	3	1	3	-	-	-	-	-	1	1	1	1	2
2000	380	60	-	1	-	1	-	2	-	2	-	3	-	-	-	-	-	1	-	1	-	2
2000	380	37	-	-	-	-	-	1	-	1	-	2	-	-	-	-	-	-	-	1	-	1
3500	380	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

High pressure sodium vapour lamps (HS)

35	230	6	11	22	14	29	18	36	23	45	29	50	9	11	12	14	15	18	18	23	23	27
50	230	10	9	16	11	20	14	24	18	31	22	38	6	11	8	14	10	17	13	22	16	27
70	230	12	7	12	9	15	11	18	14	23	17	29	5	8	6	10	8	13	10	16	12	20
100	230	12	6	10	7	13	9	16	11	20	14	25	4	7	5	9	6	11	8	14	10	17
150	230	20	4	7	5	9	6	11	7	14	9	17	2	5	3	6	4	8	5	10	7	12
250	230	36	2	5	2	6	3	7	4	9	5	11	1	3	1	4	2	5	3	6	4	8
400	230	45	1	3	1	3	2	4	3	5	4	7	1	2	1	2	1	3	2	4	2	5
600	230	60	1	2	1	2	1	2	2	3	2	4	-	1	-	1	1	2	2	2	2	3
1000	230	100	1	1	1	1	1	1	1	2	2	3	-	-	-	-	-	1	1	1	1	2

Safety functions

The VS range includes ballasts with an integrated temperature switch that safely disconnects the lamp from the power supply if the lamp should develop the rectifier effect towards the end of its service life. The cut-out behaviour of the temperature switch is influenced by the luminaire construction. The luminaire manufacturer is responsible for checking the factory settings of the temperature switch in accordance with EN 60598-1 Section 12.5. VS can adjust the temperature switch to the appropriate cut-out temperature to suit requirements.

Reliability and service life

Provided the maximum winding temperature is not exceeded, the ballasts can be expected to yield a service life of 100,000 operating hours. Failure rate $<0.025 \% / 1,000$ hrs

Technical Details - Components for Discharge Lamps

Electrical installation

Push-in terminals Terminals can be contacted with rigid conductors up to a maximum of $1.5 \mathrm{~mm}^{2}$.

Screw terminals - Terminals can be contacted with rigid or flexible conductors with ferrules on bare end of core

- Conductor cross-sections are determined by the terminals and can vary according to type 0.5-1.5 mm²/0.75-2.5 mm²/1.5-2.5 mm²
- Stripped lead length: 8-9 mm
- Conductors must not be tin-plated
- Max. tightening torque 0.5 Nm

Wiring The wiring between the power supply, ballast and lamp must be in accordance with the respective circuit diagram (see pages 105-107).

Components High-pressure discharge lamps must only be fitted with components that are rated to withstand the respective ignition voltage.

Circuit diagrams for high-pressure sodium lamps (HS) and metal halide lamps (HI)

Superimposed ignition of HS and HI lamps

Superimposed ignition of HS and HI lamps (ballasts with two alternative power tapping points)

56

Pulse ignition of HI lamps, ignition voltage 0.9 kV

Start-up switch for HI lamps, ignition voltage 0.9 kV
62

Start-up switch for HS and HI lamps

65

Superimposed ignition of HS and HI lamps with three alternative power tapping points

Superimposed ignition of HS and HI lamps (ballasts with two alternative voltage tapping points)

54

Superimposed ignition of HS and HI lamps (ballasts with two alternative voltage and power tapping points)

58

Pulse ignition for HS and HI lamps

Start-up switch for standard HS lamps
63

SDW-T lamps

66

Superimposed ignition of HS and HI lamps
with polyphase power systems

Superimposed ignition of HS and HI lamps (ballasts with three alternative voltage tapping points)

55

Pulse ignition of standard HS lamps

61

Start-up switch for HS and HI lamp
64

HS lamps with internal ignitor (ballasts with two alternative voltage tapping points)

Circuit diagrams for mercury vapour lamps (HM)

Power reduction of mercury vapour lamps (HM lamps)

LST connectable to L1, L2 and L3

Disconnected control phase (LST $=0 \mathrm{~V}$) with ballasts with two tapping points

Connected control phase (Lst $=230 \mathrm{~V}$) with ballasts with two tapping points

Connected control phase (LsT $=230 \mathrm{~V}$) with ballasts with two tapping points

Disconnected control phase (Lst $=0 \mathrm{~V}$)
with two ballasts connected in parallel

69

HM lamps (ballasts with two alternative power tapping points)

Disconnected control phase ($\mathrm{LST}_{\mathrm{T}}=\mathrm{O} \mathrm{V}$) with ballasts with two tapping points

97

Electronic power reduction without control phase

98

Ballasts with two tapping points and
two voltage tapping points (LSTT $=0 \mathrm{~V}$ or LST $>0 \mathrm{~V}$)

Technical Details - Components for Discharge Lamps

Power reduction of high-pressure sodium lamps (HS lamps) - superimposed ignition system
LST connectable to L1, L2 or L3

Power switching of LED drivers and electronic ballasts

100

Lampholders for High-pressure Discharge Lamps

Metal halide and high-pressure sodium lamps feature extremely different bases, which include RX7s, Fc2, G8.5 GX8.5, GU8.5, GX10, G12, GX12, PG12, PGJ5, GU6.5, E27 and E40, depending on whether the lamp is single- or double-ended. All lampholders are subject to the same typical conditions found with discharge lamps: high ignition voltages and temperatures. The high start-up currents deserve particular attention in lampholder design. This is also reflected by the insulation materials, which are usually solid ceramics or heat-resistant plastic (e.g. PPS - polyphenylene sulphide). Depending on the lamp's requirements (voltage, current, temperature, etc.), silver, nickel and copper alloys with thick nickel coatings are used as conductors. The luminaire regulation EN 60598-1 (VDE 0711 part 1), defines the safety requirements with regard to ignition voltages in connection with creepage and air clearance distances. Special care must be taken to ensure that lampholders are approved for discharge lamps when using high-pressure lamps with E27 and E40 Edison bases. Lampholders that are suitable for this purpose are marked with a maximum value of " 5 kV " and comply with the increased creepage and air clearance distances specified by the lampholder requirements in EN 60238 (VDE 0616 part 1). The lampholder regulations governing special lampholders, EN 60838 -1 (VDE 0616 part 5), apply analogously to all other base systems. The high ignition voltage pulses also place special demands on the conductors. In practice, silicone-insulated conductors with an outer diameter of 3.6 mm have proved to be suitable for discharge lamps. Silicone-insulated conductors with a glass-silk lining with a diameter of 7 mm should be used for lamps with an instant hot restart (20 kV) function.

When connecting lampholders to push-in terminals of ballasts, the diameter of the conductor and the length of the stripped cables must be taken into account to ensure correct operation of the installed components. To this end, Vossloh-Schwabe can make additional versions available with compacted cable ends as further options.

When using compacted cable ends, the reduction of the cable diameter at the end of the cable must be taken into account, which means that the respective ballast push-in terminal has to be capable of taking the next-smaller cable diameter (see table with examples).

When using screw terminals to connect a ballast, it is recommended to use a ferrules on the bare end of core.

Cable cross-section mm^{2}	Push-in terminal range on the ballast when using compacted cable ends mm^{2}
0.75	≥ 0.5
1	≥ 0.75

VS lampholders for the UL market and UL approved leads are available for all common lamp types.

Further information can be found at www.unvlt.com.

Ferrule on bare end of core

Compacted cable ends

Bases for the most commonly used HI and HS lamps

Bases for the most commonly used HM lamps

Edison bases are predominantly used for mercury vapour lamps (HM)

Ignitors

Ignition voltages for high-pressure sodium lamps (HS) and metal halide lamps (HI)

The ignition voltage of HS and HI lamps is determined by the respective lamp technology as well as the creepage and air clearance distances of the base-lampholder system. High-pressure sodium lamps of 35, 50 and 70 W with an E27 base are ignited with a voltage of between 1.8 and 2.3 kV . All other high-pressure lamps of the sodium and metal halide families require an ignition voltage of between 4 and 5 kV (except for special lamps and lamps with base PGJ5).

Superimposed ignitors

Superimposed ignitors work independently of ballasts and generate defined ignition pulses within the voltage ranges of $220-240 \mathrm{~V} \pm 10 \%$ and $380-415 \mathrm{~V} \pm 10 \%$. As the mains frequency only plays a minor role, these systems work equally well at 50 Hz and 60 Hz . In accordance with the lamp manufacturer's specifications, pulses or clusters of pulses of defined width and height are generated in every half wave. Although lamp current flows through superimposed ignitors, they only cause low losses in relation to the system's power consumption. The maximum ambient temperature can be calculated by subtracting the ignitor's self-heating, which is caused by the inherent losses, from the specified maximum casing temperature (t_{c}).

Superimposed ignitors should be mounted near the lampholder. The clearance needed between the ignitor and the lamp is determined by the respective maximum load capacitance, which is specified for each ignitor in the technical specifications. The capacitive load of the cable is dependent on its physical properties and wiring layout; this value usually ranges between 70 pF and 100 pF per metre. The casing temperature must not fall below $-30^{\circ} \mathrm{C}$ and must not exceed the maximum value specified on the device.

Pulse ignitors

Pulse ignitors use the winding of an inductive ballast to generate the pulse voltage needed to ignite highpressure discharge lamps. For that reason, ballasts must be designed to withstand these high ignition voltages. In this respect, special attention is paid to the insulation as well as the creepage and air clearance distances. As pulse ignition systems generate high-energy pulses, they are also suitable in the event of longer conductor distances between ignitor and lamp. State-of-the-art ignitors feature electronic circuitry. Depending on their design and the technical requirements, the simplest solution is to connect pulse ignitors in parallel with the lamp. Further models make partial use of the winding of a ballast, which will either feature multiple tapping points for voltage selection or special tapping points for pulse operation.

Circuit principle of a superimposed ignitor

Circuit principle of a pulse ignitor

10

Technical Details - Components for Discharge Lamps

VS ignitors provide the following advantages:

- fully electronic construction
- compact design
- large nominal voltage range
- large output range
- low self-heating
- minimal power loss
- low noise
- long service life
- high electrical safety due to high-quality components (e.g. approved capacitors)
- highly heat-resistant (max. permissible casing temperature $\mathrm{t}_{\mathrm{c}}: 105^{\circ} \mathrm{C}$ for superimposed ignitors and $95^{\circ} \mathrm{C}$ for pulse ignitors)
- highly fire-resistant potting compound (certified according to EN 60926 and UL 94-VO)
- environmentally compatible potting compound (waste key No. 57110)

Product range

Vossloh-Schwabe's product range covers superimposed and pulse ignitors in standard models and with automatic cut-outs. Superimposed ignitors with automatic cut-outs are available with various cut-out times and ignition voltage pulse mechanisms (A and D). In this respect, D-series ignitors featuring the intelligent pulsepause mode (IPP) are the best solution in terms of ignition reliability and switching off defective lamps.

Electronic ignitors with integrated cut-outs capture data on ignition behaviour during the ignition process. These data, e.g. regarding ignition frequency or failure, serve to identify ageing lamps and to ensure the ignition process is reliably switched off after a defined period of time at the end of the lamp's service life or in the event of defective lamps. This reduces the negative consequences associated with defective lamps.

Superimposed and Pulse Ignitors with Automatic Cut-out

Ignitors with IPP technology and extended cut-out - D series

After connection to mains voltage, D series ignitors generate ignition voltage pulses that are controlled and if necessary switched off by the ignitor in accordance with the lamp's operating state, lamp recognition and the safe burning time. If the safe burning time is not attained after three consecutive ignition attempts, pulse generation will cease.

Appropriately programmed microprocessors enable these performance features of ignitors with IPP technology (Intelligent Pulse-Pause Mode) and extended cut-outs.

Z ... D20/
PZ ... D20 for HS, HI and C-HI lamps
programmed cut-out time: 1,216 seconds

Ignitors with IPP technology and extended cut-outs are available up to an output of 1,000 W.

Programmed cut-out function of VS ignitors

A5

Ignitors with automatic cut-out - A series

After connection to mains voltage, A series ignitors supply a continuous stream of ignition voltage pulses until the lamp has ignited or the predefined cut-out time (sum of all ignition periods) has been reached if the lamp fails to ignite.

PZ ... A5 for HSI lamps programmed cut-out time: ca. 300 seconds

Pulse ignition systems - overview of technical specifications

For HS, HI and C-HI lamps - PZ 1000 K D20
for high-pressure sodium lamps (HS) 50-1000 W,
metal halide lamps (HI) 35-1000 W and
for ceramic discharge tube lamps (C-HI) 35-400 W
Ignition voltage: $1.8-2.3 \mathrm{kV}$ or 4-5 kV
No. of pulses: 2 per mains period
Load capacitance: 20-1000 pF
Ignitors with automatic cut-out and IPP technology
Suitable ballast types: $\mathrm{NaHJ} . .$. PZT with special winding tapping point, whose position is determined by the magnitude of the ignition voltage

For HS lamps - PZS 1000 K
for standard high-pressure sodium lamps (HS) 50-1000 W
Not suitable for discharge lamp models SUPER, PLUS, XL, etc.
Ignition voltage: approx. 4 kV
No. of pulses: 1 per second
Load capacitance: 20-4000 pF
Suitable ballast types:
NaH ... P with winding tapping point
(20 V voltage difference)

For HI lamps - PZI 1000/1 K
for metal halide lamps (HI)
with an ignition voltage up to 0.9 kV
No. of pulses: 1 per mains period
Load capacitance: max. 10,000 pF
Suitable ballast models: Q...

Assembly Instructions for Ignitors

For mounting and installing ignitors

Mandatory regulations

DIN VDE 0100	Erection of low voltage installations
EN 60598-1	Luminaires - part 1: general requirements and tests
EN 61347-1	Operating devices for lamps - part 1: general and safety requirements
EN 61347-2-1	Control gear for lamps; part 2-1: special requirements for ignitors (other than glow starters)
EN 60927	Control gear for lamps; ignitors (other than glow starters); performance requirements
EN 55015	Maximum values and methods of measurement for RFI suppression in electrical lighting installations and similar electrical appliances
EN 61000-3-2	Electromagnetic Compatibility (EMC) - part 3: maximum values - main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)
EN 61547	Installations for general lighting purposes - EMC immunity requirements

Technical specifications

Operating voltage range
Ignitors can be operated at the specified mains voltage within a tolerance range of $\pm 10 \%$.

Max. casing temperature tc
A maximum casing temperature t_{c} of $105^{\circ} \mathrm{C}$ or $95^{\circ} \mathrm{C}$ is specified for superimposed ignitors and pulse ignitors, respectively. Tests carried out during operation must ensure this maximum value is not exceeded. Selecting an ignitor for higher lamp currents can reduce self-heating and thus also the temperature at the t_{c} measuring point. Details regarding self-heating can be found in the following table. The temperature structure in the luminaires is negatively influenced by ageing lamps.

Minimum ambient temperature t_{a}
The minimum ambient temperature ta for all superimposed and pulse ignitors is $-30^{\circ} \mathrm{C}$. Ignitors for use in applications with special requirements to the ambient temperature (for example $-40^{\circ} \mathrm{C}$) are available on request.

Technical Details - Components for Discharge Lamps

Superimposed ignitors - Technical specifications

Voltage V / Hz	Ignitor type	Max. lamp current A	Power loss W	Inherent heating K	Ignition voltage kV	Max. load capacity pF	Max. conductor length between ignitor and lamp* m	Connection terminals $\left(\mathrm{mm}^{2}\right)$		Casing material	Dimensions (dia. x L or $(\times W \times H)$ length without threaded stud mm
220-240/	Z 70 S	2	< 0.6	< 5	1.8-2.3	200	2	0.75-4	-	Al	$\varnothing 35 \times 76$
50-60	Z 70 K	2	< 0.6	< 5	1.8-2.3	200	2	0.75-4	-	PC	$78 \times 34 \times 27$
								-	0.5-2.5		$81 \times 34 \times 27$
	Z 70 K D20	2	< 0.6	< 5	1.8-2.3	200	2	0.75-4	-	PC	$80 \times 34 \times 30$
								-	0.5-2.5		$83 \times 34 \times 30$
	Z 250 S	3.5	< 1.8	<20	4.0-5.0	100	1	0.75-4	-	Al	Ø 35×76
	Z 250 K	3.5	< 1.8	<20	4.0-5.0	100	1	0.75-4	-	PC	$78 \times 34 \times 27$
								-	0.5-2.5		$81 \times 34 \times 27$
	Z 250 K D20	3.5	< 1.8	< 20	4.0-5.0	100	1	0.75-4	-	PC	$80 \times 34 \times 30$
								-	0.5-2.5		$83 \times 34 \times 30$
	Z 400 S	5	< 3.0	<25	4.0-5.0	100	1	0.75-4	-	Al	$\varnothing 45 \times 76$
	$\begin{aligned} & \text { Z } 400 \text { M } \\ & \text { Z } 400 \text { M Vs-Power } \\ & \text { Z } 400 \text { M S } \end{aligned}$	5	< 3.0	< 35	4.0-5.0	50	0.5	0.75-4	-	Al	$\varnothing 35 \times 76$
	Z 400 M K	5	< 3,0	< 35	4,0-5,0	50	0,5	0,75-4	-	PC	$78 \times 34 \times 27$
								-	0.5-2.5		$81 \times 34 \times 27$
	Z 400 M K VS-Power	5	< 3,0	< 35	4,0-5,0	50	0,5	0,75-4	-	PC	$78 \times 34 \times 27$
								-	0.5-2.5		$81 \times 34 \times 27$
	Z 400 S D20	5	< 3.0	<25	4.0-5.0	100	1	0.75-4	-	Al	045×90
	Z 400 M K D20	5	< 3.0	< 35	4.0-5.0	50	0.5	0.75-4	-	PC	$80 \times 34 \times 30$
								-	0.5-2.5		$83 \times 34 \times 30$
	Z 750 S	8	< 3.0	<20	4.0-5.0	100	1	0.75-2.5	-	Al	$\varnothing 50 \times 90$
	Z 1000 S	12	< 6.0	< 35	4.0-5.0	100	1	0.75-2.5	-	Al	$\varnothing 50 \times 80$
	Z 1000 TOP										$83 \times 83 \times 68$
	Z 1000 S D20	12	< 6.0	< 35	4.0-5.0	100	1	0.75-2.5	-	Al	$\varnothing 50 \times 89$
	Z 1000 L	12	< 6.0	< 35	4.0-5.0	2000	20	0.75-2.5	-	Al	$\varnothing 50 \times 97$
	Z 1200/2,5	15	< 7.5	< 40	2.0-2.5	200	2	0.75-2.5	-	Al	$\varnothing 50 \times 87$
	Z 1200/9	15	< 10.0	< 40	7.0-8.0	50	0.5	0.75-2.5	-	Al	$\varnothing 50 \times 135$
	Z 2000 S	20	< 6.0	< 30	4.0-5.0	100	1	0.75-2.5	-	Al	$\varnothing 65 \times 96$
380-420/	Z 1000 S/400V	6	< 3.3	<28	4.0-5.0	2000	20	0.75-2.5	-	Al	$\varnothing 45 \times 100$
50-60	Z 2000 S/400V	12	< 5.0	< 32	4.0-5.0	2000	20	0.75-2.5	-	Al	$\varnothing 50 \times 98$
	Z 3500 S/400V	20	< 7.0	<35	4.0-5.0	100	1	0.75-2.5	-	Al	$\varnothing 65 \times 96$

* With a conductor of, for instance, 100 pF per $\mathrm{m}\left(3 \times 2.5 \mathrm{~mm}^{2}\right)$

Pulse ignitors - Technical specifications

Nominal voltage/ frequency V / Hz	Pulse ignitor type	Casing temperature tc ${ }^{\circ} \mathrm{C}$	Ignition voltage kV	Max. load capacity pF	Max. conductor length between ignitor and lamp* m	Connection screw terminals mm^{2}	Casing material	Dimensions (dia. $\times \mathrm{L}$ or $\mathrm{L} \times W \times H$) length without threaded stud mm
220-240/50-60	PZS 1000 K	95	approx. 4	4000	40	0.5-1.5	PC	$50 \times 28 \times 27$
220-240/50-60	PZ 1000 K D20	95	$\begin{aligned} & 1.8-2.3 / \\ & 4.0-5.0 \end{aligned}$	1000	10	0.75-2.5	PC	$74 \times 34 \times 27$
220-240/50-60	PZI 1000/1 K	95	0.7-0.9	10000	100	0.5-2.5	PC	$57 \times 28 \times 27$
380-420/50-60	PZ 1000/400 V A5	95	4.0-5.0	800	8	0.75-2.5	Al	$\varnothing 40 \times 80$

[^41]
Technical Details - Components for Discharge Lamps

Mechanical mounting

Mounting position Any

Mounting location
Ignitors are designed for installation in luminaires or comparable constructions. I Ignitors must be protected against radiation of direct lamp heat by appropriate installation.

Clearance from lamp
The clearance needed between ignitor and lamp is determined by the load capacitance of the conductors and by the type of ignitor pulses. The table on page 113 gives details of the clearance needed for a typical 3 -phase lead with a cross-section of $2.5 \mathrm{~mm}^{2}$ per conductor.

Casing materials Unmarked in the type description: aluminium; marked " K ": polycarbonate

Fastening \quad Via threaded stud $M 8 \times 10(Z 2000 S, Z 3500 S / 400$ V: M 12×12)

Dimensions The table on page 113 provides details of ignitor dimensions.

Electromagnetic compatibility (EMC)

> Interference \quad Ignitors only generate interference due to the high ignition voltages during lamp ignition. This is classified as click interference and is not evaluated in lighting technology. However, as this interference occurs continuously in the event of old lamps that fail to ignite, operators of lighting systems are legally obliged to exchange such lamps.

Interference immunity
Owing to their design and the materials used, VS ignitors are characterised by high interference immunity and comply with the specified maximum values.

Mains harmonics Are not observed during lamp ignition. VS ignitors meet the requirements.

Reliability and service life

The service life of an ignitor is dependent on strict compliance with the casing temperature t_{c} during operation. As the ignitors are only subjected to loads during high-voltage lamp ignition, a service life of 10 years can be expected provided the t_{c} values are not exceeded. Failure rate: < 0.04\%/1,000 hrs

Electrical installation

Connection terminals
Ignitors feature screw or push-in terminals. For screw terminals a maximum torque value of 0.8 Nm must not be exceeded when connecting the conductor. Push-in terminals are for rigid conductors with a cross section of $0.5-2.5 \mathrm{~mm}^{2}$ or respective flexible conductors with ferrule bare end of cores. Stripped lead ends of $8-9 \mathrm{~mm}$ are required. Tinned lead ends are not permitted. The permissible conductor cross-sections can be seen in the table on page 113.

Wiring The ignitors must be wired between ballast and lamp in accordance with the circuit diagrams on pages 105-107.
The load capacitances of the wiring must also be taken into account. Distances to lamps should be kept as short as possible.

Technical Details - Components for Discharge Lamps

Power switches for street lighting

In view of the drive to cut public spending on energy and also in the light of environmental policies to protect resources, reducing the power consumption of high-pressure discharge lamps is becoming increasingly important.

Power reduction is possible on high-pressure sodium vapour and mercury vapour lamps and is realised with the aid of electronic actuators or by switching the inductance in the luminaire itself with the aid of power switches.

Provided that the lamp still emits an acceptable minimum of light output and uniformity, these lamps can be used to reduce the lighting level of outdoor lighting systems during off-peak traffic periods (e.g. in accordance with DIN 5044 for street lighting).In conjunction with the appropriate ballasts, the VS power switches constitute a perfect all-round solution for power switching purposes. This VS system has been approved by leading lamp manufacturers.

Power switch PR 12 K LC - Power reduction without control line

The new VS PR 12 K LC power switch is capable of setting the period of power-reduced operation based on the measured burning time of a lighting system. This eliminates the time-consuming task of continually adjusting the times of power-reduced operation to suit constantly changing day-night cycles; it also removes the need for making adjustments due to daylight-saving times and is thus suitable for use worldwide (regionally independent).

Function

The intelligent PR 12 K LC power switch does not require a control line to reduce lamp output; it uses the tapping of the ballast. Thanks to an integrated microprocessor, the PR $12 \mathrm{~K} L C$ power switch can measure the burning time of the luminaire. This value is then compared to data stored on the chip and used to set the time at which the luminaire will switch over to power-reduced operation. The luminaire will be operated at reduced power for a minimum of six hours (reduced by approx. 40% of the lamp's nominal rating at 50% of luminous flux). This period of power reduction can be extended to a maximum of 10 hours.

Setting periods of power-reduced operation

The power switch is delivered in its default setting - i.e. the dial is set to 'Test (Code 0)'. After the luminaire has been installed, the desired power reduction time must be set using the dial on the power switch. The power-reduction period can be set to a minimum of six hours and can be extended by up to two hours in both directions (i.e. earlier or later). This results in a maximum power-reduction period of 10 hours.

The dial enables the following settings:

Dial settings		$\dagger 1$	Basic power	t2	Total power
Position	Timings	Hours	reduction period (hrs)	Hours	reduction time (hrs)
0	Test	Factory setting: 5 seconds on full load, followed by power reduction			
1	0/0	0	6	0	6
2	0/1	0	6	1	7
3	0/2	0	6	2	8
4	0.5/0	0.5	6	0	6.5
5	0.5/1	0.5	6	1	7.5
6	0.5/2	0.5	6	2	8.5
7	1/0	1	6	0	7
8	1/1	1	6	1	8
9	1/2	1	6	2	9
A	1.5/0	1.5	6	0	7.5
B	1.5/1	1.5	6	1	8.5
C	1.5/2	1.5	6	2	9.5
D	2/0	2	6	0	8
E	2/1	2	6	1	9
F	2/2	2	6	2	10

Technical Details - Components for Discharge Lamps

Determining operating/power reduction periods

- The dial is set to the desired period of power reduction, e.g. to position 1 ($0 / 0$), which corresponds to a power-reduction period of six hours.
- In the first night, the luminaire is activated by the twilight switch (e.g. at 20:30 hours) and will operate at its nominal rating. After four hours (default setting), the luminaire will be switched down by 40% of the lamp output by the power switch and will then remain in power-reduced operation until the twilight switch turns the system off (e.g. at 06:30 hours).
- During this time, the power switch will measure the entire burning time of the lamp (10 hours in our example).
- The power switch then compares the measured burning period with values stored on the microprocessor. The integrated comparative values of the power switch form the basis for the starting point of power-reduced operation for the following night. The "new" starting time will then be stored by the power switch until the following night.
- In the second night, the lighting system - controlled by the twilight switch and thus dependent on the day/night cycle of the respective region and the time of year - will be activated (and deactivated) at a slightly different time as compared to the first night (either earlier or later, depending on the season)
- With the dial set to position 1, the power switch will thus activate the six-hour period of powerreduced operation after two hours, as per our example, and will then revert to nominal operation before the twilight switch finally sends the signal to switch the lighting system off.
- During the night, the power switch will again measure the entire burning time, compare this value with the stored values and then reset the starting time for power-reduced operation.
- The period of power-reduced operation can be adjusted by changing the dial setting. This period can be extended in both directions (i.e. earlier or later) as detailed in the table on page 115.
- If the dial is, for instance, set to $9(1 / 2)$ this will produce a total period of power-reduced operation of 9 hours ($1+6+2$). As a result, power-reduced operation will begin one hour earlier than the value determined the night before would ordinarily prescribe and will then extend the minimum period of powerreduced operation by two hours.
- If, in very rare cases, the total burning period of the lighting system should remain under six hours per night, the power switch will activate power-reduced operation after 15 minutes of nominal operation and stay in power-reduced mode until the lighting system is switched off. Switching diagram for power reduced operation.

Switching diagram for power reduced operation

Deactivating reduced-power operation for the night

The functional scope of the PR 12 K LC power switch has been extended with an extra function that permits the operator to deactivate reduced-power operation of the lighting system for a single night. The function can be useful for local festivities or events (e.g. town fêtes) during which it would not be appropriate to operate the local street lighting system at reduced power for safety reasons.

The power switch can be easily programmed to operate the lighting system at normal (i.e. 100\%) power for the immediately following night cycle. The power switch is programmed by briefly switching the lighting system on for a period of min. 60 and max. 90 seconds during the day of the event and then switching it off again. The intelligent power switch recognises this command and sets the usual reduced-power operation to zero. The power switch can be successively programmed in this manner as many days in a row as necessary. For every night the lighting system is to be operated at normal (100\%) power, the lighting system will have to be switched on for a period of min. 60 and max. 90 seconds during the day. The lighting system will be operated at normal (100%) power in the respective night following day-time activation of the extra function.

The power switch does not need to be reprogrammed to return to power-reduced operation of the lighting system. The power switch will automatically return to its original (power-reducing) program if the lighting system is not switched on during the day for a period of min. 60 and max. 90 seconds.

Before testing the extra function, it is important to ensure that the power switch has been in operation for at least one night cycle. Only then will the "learning cycle" start that is required to perform the basic function. After that, the extra function can be activated as described above.

Luminaire testing

The 'Test (Code 0)' dial setting on the power switch is used for luminaire testing during production as well as for direct function tests for "subsequent" installation in the lighting system. After the luminaire is switched on, the lamp is first operated at its nominal rating. After only five seconds, the system will be switched over to powerreduced operation, which will produce a visible change even though the lamp will not yet have attained its full output.

Maintenance work on the lighting system

Maintenance work that requires the lighting system to be switched on for a period of less than two hours will not influence the settings of power switch PR 12 K LC.
Should the lighting system need to be switched on for more than two hours during maintenance work, the PR 12 K LC power switch will activate power-reduced operation after 15 minutes of nominal operation in the following night and will then start to re-measure the total burning time of the lighting system. To determine the starting time of power-reduced operation for subsequent nights, the power switch will again use the stored comparative values.

Switch Units

For power reduction using electronic ballasts with a 1-10 V interface

Suitable for a broad range of lamps

Vossloh-Schwabe's switch units are designed to enable one-step power reduction of lamps (FL, CFL, LED, HS, HI and $\mathrm{C}-\mathrm{HI})$ with the help of the respective electronic ballast or converter. To this end, the switch units utilises the $1-10 \mathrm{~V}$ interface of the control gear unit. The switch unit is mainly intended for outdoor luminaires in systems with or without a control phase.

Discharge lamps may only be operated at reduced power if they have been expressly approved for this purpose by the manufacturer. In addition, the unit can also be used to dim tubular and compact fluorescent lamps as well as LEDs.

The $1-10 \mathrm{~V}$ interface is addressed via an external circuit at the output of the switch unit using a suitably dimensioned resistor. The type of resistor and circuitry are selected by the luminaire manufacturer to suit the desired degree of power reduction.
The switch unit satisfies the provisions of DIN EN 61347 and is suitable for use in outdoor luminaires of protection classes I and II.

Technical Details - Components for Discharge Lamps

Function PR 1-10 V K LC

The intelligent PR 1-10VK LC switch unit does not require a control line to reduce lamp output.

Thanks to an integrated microprocessor, the PR 1-10VKLC switch unit can measure the burning time of the luminaire. This value is then compared to data stored on the chip and used to set the time at which the luminaire will switch over to power-reduced operation.

The luminaire will be operated at reduced power for a minimum of six hours (reduced by approx. 40% of the lamp's nominal rating at 50% of luminous flux). This period of power reduction can be extended to a maximum of 10 hours.

Setting periods of power-reduced operation for PR 1-10 V K LC

The PR 1-10 V K LC switch unit is delivered in its default setting - i.e. the dial is set to 'Test (Code O)'
After the luminaire has been installed, the desired power reduction time must be set using the dial on the switch unit. The power-reduction period can be set to a minimum of six hours and can be extended by up to two hours in both directions (i.e. earlier or later). This results in a maximum power-reduction period of 10 hours.

The dial enables the following settings:

Dial Settings		$\dagger 1$	Basic power	+2	Total power
Position	Timings	Hours	reduction period (hrs)	Hours	reduction time (hrs)
0	Test	Factory setting: 5 seconds on full load, followed by power reduction			
1	0/0	0	6	0	6
2	0/1	0	6	1	7
3	0/2	0	6	2	8
4	0.5/0	0.5	6	0	6.5
5	0.5/1	0.5	6	1	7.5
6	0.5/2	0.5	6	2	8.5
7	1/0	1	6	0	7
8	1/1	1	6	1	8
9	1/2	1	6	2	9
A	1.5/0	1.5	6	0	7.5
B	1.5/1	1.5	6	1	8.5
C	1.5/2	1.5	6	2	9.5
D	2/0	2	6	0	8
E	2/1	2	6	1	9
F	2/2	2	6	2	10

Circuit diagrams for switch units

Lamp Table for Discharge Lamps

High-pressure sodium lamps (HS lamps)

Manufacturer	Designation	Base	Lamp	Superimposed ignition system		Pulse ignition system		Instant restrike ignition system		Control	EB	
				Ignitor	Ballast	Ignitor	Ballast	Ignitor	Ballast	gear unit		

Lamp output 35 W

Philips	SDW-T	PG 12-1	0.48	ignitor/ stabiliser	NaH 35II	-	-	-	-		-
Sylvania	SHPS...CO/E	E27	0.53	z 70.	NaHJ 35	PZ 1000KD20	NaHJ 35 PZT	-	-		

Lamp output 50 W

Aura	ST 50 W	E27	0.80	z 70.	NaH 50	PZ 1000KD20	NaH 50PZT	-	-	VNaH 50	EHXd 50
Aura	SE 50 W	E27	0.80	z 70...	NaH 50	PZ 1000KD20	NaH 50PZT	-	-	VNaH 50	EHXd 50
GE	LU...	E27	0.76	z 70.	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
GE	LU... XO	E27	0.76	z 70.	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
GE	LU...SBY	E27	0.76	z 70.	NaH 50	PZ 1000KD20	-		-	-	EHXd 50
Iwasaki	NH.../HV/...	E27	0.76	z 70.	NaH 50	PZ 1000KD20	-			-	EHXd 50
Narva	NA	E27	0.76	z 70.	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Narva	NA...-D	E27	0.76	z 70.	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Ostam	NAV-E .../E	E27	0.76	z 70.	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Osram	NAV-E.. 4 Y	E27	0.76	z 70.1	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Osram	NAV-T...Super 4Y	E27	0.76	z 70.	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Philips	SDW-T	PG 12-1	0.78	$\begin{array}{\|l\|l\|} \hline \text { ignitor/ } \\ \text { stabiliser } \end{array}$	NaH 50 II	-	-	-	-	-	-
Philips	SON...Hg free	E27	0.76	z 70...	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Philips	SON...Pro	E27	0.76	z 70.	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Philips	SON-T....Plus	E27	0.76	z 70.	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Radium	RNP	E27	0.76	z 70.	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Sylvania	SHP-S	E27	0.76	z 70.	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50
Sylvania	SHPTS	E27	0.76	z 70.	NaH 50	PZ 1000KD20	-	-	-	-	EHXd 50

Lamp output 70 W											
Aura	ST 70 W	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXd 70
Aura	SE 70 W	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
BLV	HST-SE	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
GE	LU	E27	0.98	z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
GE	LU...RFL	E27	0.98	z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
GE	LU...SBY	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
GE	LU...XO	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Iwasaki	NH.../HV/...	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Narva	NA.	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Narva	NA...-D	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Osram	NAV-E.../E	E27	0.98	z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Osram	NAV-E...4Y	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Osram	NAV-T	E27	0.98	z 70.	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Osram	NAV-T...4Y	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXd 70
Osram	NAV-T...Super 4Y	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Osram	NAV-TS...Super 4Y	RX7s	0.98	Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXd 70
Philips	SON...Hg free	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Philips	SON...Pro	E27	0.98	z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Philips	SON-T....Plus	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXd 70
Philips	SON-T...Pro	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Radium	RNP-E	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Radium	RNP-T	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Radium	RNP-TS	RX7s	0.98	Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXd 70
Sylvania	SHP	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Sylvania	SHP-T	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Sylvania	SHP-TS	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Sylvania	SHP.../CO-E	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
Sylvania	SHP-S	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70

Lamp output 100 W

Aura	ST 100 W	E40	1.20	Z 250... Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Aura	SE 100 W	E40	1.20	z 250..., Z 400...	NaHJ100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
BLV	HST-SE	E40	1.20	z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
GE	LU	E40	1.20	z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
GE	LU...SBY	E40	1.20	z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
GE	LU...XO	E40	1.20	z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Iwasaki	NH...F	E40	1.20	z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Iwasaki	NHT....F	E40	1.20	z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100

Lamp Table for Discharge Lamps

High-pressure sodium lamps (HS lamps)

Manufacturer	Designation	Base	Lamp current	Superimposed ignition system		Pulse ignition system		Instant restrike ignition system		Control gear unit	EB
				Ignitor	Ballast	Ignitor	Ballast	Ignitor	Ballast		
Lamp output 100 W											
Narva	NA.	E40	1.20	Z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Narva	NA...D	E40	1.20	Z 250..., z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Osram	NAV-E	E40	1.20	Z 250..., $\mathrm{z} 400 \ldots$	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Osram	NAV-E...Super 4Y	E40	1.20	Z 250..., z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Osram	NAV-T	E40	1.20	Z 250... Z 400 .	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Osram	NAV-T...Super 4Y	E40	1.20	Z 250..., z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Philips	SDW-T	PG 12-1	1.30	ignitor/ stabiliser	NaH 10011	-	-	-	-	-	-
Philips	SON...Plus	E40	1.20	Z 250..., Z 400.	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Philips	SON...Pro	E40	1.20	z 250..., Z 400.	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Philips	SON-T...Hg free	E40	1.20	Z 250..., Z 400.	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Philips	SON-T...Plus	E40	1.20	Z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Philips	SON-T....Pro	E40	1.20	Z 250..., z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Radium	RNP-E	E40	1.20	Z 250..., z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Radium	RNP-T	E40	1.20	Z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Sylvania	SHPS	E40	1.20	z 250..., z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Sylvania	SHP-T	E40	1.20	Z 250..., z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
Sylvania	SHP-TS	E40	1.20	Z 250... Z 400.	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100

Lamp output 150 W

Aura	ST 150 W	E40	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Aura	SE 150 W	E40	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
BLV	HST-DE	Fc2	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 600k	NaHJ 150	VNaHJ 150	EHXd 150
BLV	HST-DE	RX7s	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 600K	NaHJ 150	VNaHJ 150	EHXd 150
BLV	HST-SE	E40	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
GE	LU	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
GE	LU...SBY	E40	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
GE	LU...XO	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Iwasaki	NH	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Inasaki	NHT	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Narva	NA	E40	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Narva	NA...D	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Osram	NAV-E	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Osram	NAV-E... 4 Y	E40	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Ostam	NAV-E.... Super 4Y	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Osram	NAV-T	E40	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Ostam	NAV-T.. 4 Y	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Osram	NAV-T....Super 4 Y	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Osram	NAV-TS...Super 4Y	RX7s	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 600K	NaHJ 150	VNaHJ 150	EHXd 150
Philips	SON... Hg free	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Philips	SON...Plus	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Philips	SON...Pro	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Philips	SON...Comfort Pro	E40	1.82	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXX 150
Philips	SON-T... Hg free	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Philips	SON-T...Plus	E40	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Philips	SON-T...Pro	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Philips	SON-T...Comfort Pro	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Radium	RNP-E	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Radium	RNP-T	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Radium	RNP.TS	RX7s	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 600k	NaHJ 150	VNaHJ 150	EHXd 150
Sylvania	SHPS	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150
Sylvania	SHP-T	E40	1.80	z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXX 150
Sylvania	SHP-TS	E40	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXd 150

Lamp output 250 W

Aura	ST 250 W	E40	3.00	Z 250... Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Aura	SE 250 W	E40	3.00	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
BLV	HST-DE	RX7s	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 600K	NaHJ 250	VNaHJ 250	EHXd 250
BLV	HST-SE	E40	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
GE	LU	E40	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
GE	LU...SBY	E40	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
GE	LU...TD	RX7s	2.95	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 600K	NaHJ 250	VNaHJ 250	EHXd 250
GE	LU...XO	E40	2.95	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250

Lamp Table for Discharge Lamps

High-pressure sodium lamps (HS lamps)

Manufacturer	Designation	Base	Lamp	perimposed	ystem	Pulse ignition		tan	ignition system	Control	EB
			current	Ignitor	Ballast	Ignitor	Ballast	Ignitor	Ballast	gear unit	
Lamp outpu	t 250 W										
Iwasaki	NH	E40	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Iwasaki	NHT	E40	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Narva	NA	E40	3.00	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Narva	NA...-D	E40	3.00	z 250..., $\mathrm{Z} 400 \ldots$	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Osram	NAV-E	E40	3.00	Z 250..., z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Osram	NAV-E... 4 Y	E40	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Osram	NAV-E...Super 4Y	E40	3.00	z 250..., z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Osram	NAV-T	E40	3.00	z 250..., z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Osram	NAV-T... 4 Y	E40	3.00	z 250..., z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Osram	NAV-T....Super 4Y	E40	3.00	z 250..., z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXX 250
Osram	NAV-TS	RX7s	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 600k	NaHJ 250	VNaHJ 250	EHXd 250
Philips	SON...Hg free	E40	3.00	Z 250..., z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Philips	SON...Plus	E40	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Philips	SON... Pro	E40	3.00	Z 250..., z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Philips	SON...Comfort Pro	E40	3.00	Z 250..., Z 400 .	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXX 250
Philips	SON-T.... Hg free	E40	3.00	z 250..., z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXX 250
Philips	SON-T....Plus	E40	3.00	z 250..., z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Philips	SON-T....Pro	E40	3.00	z 250..., z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Philips	SON-T...Comfort Pro	E40	3.00	z 250..., z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Radium	RNP-E	E40	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Radium	RNP-T	E40	3.00	Z 250..., z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Sylvania	SHP	E40	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXX 250
Sylvania	SHP-T	E40	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
Sylvania	SHPS	E40	2.95	Z 250..., $\mathrm{Z} 400 \ldots$	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXX 250
Sylvania	SHPTS	E40	2.95	Z 250..., z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXX 250

Lamp output 400 W

Aura	ST 400 W	E40	4.40	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Aura	SE 400 W	E40	4.40	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
BLV	HST-DE	RX7s	4.40	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 600K	NaHJ 400	VNaHJ 400	-
BLV	HSTSE	E40	4.40	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
GE	LU	E40	4.60	z 400..., z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
GE	LU...PSL	E40	4.30	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
GE	LU...SBY	E40	4.45	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
GE	LU...TD	RX7s	4.40	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 600K	NaHJ 400	VNaHJ 400	-
GE	LU...XO	E40	4.50	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Iwasaki	NH	E40	4.60	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Inasaki	NHT	E40	4.60	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Narva	NA	E40	4.45	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Narva	NA...D	E40	4.45	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Narva	NA...S	E40	4.45	Z 400.... Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	NAV-E	E40	4.45	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	NAV-E... 4 Y	E40	4.45	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	NAV-E....Super 4Y	E40	4.40	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	NAV-T	E40	4.40	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	NAV-T... 4 Y	E40	4.40	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	NAV-T....Super 4Y	E40	4.40	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	NAV-TS	RX7s	4.40	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 600K	NaHJ 400	VNaHJ 400	-
Osram	Plantastar	E40	4.40	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON... Hg free	E40	4.50	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON...Plus	E40	4.50	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON...Pro	E40	4.45	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON...Comfort Pro	E40	4.60	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON-T...Agro	E40	4.13	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON-T... Green Power	E40	4.23	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON-T... Hg free	E40	4.60	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON-T...Plus	E40	4.50	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON-T...Pro	E40	4.60	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Philips	SON-T...Comfort Pro	E40	4.45	z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Radium	RNP-E	E40	4.60	z 400..., $\mathrm{Z} 1000 .$.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Radium	RNP-T	E40	4.60	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-

Lamp Table for Discharge Lamps

High-pressure sodium lamps (HS lamps)

Lamp output 750 W

GE	LU...PSL	E40	7.00	Z 750..	NaH 750	PZ 1000KD20	NaH 750/600PZT	-	-	-	-
GE	LU 400V/750W PSL	E40	4.40	Z 1000/400V	$\mathrm{NaH} 750 / 400 \mathrm{~V}$	PZ 1000/400V A5	NaHJ 750PZT	-	-	-	-
Lamp output 1000 W											
Aura	ST 1000 W	E40	10.60	z 1000.	NaHJ 1000	PZ 1000KD20	-	-	-	-	-
Aura	SE 1000 W	E40	10.30	Z 1000...	NaHJ 1000	PZ 1000KD20	-	-	-	-	-
GE	LU...T	E40	10.60	Z 1000...	NaH 1000, NaHJD 1000	PZ 1000KD20	-	-	-	-	
GE	LU...D	E40	10.30	Z 1000...	NaH 1000, NaHJD 1000	PZ 1000KD20	-	-	-	-	-
GE	LU...TD	RX7s	10.30	Z 1000..	NaH 1000 NaHJD 1000	PZ 1000KD20	-	-	-	-	-
Iwasaki	NH	E40	10.30	Z 1000..	NaH 1000 NaHJD 1000	PZ 1000KD20	-	-	-	-	-
Iwasaki	NHT	E40	10.30	Z 1000..	NaH 1000 NaHJD 1000	PZ 1000KD20	-	-	-	-	-
Narva	NA	E40	10.60	Z 1000..	NaH 1000, NaHJD 1000	PZ 1000KD20	-	-	-	-	-
Narva	NA...-D	E40	10.60	Z 1000..	NaH 1000 NaHJD 1000	PZ 1000KD20	-	-	-	-	-
Narva	NAT-VEG 1000/400V	E40	5.70	$\begin{aligned} & \text { Z 1000/400V, } \\ & \text { Z 2000/400V } \end{aligned}$	-	$\begin{aligned} & \hline \text { PZ 1000/ } \\ & \text { 400V A5 } \\ & \hline \end{aligned}$	-	-	-	-	-
Osram	NAV-E	E40	10.30	Z 1000...	NaH 1000, NaHJD 1000	PZ 1000KD20	-	-	-	-	-
Osram	NAV-T	E40	10.30	Z 1000...	NaH 1000, NaHJD 1000	PZ 1000KD20	-	-	-	-	-
Philips	SON...Pro	E40	10.30	Z 1000...	NaH 1000, NaHJD 1000	PZ 1000KD20	-	-	-	-	-
Philips	SON-T...Pro	E40	10.60	Z 1000...	NaH 1000, NaHJD 1000	PZ 1000KD20	-	-	-	-	-
Philips	SON-T 1000W EL 400V Green Power**	Wire	4-3.17	-	-	-	-	-	-	-	-
Radium	RNP-E	E40	10.30	Z 1000...	NaH 1000, NaHJD 1000	PZ 1000KD20	-	-	-	-	-
Radium	RNP-T	E40	10.30	Z 1000...	NaH 1000, NaHJD 1000	PZ 1000KD20	-	-	-	-	-
Sylvania	SHP-T	E40	10.60	Z 1000...	NaH 1000, NaHJD 1000	PZ 1000KD20	-	-	-	-	-
Sylvania	SHP-T...SBY	E40	10.60	Z 1000...	NaH 1000, NaHJD 1000	PZ 1000KD20	-	-	-	-	-

[^42]
Lamp Table for Discharge Lamps

Metal halide lamps (HI lamps)

Manufacturer	Designation	Base	Lamp current	Superimposed ignition system		Pulse ignition system	Ballast	Instant restrike Ignitor	ignition system Ballast	Control gear unit	EB
Lamp output 70 W											
BLV	HIE	E27	0.90	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
BLV	HIE-P	E27	0.90	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
BLV	HIT	G12	0.90	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
BLV	HIT-DE	RX7s	0.90	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
GE	ARC	G12	0.95	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70 PZT	-	-	VNaHJ 70	EHXc 70
GE	ARC	Rx7s	0.95	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
I wasaki	M	E27	1.00	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Iwasaki	MT	E27	1.00	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
I wasaki	MT	G8.5	1.00	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
I wasaki	MT	G12	1.00	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Narva	NC...	E27; G12	0.90	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Narva	NC...	RX7s	0.90	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Osram	HQI-E	E27	0.95-1.00	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Osram	HQI-T	G12	1.00	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Osram	HQI-TS	RX7s	1.00	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Philips	MHN-TD	RX7s	1.00	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Philips	MHW-TD	RX7s	1.00	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Radium	HRI-E	E27	0.95	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70 PZT	-	-	VNaHJ 70	EHXc 70
Radium	HRI-T	G12	1.00	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Radium	HRI-TS	RX7s	1.00	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Sylvania	HSI-MP	E27	1.00	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Sylvania	HSI-T	G12	0.95	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Sylvania	HSI-TD	RX7s	0.98	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Venture	HIE	E27	0.90	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70 PZT	-	-	VNaHJ 70	EHXc 70
Venture	HIPE	E27	0.90	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Venture	HIT	E27	0.90	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Venture	HIT	G12	0.90	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Venture	MH-DE	RX7s	1.00	Z 250..., Z 400..	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70

Lamp output $\mathbf{1 0 0} \mathbf{~ W}$		
BLV	HIE	
BLV	HIE-P	
Narva	NC...	
Osram	HQI-E	
Radium	HRI-E	
Sylvania	HSI-MP	
Venture	HIE	
Venture	HIPE	
Venture	HIT	

Lamp output 150 W											
BLV	HIE	E27	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXC 150
BLV	HIE-P	E27	1.80	Z 250..., z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 150
BLV	HIT	G12; E27; E40	1.80	Z 250..., z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150 PZT	-	-	VNaHJ 150	EHXC 150
BLV	HIT-DE	RX7s-24	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXC 150
GE	ARC	G12	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXC 150
GE	ARC	RX7s-24	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 150
Iwasaki	M	E27	1.90	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXC 150
Iwasaki	MT	E27	1.90	Z 250..., z 400.	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 150
I wasaki	MT	G12	1.90	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150 PZT	-	-	VNaHJ 150	EHXC 150
I wasaki	MTD	RX7s	1.90	Z 250..., z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 150
Narva	NC...	E27; E40; G12	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 150
Narva	NC...	RX7s	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 150
Osram	HQl-E	E27	1.80	Z 250..., z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 150
Osram	HQI-R	connector	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	-
Osram	HQI-T	G12	1.80	Z 250..., z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXc 150
Osram	HQl-TS	RX7s-24	1.80	Z 250..., z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXC 150
Philips	MHN-TD	RX7s	1.80	Z 250..., z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150 PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXC 150
Philips	MHW-TD	RX7s	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXc 150
Radium	HRI-E	E27	1.80	Z 250..., z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150 PZT	-	-	VNaHJ 150	EHXc 150
Radium	HRI-T	G12	1.80	Z 250..., z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXC 150
Radium	HRI-TS	RX7s	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXC 150

PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-

Lamp output 150 W

Lamp Table for Discharge Lamps

Metal halide lamps (HI lamps)

Manufacturer	Designation	Base	Lamp current	Superimposed ignition system		Pulse ignition system		Instant restrike ignition system		Control gear unit	EB
Lamp output 150 W											
Sylvania	HSI-MP	E27	1.80	z 250..., z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXC 150
Sylvania	HSI-T	G12	1.80	z 250..., z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXC 150
Sylvania	HSI-TD	RX7s	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXC 150
Venture	HIE	E27	1.80	z 250..., z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXC 150
Venture	HIPE	E27; E40	1.80	z 250..., z 400.	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXC 150
Venture	HIT	E27; E40	1.80	Z 250..., Z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXC 150
Venture	HIT	G12	1.80	z 250..., z 400...	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	-	-	VNaHJ 150	EHXC 150
Venture	MH-DE	RX7s	1.80	z 250..., z 400.	NaHJ 150	PZ 1000KD20	NaHJ 150PZT	HZ 1000K	NaHJ 150	VNaHJ 150	EHXC 150

Lamp output 250 W

BLV	HIE	E40	3.00	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
BLV	HIT	E40	3.00	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
BLV	HIT-DE	Fc2	3.00	z 250..., $\mathrm{Z} 400 \ldots$	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	-
GE	ARC250/T	E40	2.75	z 250..., z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
GE	ARC250/TD	Fc2	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	-
Narva	NC...	E40	2.15	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Narva	NC...-P	E40	2.15	-	-	PZI 1000/1	Q 250	-	-	-	-
Osram	HQI-E	E40	3.00	Z 250..., z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Osram	HQl-E/P	E40	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Osram	HQI-T	E40	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Osram	HQl-TS	Fc2	3.00	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	-
Philips	HPI Plus	E40	2.20	-	-	PZI 1000/1	Q 250	-	-	-	-
Philips	HPI-T	E40	2.15	-	-	PZI 1000/1	Q 250	-	-	-	-
Philips	MHN-TD	Fc2	3.00	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Radium	HRI-E	E40	3.00	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Radium	HRI-T	E40	3.00	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Radium	HRI-TS	Fc2	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	-
Sylvania	HSII-HX	E40	2.10	-	-	PZI 1000/1	Q 250	-	-	-	-
Sylvania	HSI-T	E40	3.00	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Sylvania	HSI-TD	Fc2	3.00	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	-
Sylvania	HSI-THX	E40	2.10	-	-	PZI 1000/1	Q 250	-	-	-	-
Sylvania	HSI-TSX	E40	2.90	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Sylvania	HSI-SX	E40	2.90	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Venture	HIE	E40	3.10	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Venture	HIPE	E40	3.10	z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Venture	HIT	E40	3.10	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Venture	HIT...EURO	E40	2.10	-	-	PZI 1000/1	Q 250	-	-	-	-
Venture	MH-DE	Fc2	3.10	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250 PZT	HZ 1000K	NaHJ 250	VNaHJ 250	-

Lamp output 400 W											
BLV	HIE	E40	4.00	Z 400..., Z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
BLV	HIT	E40	4.00	z 400..., z 1000..	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
GE	ARC400/T	E40	4.35	z 400..., z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Narva	NC.	E40	3.25	Z 400..., z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Narva	NC...-P	E40	3.25	-	-	PZI 1000/1	Q 400	-	-	-	-
Ostam	HQI-E	E40	3.50	Z 400..., Z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	HQl-E/P	E40	3.50	z 400..., z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	HQI-T	E40	3.60	Z 400..., z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Ostam	HQl-TS	Fc2	3.60	Z 400..., z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 1000K	NaHJ 400	VNaHJ 400	-
Philips	HPI-T	E40	3.40	-	-	PZI 1000/1	Q 400	-	-	-	-
Philips	MH-T	E40	3.40	Z 400..., z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Radium	HRI-BT	E40	4.00	Z 400..., Z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Radium	HRI-E	E40	4.60	z 400..., z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Radium	HRI-T	E40	4.60	Z 400..., z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Radium	HRI-TS	Fc2	4.10	Z 400..., z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	HZ 1000K	NaHJ 400	VNaHJ 400	-
Sylvania	HSI-HX	E40	3.40	-	-	PZI 1000/1	Q 400	-	-	-	-
Sylvania	HSI-T	E40	4.00	Z 400..., Z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Sylvania	HSI-THX	E40	3.40	-	-	PZI 1000/1	Q 400	-	-	-	-
Sylvania	HSITSX	E40	4.40	Z 400..., Z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Sylvania	HSİSX	E40	4.40	Z 400..., z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Venture	HIE	E40	3.20	Z 400..., z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Venture	HIPE	E40	3.20	Z 400..., z 1000.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-

Lamp Table for Discharge Lamps

Metal halide lamps (HI lamps)

Manufacturer	Designation	Base	Lamp current	$\|$Superimposed ignition system Ignitor Ballast		Pulse ignition system			ignition system Ballast	Control gear unit	EB
Lamp output 400 W											
Venture	HIT	E40	3.20	Z 400..., Z 1000...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Venture	HIT ...EURO	E40	3.20	-	-	PZI 1000/1	Q 400	-	-	-	-
Lamp output 600 W											
Osram	HQI-TM	G22	6.10	Z1000	NaH 600	PZ 1000KD20	NaH 600 PZT	-	-	VNaH 600	-
Radium	HRI-TM	G22	6.10	Z1000	NaH 600	PZ 1000KD20	NaH 600PZT	-	-	VNaH 600	-
Lamp output 1000 W											
BLV	HIT	E40	9.50	Z 1000..., Z 2000	NaHJ 1000	PZ 1000KD20	-	-	-	-	-
GE	SPL 1000	E40	9.50	Z 1000..., Z 2000	NaHJ 1000	PZ 1000KD20	-	-	-	-	-
Narva	NC...	E40	8.25	Z 1000..., Z 2000	NaHJ 1000	PZ 1000KD20	-	-	-	-	-
Narva	NC...-P	E40	8.25	-	-	PZI 1000/1	Q 1000	-	-	-	-
Narva	NCT.../400V	E40	4.80	$\begin{aligned} & \text { Z 1000/400V; } \\ & \text { Z 2000/400V } \\ & \hline \end{aligned}$	NaHJ 1000	-	-	-	-	-	-
Osram	HQI-TM	G22	9,50	Z 1000	NaHJ 1000	PZ 1000KD20					
Osram	HQI-E	E40	9.50	Z 1000..., Z 2000	NaHJ 1000	PZ 1000KD20	-	-	-	-	-
Osram	HQI-T	E40	9.50	Z 1000..., Z 2000	NaHJ 1000	PZ 1000KD20	-	-	-	-	-
Osram	HQI-TS	cables	9.60	Z 1000..., Z 2000	NaHJ 1000	PZ 1000KD20	-	HZ 1000K	NaHJ 1000	-	-
Philips	HPI-T	E40	8.25	-	-	PZI 1000/1	Q 1000	-	-	-	-
Philips	MHN-LA	cables	9.30	Z 1000..., Z 2000	NaHJ 1000	PZ 1000KD20	-	HZ 1000K	NaHJ 1000	-	-
Radium	HRI-T	E40	9.50	Z 1000..., Z 2000	NaHJ 1000	PZ 1000KD20	-	-	-	-	-
Radium	HRI-TM	G22	9.50	Z 1000	NaHJ 1000	PZ 1000KD20					
Radium	HRI-TS	cables	9.60	Z 1000..., Z 2000	NaHJ 1000	PZ 1000KD20	-	HZ 1000K	NaHJ 1000	-	-
Sylvania	HSI-THX	E40	8.25	-	-	PZI 1000/1	Q 1000	-	-	-	-
Venture	HIT	E40	9.15	Z 1000..., Z 2000	NaHJ 1000	PZ 1000KD20	-	-	-	-	-
Venture	MBIL	RX7s	4.40	Z 2000/400V	-	-	-	$\begin{aligned} & \mathrm{HZ} 2000 \mathrm{~K} / \\ & 400 \mathrm{~V} \\ & \hline \end{aligned}$	-	-	-

Lamp output 2000 W											
GE	SPL 2000/T	E40	10.30	Z 2000/400V	JD 2000	-	-	-	-	-	-
Osram	HQI-T/D	E40	10.30	Z 2000/400V	JD 2000	-	-	-	-	-	-
Osram	$\begin{aligned} & H Q I-T . . S N / 3 \\ & 80 V \end{aligned}$	E40	8.80	-	-	-	QJ 2000	-	-	-	-
Osram	HQI-TS	cables	11.30	Z 2000/400V	JD 2000	-	-	$\begin{array}{\|l\|} \hline \mathrm{HZ} \text { 2000K/ } \\ 400 \mathrm{~V} \\ \hline \end{array}$	JD 2000	-	-
Osram	HQI-TS	cables	12.2	Z 2000/400V	JD 2000II/12.2	-	-	-	-	-	-
Philips	HPI-T 220V	E40	16.50	-	-	PZI 1000/1	JD 2000 I	-	-	-	-
Philips	HPI-T 380V	E40	9.10	-		-	QJ 2000	-	-	-	-
Philips	MHN-LA	cables	9.6-10.3	Z 2000/400V	JD 2000	-	-	$\begin{aligned} & \mathrm{HZ} 2000 \mathrm{~K} / \\ & 400 \mathrm{~V} \\ & \hline \end{aligned}$	JD 2000	-	-
Philips	MHN-SA	X830R	11.30	Z 2000/400V	JD 2000	-	-	$\begin{aligned} & \mathrm{HZ} 2000 \mathrm{~K} / \\ & 400 \mathrm{~V} \\ & \hline \end{aligned}$	JD 2000	-	-
Philips	$\begin{aligned} & \text { MHN-SB } \\ & 400 \mathrm{~V} \end{aligned}$	cables	11.30	Z 2000/400V	JD 2000	-	-	$\begin{array}{\|l\|} \hline \mathrm{HZ} 2000 \mathrm{~K} / \\ 400 \mathrm{~V} \\ \hline \end{array}$	-	-	-
Radium	HRI-T 230V	E40	$\begin{array}{\|l\|} \hline 16.50 \\ (2 \times 8.25) \\ \hline \end{array}$	-	-	PZI 1000/1	JD 2000 I	-	-	-	-
Radium	HRI-T/D	E40	10.30	Z 2000/400V	JD 2000						
Radium	HRI-TS	E40	10.30	Z 2000/400V	JD 2000	-	-	-	-	-	-
Radium	HRI-TS	cables	11.30	Z 2000/400V	JD 2000	-	-	$\begin{array}{\|l\|} \hline \mathrm{HZ} 2000 \mathrm{~K} / \\ 400 \mathrm{~V}^{*} \\ \hline \end{array}$	JD 2000	-	-
Sylvania	HSI-T	E40	9.00	Z 2000/400V	JD 2000	-	-	-	-	-	-
Sylvania	HSI-TD	cables	11.30	Z 2000/400V	JD 2000	-	-	$\begin{aligned} & \mathrm{HZ} 2000 \mathrm{~K} / \\ & 400 \mathrm{~V} \\ & \hline \end{aligned}$	JD 2000	-	-
Venture	MH	cables	10.30	Z 2000	JD 2000	-	-	-	-	-	-
Venture	MBIL	RX7s	10.30	Z 2000	JD 2000	-	-	-	-	-	-

Lamp output 3500 W

Radium	HRI-T	E40	18.00	Z 3500/400V	JD 3500	-	-	-	-	-	-
Radium	HRI-TS	cables	18.00	Z 3500/400V	JD 3500	-	-	-	-	-	-

* Not suitable HRI-TS 2000W/N/L; HQI-TS 2000W/N/L

Lamp Table for Discharge Lamps

Ceramic discharge tube lamps (C-HI)

Manufacturer	Designation	Base	$\begin{aligned} & \text { Lamp } \\ & \text { current } \\ & \hline \end{aligned}$	Superimposed ignition system		Pulse ignition system		Instant restrike ignition system		Control gear unit	EB
				Ignitor*	Ballast	Ignitor	Ballast	Ignitor	Ballast		
Lamp output 20 W											
GE	CMH20MR16	GX10	0.21	-	-	-	-	-	-	-	EHXc 20
GE	CMH2OPAR	E27	0.23	-	-	-	-	-	-	-	EHXc 20
GE	CMH2OT	G12	0.23	-	-	-	-	-	-	-	EHXc 20
GE	CMH2OT	GU6. 5	0.21	-	-	-	-	-	-	-	EHXc 20
GE	CMH2OTC	G8.5	0.23	-	-	-	-	-	-	-	EHXc 20
GE	CMH2OTC	G12	0.23	-	-	-	-	-	-	-	EHXc 20
Osram	HCIPAR	E27	0.22	-	-	-	-	-	-	-	EHXc 20
Osram	HCI-R1 11	GX8.5	0.22	-	-	-	-	-	-	-	EHXc 20
Osram	HCl-TF	GU6. 5	0.22	-	-	-	-	-	-	-	EHXC 20G. 329
Ostam	HCl-TC	G8.5	0.22	-	-	-	-	-	-	-	EHXc 20G. 329
Philips	CDM-TM	PGJ5	0.22	-	-	-	-	-	-	-	-
Philips	CDM-R	GX10	0.22	-	-	-	-	-	-	-	EHXC 20G. 329
Radium	RCC.TC	G8.5	0.22	-	-	-	-	-	-	-	EHXc 20G. 329

Lamp output 35 W

Aura	T 35 W	E27	0.45	Z250..., Z400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	-
BLV	C.HIT	G12	0.50	Z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHX 35
GE	CMH35PAR	E27	0.50	Z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHXc 35
GE	CMH35T	G12	0.50	z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHXc 35
GE	CMH35TC	G8.5	0.50	z 250..., z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT		-	VNaHJ 35	EHX 35
Osram	HCIE/P	E27	0.50	z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT		-	VNaHJ 35	EHXc 35
Osram	HCI.PAR	E27	0.50	Z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT		-	VNaHJ 35	EHX 35
Osram	HCI-R1 11	GX8.5	0.50	z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT		-	VNaHJ 35	EHX 35
Osram	HCl-T	G12	0.50	z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT		-	VNaHJ 35	EHX 35
Osram	HCl-TC	G8.5	0.50	z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT		-	VNaHJ 35	EHX 35
Osram	HCI-TF	GU6. 5	0.50	z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHX 35
Panasonic	CPS 35 W	GU8. 5	0.44	-	-	-	-		-	-	EHX 35
Philips	CDM-R	E27	0.53	Z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHX 35
Philips	CDM-R111	GX8. 5	0.53	Z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT		-	VNaHJ 35	EHX 35
Philips	CDM-T	G12	0.53	z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT		-	VNaHJ 35	EHX 35
Philips	CDM-TC	G8.5	0.53	Z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT		-	VNaHJ 35	EHX 35
Philips	CDM-R	GX10	0,53	z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT		-	-	EHXc 35 G
Radium	RCC.PAR	E27	0.50	z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHXc 35
Radium	RCC.T	G12	0.50	Z 250... Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHXc 35
Radium	RCC.TC	G8.5	0.50	Z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHX 35
Sylvania	CMI-T	G12	0.53	Z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHXc 35
Sylvania	CMITC	G8.5	0.53	z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHX 35
Venture	CMH35/T	G12	0.50	Z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHX 35
Venture	CMH35/TC	G8.5	0.50	Z 250..., Z 400...	NaHJ 35	PZ 1000KD20	NaHJ 35PZT	-	-	VNaHJ 35	EHXc 35

Lamp output 50 W

Aura	TT 50 W	E27	0.60	Z250..., Z400..	NaH 50	PZ1000KD20	NAH50PZT	-	-	VNaH 50	EHXd 50
Philips	CDM-TC Elite	G8.5	0,59	Z 70.	NaH 50	-	-	-	-	VNaH 50	EHXc 50
Philips	CDM-T Elite	G12	0,57	z $70 .$.	NaH 50	-	-		-	VNaH 50	EHXc 50

Lamp output 70 W											
Aura	TT 70 W	E27	0.80	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXd 70
BLV	C-HIT	G12	0.98	z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
BLV	C-HIT-DE	RX7s	0.90	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
GE	CMH7OE	E27	0.98	z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
GE	CMH7OPAR	E27	0.98	z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
GE	CMH70T	G12	0.98	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
GE	CMH7OTC	G8.5	0.98	z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
GE	CMH70TD	Rx7s	0.98	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
GE	CMH70TT	E27	0.98	Z $70 .$.	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Osram	HCIE/P	E27	0.98	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Osram	HCIPAR	E27	0.97	Z 250..., Z 400 ...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Osram	HCL-R1 11	GX8.5	0.98	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Osram	HCl-T	G12	0.96	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Osram	HCIT/P	E27	0.98	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Osram	HCITC	G8.5	0.96	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Ostam	HCl-TS	RX7s	0.95	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Osram	HCI-TT	E27	0.92	z 70.	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70

Lamp Table for Discharge Lamps

Ceramic discharge tube lamps (C-HI)

Manufacturer	Designation	Base	Lamp current	Superimposed ignition system		Pulse ignition system		Instant restrik	e ignition system Ballast	Control gear unit	EB
Lamp output 70 W											
Panasonic	CPS 70 W	GU8.5	0.86	-	-	-	-	-	-	-	EHXc 70
Philips	CDO-ET	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Philips	CDO-TT	E27	1.00	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 70PZT	-	-	VNaHJ 70	EHXc 70
Philips	CDM-R	E27	0.97	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Philips	CDM-R111	GX8.5	0.97	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Philips	CDM-T	G12	0.98	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Philips	CDM-TC	G8.5	0.98	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Philips	CDM-TD	RX7s	0.97	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Philips	CDM-TP	PG12-2	0.98	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Radium	RCC-PAR	E27	0.98	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Radium	RCC-T	G12	0.96	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Radium	RCC-TC	G8.5	0.96	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Radium	RCC-TS	RX7s	0.98	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	HZ 600K	NaHJ 70	VNaHJ 70	EHXc 70
Sylvania	CMI-T	G12	0.98	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Sylvania	CMI-TC	G8.5	0.98	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Sylvania	CMI-TD	RX7s	0.98	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Venture	CMH70/T	G12	0.98	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Venture	CMH70/TC	G8.5	0.98	Z 250..., Z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Venture	CMH70/TD	RX7s	0.98	Z 250..., z 400...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Venture	CMH70/TT	E27	0.98	Z 70...	NaHJ 70	PZ 1000KD20	NaHJ 7OPZT	-	-	VNaHJ 70	EHXc 70
Lamp output 100 W											
Aura	TT 100 W	E40	1.30	Z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXd 100
GE	CMHIOOPAR	E26	1.10	Z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100 PZT	-	-	VNaHJ 100	-
GE	LUCALOXXO	E40	1.11	Z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100 PZT	-	-	VNaHJ 100	EHXc 100
Osram	HCI-E/P	E27	1.20	Z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	-
Osram	HCl-T/P	E27	1.20	Z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100 PZT	-	-	VNaHJ 100	-
Osram	$\mathrm{HCl}-\mathrm{T}$	G12	1.10	Z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100PZT	-	-	VNaHJ 100	EHXc 100
Philips	CDO-ET	E40	1.20	Z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100 PZT	-	-	VNaHJ 100	-
Philips	CDO-TT	E40	1.20	Z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100 PZT	-	-	VNaHJ 100	-
Philips	CDM-T Elite	G12	1.14	Z 250..., Z 400...	NaHJ 100	PZ 1000KD20	NaHJ 100 PZT	-	-	VNaHJ 100	EHXc 100

Lamp output 150 W

Aura	T150 W	E40	1.70	Z 250..., Z 400...
BLV	C-HIT	G12	1.85	Z 250..., Z 400...
BLV	C-HIT-DE	RX7s-24	1.80	Z 250..., Z 400...
GE	CMH150T	G12	1.85	Z 250..., Z 400...
GE	CMH150TD	RX7s	1.80	Z 250..., Z 400...
Osram	HCl-E/P	E27	1.80	Z 250..., Z 400...
Osram	HCl-T	G12	1.80	Z 250..., Z 400..
Osram	HCl-T/P	E27	1.80	Z 250..., Z 400...
Osram	$\mathrm{HCl}-\mathrm{TS}$	RX7s-24	1.80	Z 250..., Z 400...
Osram	$\mathrm{HCl}-\mathrm{TT}$	E40	1.80	Z 250..., Z 400...
Philips	CDO-ET	E40	1.80	Z 250..., Z 400...
Philips	CDO-TT	E40	1.80	Z 250..., Z 400...
Philips	CDM-T	G12	1.80-1.90	Z 250..., Z 400.
Philips	CDM-TD	RX7s	1.80	Z 250..., Z 400...
Philips	CDM-TP	PGX12-2	1.80	Z 250..., Z 400...
Radium	RCC-T	G12	1.80	Z 250..., Z 400...
Radium	RCC-TS	RX7s	1.80	Z 250..., Z 400...
Sylvania	CMI-T	G12	1.82	Z 250..., Z 400...
Sylvania	CMI-TD	RX7 s -24	1.82	Z 250..., Z 400...
Venture	CMH150/T	G12	1.85	Z 250..., Z 400...
Venture	CMH150/TD	RX7s	1.80	Z 250..., Z 400.

NaHJ 150
NaHJ 150

PZ 1000KD20	NaHJ 150PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	HZ 1000K	NaHJ 150
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	HZ 1000K	NaHJ 150
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	HZ 1000K	NaHJ 150
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-
PZ 1000KD20	NaHJ 150 PZT	-	-

VNaHJ 150	EHXd 150
VNaHJ 150	EHXc 150
VNaHJ 150	-
VNaHJ 150	EHXc 150
VNaHJ 150	-
VNaHJ 150	EHX 150
VNaHJ 150	EHXc 150
VNaHJ 150	EHX 150
VNaHJ 150	-
VNaHJ 150	EHXc 150
VNaHJ 150	EHX 150

Lamp output 250 W

Aura	TT 250 W	E40	3.00	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	EHXd 250
GE	CMH250E	E40	2.70	z 250..., z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
GE	CMH250P	E40	2.70	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
GE	CMH-TT	E40	2.90	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Osram	HCIE	E40	2.90	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Osram	HCl-TC	E40	2.90	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Osram	HCITM	G22	2.90	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	-
Ostam	HCITS	E40; Fc2	3.00	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	-

Lamp Table for Discharge Lamps

Ceramic discharge tube lamps (C-HI)

Manufacturer	Designation	Base	Lamp current	Superimposed ignition system		Pulse ignition system		Instant restrike ignition system		Control gear unit	EB
				$1 \mathrm{lgnito}{ }^{*}$	Ballast	Ignitor	Ballast	Ignitor	Ballast		
Lamp output 250 W											
Philips	CDO-T	E40	3.00	Z 250..., Z 400..	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Philips	CDM-T	G12	3.00	Z 250..., Z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Radium	RCC-E	E40	2.90	z 250..., Z 400..	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Radium	RCC.T	E40	2.80	z 250..., z 400...	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	-	-	VNaHJ 250	-
Radium	RCC.TM	G22	2.90	Z 250..., z 400..	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	-
Radium	RCC-TS	Fc2	3.00	Z 250..., Z 400.	NaHJ 250	PZ 1000KD20	NaHJ 250PZT	HZ 1000K	NaHJ 250	VNaHJ 250	-
Lamp output 400 W											
Aura	TT 400 W	E40	4.40	Z 400...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
GE	СМНTT	E40	4.60	Z 400M..., Z 400.	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-
Osram	HCITM	G22	4.45	Z 400M..., Z 400...	NaHJ 400	PZ 1000KD20	NaHJ 400PZT	-	-	VNaHJ 400	-

[^43]
Lamp Table for Discharge Lamps

Mercury vapour lamps (HM lamps)

Manufacturer	Designation	Base	Current	Operating devices Ballasts (ignitor not required)	$\begin{aligned} & \text { Capacitor } \\ & \text { at } 50 \mathrm{~Hz} \end{aligned}$
Lamp output 50 W					
GE	H 50	E27, B22d	0.62	Q 50, Q 80/50	7 HF
Iwasaki	HF 50 PD	E27	0.62	Q 50, Q 80/50	$7 \mu \mathrm{~F}$
Narva	NF 50	E27	0.62	Q 50, Q 80/50	$7 \mu \mathrm{~F}$
Osram	HQL 50	E27	0.62	Q 50, Q 80/50	$7 \mu \mathrm{~F}$
Philips	HPL 50	E27	0.62	Q 50, Q 80/50	$7 \mu \mathrm{~F}$
Radium	HRL 50	E27	0.62	Q 50, Q 80/50	$7 \mu \mathrm{~F}$
Sylvania	HSL 50	E27	0.62	Q 50, Q 80/50	$7 \mu \mathrm{~F}$
Lamp output 80 W					
GE	H 80	E27, B22d-3*	0.80	Q 80, Q 80/50, Q 125/80	$8 \mu \mathrm{~F}$
Iwasaki	HF 80 PD	E27	0.80	Q 80, Q 80/50, Q 125/80	$8 \mu \mathrm{~F}$
Narva	NF 80	E27	0.80	Q 80, Q 80/50, Q 125/80	$8 \mu \mathrm{~F}$
Osram	HQL 80	E27	0.80	Q 80, Q 80/50, Q 125/80	$8 \mu \mathrm{~F}$
Philips	HPL 80	E27	0.80	Q 80, Q 80/50, Q 125/80	$8 \mu \mathrm{~F}$
Radium	HRL 80	E27	0.80	Q 80, Q 80/50, Q 125/80	$8 \mu \mathrm{~F}$
Sylvania	HSL 80	E27	0.80	Q 80, Q 80/50, Q 125/80	8 FF

Lamp output 125 W

GE	I
Iwasaki	I
Narva	
Osram	Philips
Radium	
Sylvania	

Lamp output 250 W

GE	
Iwasaki	
Narva	
Osram	
Philips	
Radium	
Sylvania	

H 250	E4
HF 250 PD	E4
NF 250	E4
HQL 250	E40
HPL 250	E
HRL 250	E40
HSL 250	

Lamp output 400 W

GE	H 400	E40	3.25	Q 400, U-Q 400/250	$25 \mu \mathrm{~F}$
Iwasaki	HF 400 PD	E40	3.25	Q 400, U-Q 400/250	$25 \mu \mathrm{~F}$
Narva	NF 400	E40	3.25	Q 400, U-Q 400/250	$25 \mu \mathrm{~F}$
Osram	HQL 400	E40	3.25	Q 400, U-Q 400/250	$25 \mu \mathrm{~F}$
Philips	HPL 400	E40	3.25	Q 400, U-Q 400/250	$25 \mu \mathrm{~F}$
Radium	HRL 400	E40	3.25	Q 400, U-Q 400/250	$25 \mu \mathrm{~F}$
Sylvania	HSL 400	E40	3.25	Q 400, U-Q 400/250	$25 \mu \mathrm{~F}$

Lamp output 700 W

GE	H 700	E40	5.45	Q 700	$40 \mu \mathrm{~F}$
Iwasaki	HF 700 PD	E40	5.40	Q 700	$40 \mu \mathrm{~F}$
Narva	NF 700	E40	5.40	Q 700	$40 \mu \mathrm{~F}$
Osram	HQL 700	E40	5.40	Q 700	$40 \mu \mathrm{~F}$
Philips	HPL 700	E40	5.40	Q 700	$40 \mu \mathrm{~F}$
Radium	HRL 700	E40	5.40	Q 700	$40 \mu \mathrm{~F}$
Sylvania	HSL 700	E40	5.40	Q 700	$40 \mu \mathrm{~F}$
Lamp output 1000 W					
GE	H 1000	E40	7.50	Q 1000	$60 \mu \mathrm{~F}$
Iwasaki	HF 1000 PD	E40	7.50	Q 1000	$60 \mu \mathrm{~F}$
Narva	NF 1000	E40	7.50	Q 1000	$60 \mu \mathrm{~F}$
Osram	HQL 1000	E40	7.50	Q 1000	$60 \mu \mathrm{~F}$
Philips	HPL 1000	E40	7.50	Q 1000	$60 \mu \mathrm{~F}$
Radium	HRL 1000	E40	7.50	Q 1000	$60 \mu \mathrm{~F}$
Sylvania	HSL 1000	E40	7.50	Q 1000	$60 \mu \mathrm{~F}$

* The VS range does not include a lampholder for base B22d-3

Technical Details - Components for Discharge Lamps

Energy efficiency classification

The commission's regulation (EC) No. 245/2009 dated 18 March 2009 implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to defining ecodesign requirements for fluorescent lamps without integrated ballast, high-pressure discharge lamps and for ballasts and luminaires needed for their operation, and repealing Directive 2000/55/EC of the European Parliament and of the Council (official title), has created a legal framework in the EU that defines fundamental requirements for operating efficient lighting technology products.

Although the Regulation predominantly applies to general lighting, it is also product-orientated and thus independent of any specific application. The efficiency and performance requirements (specifications governing performance features) apply to fluorescent lamps without integrated ballast, high-pressure discharge lamps as well as ballasts and luminaires needed to operate these lamps. A brief overview of the requirements governing high-pressure discharge lamps is provided in the following table (excerpt from the CELMA guide).

Stage	Requirements governing	
$\begin{aligned} & \mathbf{1} \\ & 13.04 .2010 \end{aligned}$	Ballasts	- No special requirements
Interim Stage $13.09 .2010$	Luminaires	- After 18 months: technical information must be made available, both online and in luminaire documentation (for luminaires > 2,000 Lumens)
$\begin{aligned} & \mathbf{2} \\ & 13.04 .2012 \end{aligned}$	Ballasts	- Introduction of minimum energy-efficiency index values for HID ballasts and their labelling: $\begin{aligned} P & <30 W-\eta \\ 30<P & <75 W-\eta \\ 75<P & <105 W-\eta \geq 80 \% \\ 105<P & <405 W-\eta \geq 85 \% \\ P & >405 W-\eta \geq 90 \% \end{aligned}$ - HID ballasts to be labelled: EEI=A3
	Luminaires	- Luminaire designs must permit the integration of 3rd-stage ballasts. Exception: luminaires > IP4X
at the latest by $13.04 .2014$	Technological progress as well as the sum of the experience gained during the implementation of the Regulatio be taken into oconsideration during the revision process.	
3 13.04.2017	Ballasts	- Minimum energy-efficiency index values will be raised: $\begin{aligned} P & <30 W-\eta \\ 30<P & <78 W \\ 75<P & <105 W-\eta \geq 85 \% \\ 105<P & <405 W-\eta \geq 97 \% \\ P & >405 W-\eta \geq 92 \% \end{aligned}$ - HID ballasts to be labelled: A2
	Luminaires	- All luminaire designs must permit the integration of 3rd-stage ballasts.

WARM START, DIMMABLE AND INSTANT START

Electronic ballasts for compact fluorescent lamps 134-150
ELXs - Warm start 134
ELXc - Warm start - Linear casing shape 135
ELXd - Dimmable - Linear casing shape 136-137
ELXc - Warm start - Compact casing shape 138-146
ECO Effectline 144
ELXd - Dimmable - Compact casing shape 147-150
Electronic ballasts for tubular fluorescent lamps 151-163
ELXs - Warm start 151
ELXc - Warm start - Linear casing shape 152-159
Effectline and Effectline II 156-157
New T5 Effectline 158
ECO Effectline 159
ELXd - Dimmable - Linear casing shape 160-163
Accessories for dimmable electronic built-in ballasts 164
Technical details for fluorescent lamps 243-271
General technical details 394-401
Glossary 402-404

ELXs - Warm Start for Compact Fluorescent Lamps

Electronic built-in ballasts
Casing: heat-resistant polyamide
Power factor: approx. 0.6
(depending on the lamp output)
DC voltage operation: 198-264 V
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$ RFI-suppressed
For luminaires of protection class I and II
Degree of protection: IP20

K20
जनाज्:

K21

high switching frequency (> 5/day)
EOL shut down approved
acc. to EN 61347 Test 2

Fixing slots for screws M4
For lighting systems with

Lamp				Electronic ballast							System Output W
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature $\mathrm{t}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	
5	TC-SEL	2G7	1×5.0	ELXs 116.900	188661	220-240	A3	-15 to 55	max. 75	K20	6.1
				ELXs 116.903	188662	220-240	A3	-15 to 55	max. 75	K21	6.1
7	TC-SEL	2G7	1×6.4	ELXs 116.900	188661	220-240	A2	- 15 to 55	max. 75	K20	7.5
				ELX 116.903	188662	220-240	A2	-15 to 55	max. 75	K21	7.5
9	TC-SEL	2G7	1×8.0	ELXs 116.900	188661	220-240	A2	-15 to 55	max. 75	K20	8.8
				ELXs 116.903	188662	220-240	A2	-15 to 55	max. 75	K21	8.8
10	$\begin{aligned} & \text { TC-DEL } \\ & \text { TC-DD } \end{aligned}$	$\begin{aligned} & \hline \text { G24q-1 } \\ & \text { GR10q } \\ & \hline \end{aligned}$	1×9.3	ELXs 116.900	188661	220-240	A2	-15 to 55	max. 75	K20	10.2
			1×9.3	ELXs 116.900	188661	220-240	A2	- 15 to 55	max. 75	K20	10.3
	$\begin{aligned} & \text { TC-DEL } \\ & \text { TC-DD } \end{aligned}$	$\begin{aligned} & \text { G24q-1 } \\ & \text { GR10q } \end{aligned}$	1×9.3	ELXs 116.903	188662	220-240	A2	-15 to 55	max. 75	K21	10.2
			1×9.3	ELXs 116.903	188662	220-240	A2	-15 to 55	max. 75	K21	10.3
11	TC-SEL	2G7	1×10.8	ELXs 116.900	188661	220-240	A2	-15 to 55	max. 75	K20	11.8
				ELXs 116.903	188662	220-240	A2	-15 to 55	max. 75	K21	11.8
13	TC-DEL/-TEL	G24q-1/GX24q-1	1×12.5	ELXs 121.901	188663	220-240	A2	-15 to 55	max. 80	K20	15.5
				ELXs 121.904	188664	220-240	A2	-15 to 55	max. 80	K21	15.5
16	TC-DD	GR10q	1×13.2	ELXs 116.900	188661	220-240	A3	-15 to 55	max. 75	K20	15.1
				ELXs 116.903	188662	220-240	A3	-15 to 55	max. 75	K21	15.1
18	TC-DEL/-TEL	G24q-2/GX24q-2	1×15.3	ELXs 121.901	188663	220-240	A2	-15 to 55	max. 80	K20	16.9
				ELXs 121.904	188664	220-240	A2	-15 to 55	max. 80	K21	16.9
	TC-F/-L	2G10/2G11	1×16.0	ELX 124.902	188665	220-240	A2	-15 to 55	max. 85	K20	17.9
				ELX 124.905	188666	220-240	A2	-15 to 55	max. 85	K21	17.9
22	T-R5	2GX13	1×19.1	ELXs 124.902	188665	220-240	A2	-15 to 55	max. 85	K20	21.2
				ELX 124.905	188666	220-240	A2	-15 to 55	max. 85	K21	21.2
24	TC-F/-L	2G10/2G11	1×20.0	ELXs 124.902	188665	220-240	A2	-15 to 55	max. 85	K20	21.4
				ELX 124.905	188666	220-240	A2	-15 to 55	max. 85	K21	21.4
			1×20.8	ELXs 126.906	188667	220-240	A2	-15 to 55	max. 85	K20	22.9
				ELX 126.907	188668	220-240	A2	-15 to 55	max. 85	K21	22.9
26	TC-DEL/-TEL	G24q-3/GX24q-3	1×21.5	ELXs 126.906	188667	220-240	A2	-15 to 55	max. 85	K20	23.4
				ELXs 126.907	188668	220-240	A2	- 15 to 55	max. 85	K21	23.4

[^44]
ELXc - Warm Start for TC-F, TC-L Lamps

Electronic built-in ballasts
Casing: metal
Power factor: > 0.96
DC voltage
for operation: 176-264 V
for ignition: 198-264 V
(ELXc 180.866, 280.538: DC voltage
cannot be reduced to 176 V)
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
RFI-suppressed
For luminaires of protection class I
Degree of protection: IP20
For lighting systems with
high switching frequency (> 5/day)
EOL shut down approved acc. to EN 61347 Test 2

M10/M11

									BUILT-I INDEP		$\bigcirc \mathbf{1}$	0 V LI/PUSH
Lamp				Electronic ballas							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature $\mathrm{ta}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
18	TC-F/L	2G10/2G11	1×16.0	ELXc 140.862	188140	220-240	A2	- 15 to 55	max. 70	M10	19.0	109.0
2×18	TC-F/-L	2G10/2G11	2×16.0	ELXc 240.863	188616	220-240	A2 BAT	- 15 to 55	max. 70	M10	35.0	105.3
24	TC-F/L	2G10/2G11	1×22.0	ELXc 140.862	188140	220-240	A2	- 15 to 55	max. 70	M1O	27.0	109.0
2×24	TC-F/-L	2G10/2G11	2×22.0	ELXC 240.863	188616	220-240	A2 BAT	- 15 to 55	max. 70	M10	51.0	106.8
36	TC-F/-L	2G10/2G11	1×32.0	ELXc 140.862	188140	220-240	A2	- 15 to 55	max. 70	M10	35.0	101.0
2×36	TC-F/-L	2G10/2G11	2×32.0	ELXc 240.863	188616	220-240	A2 BAT	- 15 to 55	max. 70	M10	71.0	98.7
40	TC-L	2G11	1×40.0	ELXc 140.862	188140	220-240	A2	-15 to 55	max. 70	M10	46.0	104.0
2×40	TC-L	2G11	2×40.0	ELXc 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	89.0	103.6
55	TC-L	2G11	1×55.0	ELXc 180.866	188144	220-240	A2 BAT	-15 to 55	max. 70	M10	62.0	107.3
2×55	TC-L	2G11	2×50.0	ELXC 254.865	188618	220-240	A2 BAT	- 15 to 50	max. 70	M10	112.0	92.9
			2×55.0	ELXc 280.538	188619	220-240	A2 BAT	- 15 to 50	max. 70	M11	120.0	100.0
80	TC-L	2G11	1×80.0	ELXc 180.866	188144	220-240	A2 BAT	- 15 to 55	max. 70	M10	87.0	97.6
2×80	TC-L	2G11	2×80.0	ELXc 280.538	188619	220-240	A2 BAT	-15 to 50	max. 70	M11	175.0	100.0

[^45]
ELXd - Dimmable for TC-F, TC-L Lamps

Electronic built-in ballasts
Casing: metal

Dimming range:

approx. 1-100\% of lamp power
Power factor: ≥ 0.95 at 100% operation
DC voltage
for operation: 154-276 V (M22, M23, M24)
for operation: 176-264 V (M9)
for ignition: 198-264 V
Push-in terminals: 0.5-1 mm²
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
RFI-suppressed
For luminaires of protection class I
Degree of protection: IP20
Fixing holes for screws M4
for lateral or base mounting
For lighting systems with
M9

M23

M22/M24

ELXd - Dimmable 1-10 V for TC-F, TC-L lamps

Control voltage: DC 1-10 V
acc. to EN 60929 with earth leakage current 0.5 mA
(protected if connected to mains voltage)
For use with open- or closed-loop control units

$\mathbf{T} 5$	$\mathbf{T C}$	BUILT-IN
$\mathbf{T 8}$	I-10V INDEPENDENT	DALI/PUSH

Lamp				Electronic ballast							System	
Output W	Type	Base	Power con- sumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energie efficiency	Ambient temperature $t_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\operatorname{tc}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
18	TC-F/-L	2G10/2G11	1×16.0	ELXd 118.718	188873	220-240	EEI=A1	10 to 50	max. 70	M9	18.0	94.0
2×18	TC-F/-L	2G10/2G11	2×16.0	ELXd 218.719	188874	220-240	EEI=A1	10 to 50	max. 70	M9	36.0	90.6
24	TC-F/-L	2G10/2G11	1×22.0	ELXd 118.718	188873	220-240	EEI=A1	10 to 50	max. 70	M9	27.0	96.6
			1×23.0	ELXd 124.607	188336	220-240	Al BAT	10 to 50	max. 75	M22	26.0	100.0
2×24	TC-F/-L	2G10/2G11	2×22.0	ELXd 218.719	188874	220-240	EEI=A1	10 to 50	max. 70	M9	52.0	100.8
			2×23.0	ELXd 224.608	188337	220-240	Al BAT	10 to 50	max. 75	M24	49.0	100.0
3×24	TC-F/-L	2G10/2G11	3×24.0	ELXd 324.623	188597	220-240	Al BAT	10 to 50	max. 75	M23	73.4	100.0
4×24	TC-F/-L	2G10/2G11	4×24.0	ELXd 424.624	188598	220-240	Al BAT	10 to 50	max. 75	M23	97.6	100.0
36	TC-F/-L	2G10/2G11	1×32.0	ELXd 136.720	188875	220-240	Al BAT	10 to 50	max. 70	M9	37.3	93.5
2×36	TC-F/-L	2G10/2G11	2×32.0	ELXX 236.721	188876	220-240	EEI=A1	10 to 50	max. 70	M9	72.0	92.6
40	TC-L	2G11	1×38.0	ELXd 139.609	188338	220-240	Al BAT	10 to 50	max. 75	M22	42.0	100.0
2×40	TC-L	2G11	2×38.0	ELXd 239.610	188339	220-240	Al BAT	10 to 50	max. 75	M24	82.0	100.0
55	TC-L	2G11	1×51.0	ELXX 158.722	188877	220-240	EEI=A1	10 to 50	max. 70	M9	56.0	92.5
			1×54.0	ELXX 154.611	188340	220-240	Al BAT	10 to 50	max. 75	M22	59.0	100.0
2×55	TC-L	2G11	2×54.0	ELXd 254.612	188341	220-240	Al BAT	10 to 50	max. 75	M24	115.0	100.0
80	TC-L	2G11	1×80.0	ELXd 180.613	188342	220-240	Al BAT	10 to 50	max. 75	M 22	88.0	100.0

Circuit diagrams see pages 255-259

ELXd - Dimmable with push key or DALI for TC-F, TC-L lamps
Complete implementation of the DALI-standard:
addressable, memory store for scenes and groups,
revertive information communication, physical and
RND-selection, standardized lamp characteristic
Low-power design ensures very low standby
power consumption
standby power consumption: $\leq 0.2 \mathrm{~W}$

1-10V DALI/PUSH

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energie efficiency	Ambient temperature $\operatorname{ta}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	\qquad $\begin{aligned} & \text { Luminous } \\ & \text { factor } \\ & \% \\ & \hline \end{aligned}$
18	TC-F/-L	2G10/2G11	1×16.0	ELXd 118.615	188344	220-240	Al BAT	10 to 50	max. 75	M22	19.0	100.0
2×18	TC-F/-L	2G10/2G11	2×16.0	ElXd 218.616	188345	220-240	Al BAT	10 to 50	max. 75	M 24	37.0	100.0
24	TC-F/-L	2G10/2G11	1×23.0	ElXd 124.600	188329	220-240	Al BAT	10 to 50	max. 75	M22	26.0	100.0
2×24	TC-F/-L	2G10/2G11	2×23.0	ElXd 224.601	188330	220-240	Al BAT	10 to 50	max. 75	M24	49.0	100.0
3×24	TC-F/-L	2G10/2G11	3×23.0	ElXd 324.626	188600	220-240	AI BAT	10 to 50	max. 75	M23	73.4	100.0
4×24	TC-F/-L	2G10/2G11	4×23.0	ElXd 424.628	188602	220-240	Al BAT	10 to 50	max. 75	M23	97.6	100.0
36	TC-F/-L	2G10/2G11	1×32.0	ELXd 136.617	188346	220-240	AI BAT	10 to 50	max. 75	M22	36.0	100.0
2×36	TC-F/-L	2G10/2G11	2×32.0	ElXd 236.618	188347	220-240	Al BAT	10 to 50	max. 75	M24	69.0	100.0
40	TC-L	2G11	1×38.0	ELXd 139.602	188331	220-240	Al BAT	10 to 50	max. 75	M22	42.0	100.0
2×40	TC-L	2G11	2×38.0	ELXd 239.621	188350	220-240	Al BAT	10 to 50	max. 75	M24	82.0	100.0
55	TC-L	2G11	1×54.0	ELXd 154.603	188332	220-240	Al BAT	10 to 50	max. 75	M22	59.0	100.0
2×55	TC-L	2G11	2×54.0	ELXd 254.604	188333	220-240	Al BAT	10 to 50	max. 75	M24	115.0	100.0
80	TC-L	2G11	1×80.0	ELXd 180.605	188334	220-240	Al BAT	10 to 50	max. 75	M22	88.0	100.0

[^46]
ELXc - Warm Start for Compact Fluorescent Lamps

Electronic ballasts

Casing: heat-resistant polyamide (K2, K3)
or heat-resistant polycarbonate (K2.1, K4) DC voltage
for operation: $176-264 \mathrm{~V}$
for ignition: 198-264 V
(ELXc 242.837: DC voltage cannot
be reduced to 176 V)

Power factor: > 0.96 (K2.1: 0.98)
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$
RFI-suppressed
Constant power consumption
For luminaires of protection class I
Degree of protection: IP20
Fixing brackets for screws M4
for lateral or base mounting

For lighting systems with
high switching frequency (>5/day)
EOL shut down approved acc. to
EN 61347 Test 2

Electronic built-in ballasts

Electronic Ballasts for TC and T Lamps

ELXc - Warm Start for Compact Fluorescent Lamps

Independent electronic ballasts

K2 with cord grip

K3 with cord grip

K2.1 with cord grip

K4 with cord grip

ELXc - Warm start for compact fluorescent lamps

Built-in ballasts

ELXc 213.870, 218.871, 142.872,
242.837, 155.378 have a second earth terminal
to ground the luminaires for example

T5 TC	BUILT-IN	1-10 V
18	INDEPENDENT	DALI/PUSH

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \\ & \hline \end{aligned}$	Energie efficiency	Ambient temperature $\mathrm{ta}_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	$\begin{aligned} & \text { Luminous } \\ & \text { factor } \\ & \% \\ & \hline \end{aligned}$
9	TC-SEL	2G7	1×8.0	ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	10.7	102.9
2×9	TC-SEL	2G7	2×8.0	ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	19.4	102.9
10	TC-DEL	G24q-1	1×9.5	ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	10.9	99.2
2×10	TC-DEL	G24q-1	2×9.5	ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	20.5	98.8
11	TC-SEL	2G7	1×11.0	ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	14.7	110.1
2×11	TC-SEL	2G7	2×11.0	ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	27.9	116.1
13	TC-DEL/-TEL	G24q-1/GX24q-1	1×12.5	ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	15.0	102.9
2×13	TC-DEL/-TEL	G24q-1/G×24q-1	2×12.5	ELXc 213.870	188698	220-240	A2 BAT	-20 to 50	max. 65	K2	28.1	110.9
18	TC-DEL/-TEL	G24q-2/GX24q-2	1×16.5	ELXC 218.871	188699	220-240	A2 BAT	-20 to 50	max. 65	K2	21.0	104.8
	TC-F/-L	2G10/2G11	1×16.0	ELXC 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	18.0	102.0
2×18	TC-DEL/-TEL	G24q-2/GX24q-2	2×16.5	ELXc 218.871	188699	220-240	A2 BAT	-20 to 50	max. 65	K2	38.0	100.7
	TC-F/-L	2G10/2G11	2×16.0	ELXC 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	35.0	104.3
				ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	34.0	98.0
22	T-R5	2GX13	1×22.0	ELXC 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	26.0	103.0
				ELXc 128.869	188589	220-240	A2 BAT	-20 to 50	max. 70	K2	25.0	96.7
22+40	T-R5	2GX13	$1 \times 22+40$	ELXC 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	68.0	100.0
2×22	T-R5	$2 \mathrm{GX13}$	2×22.0	ELXc 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	48.5	105.8
24	TC-F/-L	2G10/2G11	1 $\times 22.0$	ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	27.0	105.0
			1×22.5	ELXc 128.869	188589	220-240	A2	-20 to 50	max. 70	K2	25.0	95.8
2×24	TC-F/-L	2G10/2G11	2×22.0	ELXc 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	48.5	106.2
				ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	47.0	102.0
26	TC-DEL/-TEL	G24q-3/GX24q-3	1×24.0	ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	26.0	104.0
2×26	TC-DEL/-TEL	G24q-3/GX24q-3	2×24.0	ELXC 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	53.0	106.1
				ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	53.0	105.0

Circuit diagrams see pages 255-259

ELXc - Warm start for compact fluorescent lamps

Built-in ballasts

ELXc 213.870, 218.871, 142.872,
242.837, 155.378 have a second earth terminal
to ground the luminaires for example

$\mathbf{T 5} \bigcirc \mathbf{T C}$	BUILT-IN	1-10 \mathbf{V}
$\mathbf{T 8}$		INDEPENDENT
DALI/PUSH		

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energie efficiency	Ambient temperature $\mathrm{t}_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
28	TC-DD	GR10q	1×26.0	ELXC 128.869	188589	220-240	A2 BAT	-20 to 50	max. 70	K2	32.0	98.1
32	TC-TEL	GX24q-3	1×32.0	ELXC 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	33.0	102.0
2×32	TC-TEL	GX24q-3	2×32.0	ELXc 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	70.5	104.8
36	TC-F/-L	2G10/2G11	1×32.0	ELXC 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	34.0	105.0
2×36	TC-F/-L	2G10/2G11	2×32.0	ELXc 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	70.5	101.8
38	TC-DD	GR10q	1×36.0	ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	38.0	95.0
2×38	TC-DD	GR10q	2×36.0	ELXc 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	79.2	101.3
40	TC-L	2G11	1×40.0	ELXC 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	43.0	99.0
	T-R5	2GX13	1×40.0	ELXC 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	41.0	96.0
2×40	TC-L	2G11	2×40.0	ELXc 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	88.0	101.3
	T-R5	2GX13	2×40.0	ELXC 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	88.0	101.1
42	TC-TEL	GX24q-4	1×42.0	ELXc 142.872	188700	220-240	A2 BAT	-20 to 50	max. 65	K2	45.0	99.0
2×42	TC-TEL	GX24q-4	2×43.0	ELXc 242.837	188643	220-240	A2 BAT	-20 to 50	max. 65	K3	94.5	100.6
55	TC-L	2G11	1×55.6	ELXC 155.378	188680	220-240	A2 BAT	-20 to 50	max. 70	K3	60.0	102.4
	T-R5	2GX13	1×55.6	ELXC 155.378	188680	220-240	A2 BAT	-20 to 50	max. 70	K3	60.0	101.2
60	T-R5	2GX13	1×60.6	ELXc 155.378	188680	220-240	A2	-20 to 50	max. 70	K3	66.0	109.5
80	TC-L	2G11	1×80.5	ELXc 155.378	188680	220-240	A2 BAT	-20 to 50	max. 70	K3	88.0	101.3

[^47]

7

ELXc - Warm start for compact fluorescent lamps - Independent ballasts
For ELXc 257.836 a
loop-through of the mains supply is possible
ELXc 213.870, 218.871, 142.872,
242.837, 155.378 have a second earth terminal
to ground the luminaires

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature $\mathrm{ta}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
9	TC-SEL	2G7	1×8.0	ELXC 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	10.7	102.9
2×9	TC-SEL	2G7	2×8.0	ELXC 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	19.4	102.9
10	TC-DEL	G24q-1	1×9.5	ELXC 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	10.9	99.2
2×10	TC-DEL	G24q-1	2×9.5	ELXc 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	20.5	98.8
11	TC-SEL	2G7	1×11.0	ELXC 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	14.7	110.1
2×11	TC-SEL	$2 \mathrm{G7}$	2×11.0	ELXC 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	27.9	116.1
13	TC-DEL/-TEL	G24q-1/GX24q-1	1×12.5	ELXC 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	15.0	102.9
2×13	TC-DEL/-TEL	G24q-1/GX24q-1	2×12.5	ELXC 213.870	188712	220-240	A2 BAT	-20 to 50	max. 65	K2	28.1	110.9
18	TC-DEL/TEL	G24q-2/GX24q-2	1×16.5	ELXC 218.871	188713	220-240	A2 BAT	-20 to 50	max. 65	K2	21.0	104.8
	TC-F/-L	2G10/2G11	1×16.0	ELXC 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	18.0	102.0
2×18	TC-DEL/-TEL	G24q-2/GX24q-2	2×16.5	ELXC 218.871	188713	220-240	A2 BAT	-20 to 50	max. 65	K2	38.0	100.7
	TC-F/-L	2G10/2G11	2×16.0	ELXC 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	35.0	104.3
				ELXC 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	34.0	98.0
22	T-R5	2GX13	1×22.0	ELXC 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	26.0	103.0
				ELXC 128.869	188590	220-240	A2 BAT	-20 to 50	max. 70	K2	25.0	96.7
22+40	T-R5	2GX13	$1 \times 22+40$	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	68.0	100.0
2×22	T-R5	2GX13	2×22.0	ELXC 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	48.5	105.8
24	TC-F/-L	2G10/2G11	1×22.0	ELXC 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	27.0	105.0
	TC-F/-L	2G10/2G11	1×22.5	ELXC 128.869	188590	220-240	A2	-20 to 50	max. 70	K2	25.0	95.8
2×24	TC-F/-L	2G10/2G11	2×22.0	ELXC 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	48.5	106.2
				ELXC 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	47.0	102.0
26	TC-DEL/-TEL	G24q-3/GX24q-3	1×24.0	ELXC 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	26.0	104.0
				ELXC 226.878	183040	220-240	A2 BAT	-20 to 55	max. 65	K2.1	28.0	104.0
				ELXC 226.878	183108*	220-240	A2 BAT	-20 to 55	max. 65	K2.1	28.0	104.0
2×26	TC-DEL/TEL	G24q-3/GX24q-3	2×24.0	ELXC 226.878	183040	220-240	A2 BAT	-20 to 55	max. 65	K2.1	50.0	101.0
				ELXC 226.878	183108*	220-240	A2 BAT	-20 to 55	max. 65	K2.1	50.0	101.0
				ELXC 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	53.0	106.1
				ELXc 257.836	188400	220-240	A2 BAT	-20 to 50	max. 70	K4	52.0	106.2
				ELXC 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	53.0	105.0

[^48]* Without cover cap on cord grip $=$ built-in version

ELXc - Compact warm start for compact fluorescent lamps - Independent ballasts

For ELXc 257.836 a
loop-through of the mains supply is possible
ELXc 213.870, 218.871, 142.872,
242.837, 155.378 have a second earth terminal
to ground the luminaires for example

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature $\mathrm{t}_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
28	TC-DD	GR10q	1×26.0	ElXc 128.869	188590	220-240	A2 BAT	-20 to 50	max. 70	K2	32.0	98.1
32	TC-TEL	GX24q-3	1×32.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	33.0	102.0
2×32	TC-TEL	GX24q-3	2×32.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	70.5	104.8
				ELXc 257.836	188400	220-240	A2 BAT	-20 to 50	max. 70	K4	70.0	109.4
36	TC-F/-L	2G10/2G11	1×32.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	34.0	105.0
2×36	TC-F/L	2G10/2G11	2×32.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	70.5	101.8
38	TC-DD	GR10q	1×36.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	38.0	95.0
2×38	TC-DD	GR10q	2×36.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	79.2	101.3
40	TC-L	2G11	1×40.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	43.0	99.0
	T-R5	2GX13	1×40.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	41.0	96.0
2×40	TC-L	2G11	2×40.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	88.0	101.3
	T-R5	2GX13	2×40.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	88.0	101.1
42	TC-TEL	GX24q-4	1×42.0	ELXc 142.872	188714	220-240	A2 BAT	-20 to 50	max. 65	K2	45.0	99.0
2x42	TC-TEL	GX24q-4	2×43.0	ELXc 242.837	188687	220-240	A2 BAT	-20 to 50	max. 65	K3	94.5	100.6
				ELXc 257.836	188400	220-240	A2 BAT	-20 to 50	max. 70	K4	94.0	104.9
55	TC-L	2G11	1×55.6	ELXc 155.378	188681	220-240	A2 BAT	-20 to 50	max. 70	K3	60.0	102.4
	T-R5	2GX13	1×55.6	ELXc 155.378	188681	220-240	A2 BAT	-20 to 50	max. 70	K3	60.0	101.2
57	TC-TEL	GX24q-5	1×57.0	ELXc 170.833	188683	220-240	A2 BAT	-20 to 50	max. 65	K3	63.0	105.0
2×57	TC-TEL	GX24q-5	2×57.0	ELXc 257.836	188400	220-240	A2 BAT	-20 to 50	max. 70	K4	130.0	100.0
60	T-R5	2GX13	1×60.6	ELXc 155.378	188681	220-240	A2	-20 to 50	max. 70	K3	66.0	109.5
70	TC-TEL	GX24q-6	1×70.0	ELXc 170.833	188683	220-240	A2 BAT	-20 to 50	max. 65	K3	77.0	110.0
80	TC-L	2G11	1×80.5	ELXc 155.378	188681	220-240	A2 BAT	-20 to 50	max. 70	K3	88.0	101.3

Circuit diagrams see pages 255-259

ELXc - ECO EffectLine

Warm Start for

 Compact Fluorescent LampsElectronic ballasts

Casing: PC, white
Mains voltage: 198-264 V
Push-in terminals: 0.5-1.5 mm²
RFI-suppressed

K 1.1

K 1.1 with cord grip

ELXc - Warm start for compact fluorescent lamps

- Built-in ballasts

Lamp				Electronic ballast							System	
Output W	Type	Base	Power con- sumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Power factor	Ambient temperature $t_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left(\left(^{\circ} \mathrm{C}\right)\right.$	Output W	Luminous factor $\%$
18	TC-DEL/-TEL	G24q-2/GX24q-2	1×16.5	ELXc 118.879	183134	220-240	A2	> 0.95	- 10 to 50	max. 70	19.5	100
2×18	TC-DEL/-TEL	G24q-2/GX24q-2	2×16.5	ELXc 218.881	183136	220-240	A2	>0.95	-15 to 50	max. 75	38.0	100
26	TC-DEL/-TEL	G24q-3/GX24q-3	1×24.0	ELXc 126.880	183135	220-240	A2	> 0.95	- 10 to 50	max. 75	28.0	100
2×26	TC-DEL/-TEL	G24q-3/GX24q-3	2×24.0	ELXc 226.882	183137	220-240	A2	> 0.95	- 15 to 50	max. 80	53.5	100

Preliminary data

ELXc - Compact warm start for compact fluorescent lamps

- Independent ballasts

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Power factor	Ambient temperature $\mathrm{t}_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mid \mathrm{tc}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Output W	Luminous factor \%
18	TC-DEL/-TEL	G24q-2/GX24q-2	1×16.5	ELXc 118.879	183150	220-240	A2	> 0.95	- 10 to 50	max. 70	19.5	100
2×18	TC-DEL/-TEL	G24q-2/GX24q-2	2×16.5	ELXC 218.881	183152	220-240	A2	> 0.95	-15 to 50	max. 75	38.0	100
26	TC-DEL/-TEL	G24q-3/GX24q-3	1×24.0	ELXc 126.880	183151	220-240	A2	> 0.95	-10 to 50	max. 75	28.0	100
2×26	TC-DEL/-TEL	G24q-3/GX24q-3	2×24.0	ELXc 226.882	183153	220-240	A2	> 0.95	-15 to 50	max. 80	53.5	100

[^49]
ELXc - Warm Start

for Compact
Fluorescent Lamps
Independent electronic ballasts
Casing: heat-resistant polyamide (K3)
Power factor: > 0.96
DC voltage
for operation: $176-264 \mathrm{~V}$
for ignition: $198-264 \mathrm{~V}$
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$

Mains and earth through-wiring

on primary side is possible
Existing terminals: $\mathbf{2 x L} ; \mathbf{2 x N ;} \mathbf{3 \times P E}$
RFI-suppressed
Constant power consumption
For luminaires of protection class I
Degree of protection: IP20
Fixing brackets for screws M4
for lateral or base mounting
For lighting systems with
high switching frequency (> 5/day)
EOL shut down approved acc. to EN 61347 Test 2

K3 with cord grip

$1-10 V$ DALI/PUSH O INDEPENDENT

System Output

V						System	
	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature $\operatorname{ta}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $t_{c}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
6	220-240	A2 BAT	-20 to 50	max. 65	K3	10.7	102.9
6	220-240	A2 BAT	-20 to 50	max. 65	K3	19.4	102.9
6	220-240	A2 BAT	-20 to 50	max. 65	K3	10.9	99.2
6	220-240	A2 BAT	-20 to 50	max. 65	K3	20.5	98.8
6	220-240	A2 BAT	-20 to 50	max. 65	K3	14.7	110.1
6	220-240	A2 BAT	-20 to 50	max. 65	K3	27.9	116.1
6	220-240	A2 BAT	-20 to 50	max. 65	K3	15.0	102.9
	220-240	A2 BAT	-20 to 50	max. 65	K3	28.1	110.9
-	220-240	A2 BAT	-20 to 50	max. 65	K3	21.0	104.8
	220-240	A2 BAT	-20 to 50	max. 65	K3	18.0	102.0
	220-240	A2 BAT	-20 to 50	max. 65	K3	38.0	100.7
9	220-240	A2	-20 to 50	max. 65	K3	35.0	104.3
-	220-240	A2 BAT	-20 to 50	max. 65	K3	34.0	98.0
-	220-240	A2 BAT	-20 to 50	max. 65	K3	26.0	103.0
9	220-240	A2	-20 to 50	max. 65	K3	68.0	100.0
9	220-240	A2	-20 to 50	max. 65	K3	48.5	105.8
	220-240	A2 BAT	-20 to 50	max. 65	K3	27.0	105.0
9	220-240	A2 BAT	-20 to 50	max. 65	K3	48.5	106.2
	220-240	A2 BAT	-20 to 50	max. 65	K3	47.0	102.0

[^50]
ELXc - Warm Start
 for Compact
 Fluorescent Lamps

ELXc - Warm start for compact
fluorescent lamps - Independent ballasts

								TC T8	BUILT-I INDEP	NDENT	1	10 V LI/PUSH
Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature $\mathrm{t}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{C}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	$\begin{aligned} & \text { Luminous } \\ & \text { factor } \\ & \% \\ & \hline \end{aligned}$
26	TC-DEL/-TEL	G24q-3/GX24q-3	1×24.0	ELXc 142.876	188888	220-240	A2 BAT	-20 to 50	max. 65	K3	26.0	104.0
2×26	TC-DEL/-TEL	G24q-3/GX24q-3	2×24.0	ELXC 242.877	188889	220-240	A2 BAT	-20 to 50	max. 65	K3	53.0	106.1
				ELXc 142.876	188888	220-240	A2 BAT	-20 to 50	max. 65	K3	53.0	105.0
32	TC-TEL	GX24q-3	1×32.0	ELXc 142.876	188888	220-240	A2 BAT	-20 to 50	max. 65	K3	33.0	102.0
2×32	TC-TEL	GX24q-3	2×32.0	ELXc 242.877	188889	220-240	A2 BAT	-20 to 50	max. 65	K3	70.5	104.8
36	TC-F/-L	2G10/2G11	1×32.0	ELXc 142.876	188888	220-240	A2 BAT	-20 to 50	max. 65	K3	34.0	105.0
2×36	TC-F/-L	2G10/2G11	2×32.0	ELXc 242.877	188889	220-240	A2 BAT	-20 to 50	max. 65	K3	70.5	101.8
38	TC-DD	GR10q	1×36.0	ELXc 142.876	188888	220-240	A2 BAT	-20 to 50	max. 65	K3	38.0	95.0
2x38	TC-DD	GR10q	2×36.0	ELXc 242.877	188889	220-240	A2 BAT	-20 to 50	max. 65	K3	79.2	101.3
40	TC-L	2G11	1×40.0	ELXc 142.876	188888	220-240	A2 BAT	-20 to 50	max. 65	K3	43.0	99.0
	T-R5	2GX13	1×40.0	ELXC 142.876	188888	220-240	A2 BAT	-20 to 50	max. 65	K3	41.0	96.0
2×40	TC-L	2G11	2×40.0	ELXc 242.877	188889	220-240	A2	-20 to 50	max. 65	K3	88.0	101.3
	T-R5	2GX13	2×40.0	ELXc 242.877	188889	220-240	A2	-20 to 50	max. 65	K3	88.0	101.1
42	TC-TEL	GX24q-4	1×42.0	ELXc 142.876	188888	220-240	A2 BAT	-20 to 50	max. 65	K3	45.0	99.0
2×42	TC-TEL	GX24q-4	2×43.0	ELXc 242.877	188889	220-240	A2 BAT	-20 to 50	max. 65	K3	94.5	100.6

[^51]
ELXd - Dimmable for TC-DEL, TC-TEL Lamps

Electronic ballasts
Casing: heat-resistant polycarbonate

Dimming range:

approx. 3-100\% of lamp power

Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$
RFI-suppressed

Degree of protection: IP20
For luminaires of protection class I
Fixing brackets for screws M4
for lateral or base mounting
For lighting systems with
high switching frequency (> 5/day)

EOL shut down approved
acc. to EN 61347 Test 2

Electronic built-in ballasts

K3

Electronic Ballasts for TC and T Lamps

ELXd - Dimmable for TC-DEL, TC-TEL Lamps

Independent electronic ballasts

K2 with cord grip

K4 with cord grip

K3 with cord grip

K4 ${ }^{+}$with cord grip and venting slits

Electronic Ballasts for TC and T Lamps

ELXd - Dimmable 1-10 V for TC-DEL, TC-TEL lamps

Electronic built-in ballasts
Casing: $K 3, K 4$ and $K 4^{+}$with venting slits
Control voltage: DC $1-10 \mathrm{~V}$ acc. to
EN 60929 with earth leakage current 0.5 mA
(protected if connected to mains voltage)
For use with open- or closed-loop control units
Power factor: 0.98 at 100% operation

DC voltage
for operation: 176-264 V
for ignition: 198-264 V

$\mathbf{T 5}$	TC	BUILT-IN	1-10 \mathbf{V}
$\mathbf{T 8}$		INDEPENDENT	DALI/PUSH

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{array}{\|l\|} \hline \text { Voltage } \mathrm{AC} \\ 50,60 \mathrm{~Hz} \\ \mathrm{~V} \pm 10 \% \\ \hline \end{array}$	Energy efficiency	Ambient temperature $\mathrm{ta}_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	
18	TC-DEL/-TEL	G24q-2/GX24q-2	1×16.5	ELXd 118.802	188564	220-240	Al BAT	5 to 55	max. 70	K3	21.0	100.0
2×18	TC-DEL/-TEL	G24q-2/GX24q-2	2×16.5	ELXd 218.803	188549	220-240	Al BAT	5 to 55	max. 70	K4	38.0	100.0
26	TC-DEL/TEL	G24q-3/GX24q-3	1×24.0	ELXd 142.806	188565	220-240	Al BAT	10 to 50	max. 70	K3	27.0	100.0
2×26	TC-DEL/TEL	G24q-3/G×24q-3	2×24.0	ELXd 242.807	188550	220-240	Al BAT	10 to 50	max. 70	K4	53.0	100.0
				ElXd 226.801	188431	220-240	Al BAT	10 to 50	max. 70	K3	54.0	100.0
32	TC-TEL	GX24q-3	1×32.0	ElXd 142.806	188565	220-240	Al BAT	10 to 50	max. 70	K3	36.0	100.0
2×32	TC-TEL	GX24q-3	2×32.0	ElXd 242.807	188550	220-240	Al BAT	10 to 50	max. 70	K4	71.0	100.0
42	TC-TEL	GX24q-4	1×43.0	ElXd 142.806	188565	220-240	Al BAT	10 to 50	max. 70	K3	46.0	100.0
2×42	TC-TEL	GX24q-4	2×43.0	ELXd 242.807	188550	220-240	Al BAT	10 to 50	max. 70	K4	92.0	100.0
57	TC-TEL	GX24q-5	1×57.0	ELXd 170.808	188276	220-240	Al BAT	10 to 55	max. 60	K4+	62.0	100.0
70	TC-TEL	GX24q-6	1×70.0	ELXd 170.808	188276	220-240	Al BAT	10 to 55	max. 60	K4+	77.0	100.0

Circuit diagrams see pages 255-259

ELXd - Dimmable 1-10 V for TC-DEL, TC-TEL lamps

Independent electronic ballasts
Casing with cord grip: K3, K4 and K4 ${ }^{+}$with venting slits
Control voltage: DC 1-10 V acc. to
EN 60929 with earth leakage current 0.5 mA (protected if connected to mains voltage)
For use with open- or closed-loop control units
Power factor: 0.98 at 100% operation

DC voltage
for operation: 176-264 V
for ignition: 198-264 V

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature $\operatorname{ta}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
18	TC-DEL/TEL	G24q-2/GX24q-2	1×16.5	ELXd 118.802	188694	220-240	Al BAT	5 to 55	max. 70	K3	21.0	100.0
2×18	TC-DEL/-TEL	G24q-2/GX24q-2	2×16.5	ElXd 218.803	188696	220-240	Al BAT	5 to 55	max. 70	K4	38.0	100.0
26	TC-DEL/TEL	G24q-3/GX24q-3	1×24.0	ELXX 142.806	188695	220-240	Al BAT	10 to 50	max. 70	K3	27.0	100.0
2×26	TC-DEL/TEL	G24q-3/GX24q-3	2×24.0	ELXd 242.807	188697	220-240	Al BAT	10 to 50	max. 70	K4	53.0	100.0
				ELXd 226.801	188490	220-240	Al BAT	10 to 50	max. 70	K3	54.0	100.0
32	TC-TEL	GX24q-3	1×32.0	ELXd 142.806	188695	220-240	Al BAT	10 to 50	max. 70	K3	36.0	100.0
2×32	TC-TEL	GX24q-3	2×32.0	ELXd 242.807	188697	220-240	Al BAT	10 to 50	max. 70	K4	71.0	100.0
42	TC-TEL	GX24q-4	1×43.0	ELXd 142.806	188695	220-240	Al BAT	10 to 50	max. 70	K3	46.0	100.0
2×42	TC-TEL	GX24q-4	2×43.0	ELXd 242.807	188697	220-240	Al BAT	10 to 50	max. 70	K4	92.0	100.0
57	TC-TEL	GX24q-5	1×57.0	ElXd 170.808	188495	220-240	Al BAT	10 to 55	max. 60	K4+	62.0	100.0
70	TC-TEL	GX24q-6	1×70.0	ELXX 170.808	188495	220-240	Al BAT	10 to 55	max. 60	K4+	77.0	100.0

[^52] SOLUTIONS

Electronic Ballasts for TC and T Lamps

ELXd - Dimmable with push key or DALI for TC-DEL, TC-TEL lamps

Electronic ballasts
PUSH: dimmable with usual push key and sensor
DALI: poles are not polarity sensitive
(protected if connected to mains voltage) for use with DALI compatible control units
Automatic restart after lamp has been changed
Power factor: > 0.95 at 100% operation
DC voltage
for operation: 176-264 V
for ignition: 198-264 V
Standby power consumption: $\leq 0.5 \mathrm{~W}$

Complete implementation of the DALI-standard
addressable, memory store for scenes and groups revertive information communication, physical and RND-selection, standardized lamp characteristic Low-power design ensures very low standby
power consumption
Compatible with IEC 62386

Electronic built-in ballasts

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature $\mathrm{t}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
14	TC-TEL	GR14q-1	1×16.7	ELXd 117.715	188864	220-240	Al BAT	10 to 50	max. 65	K2	18.0	103.8
2×14	TC-TEL	GR14q-1	2×14.0	ELXd 217.717	188866	220-240	Al BAT	10 to 60	max. 70	K3	33.8	95.9
17	TC-TEL	GR14q-1	1×20.0	ELXd 117.715	188864	220-240	Al BAT	10 to 50	max. 65	K2	22.0	105.3
2×17	TC-TEL	GR14q-1	2×17.0	ELXd 217.717	188866	220-240	Al BAT	10 to 60	max. 70	K3	40.7	95.2
18	TC-DEL/-TEL	G24q-2/GX24q-2	1×16.5	ELXd 118.705	188952	220-240	Al BAT	10 to 50	max. 65	K2	20.2	105.5
2×18	TC-DEL/-TEL	G24q-2/GX24q-2	2×18.0	ELXd 218.707	188954	220-240	Al BAT	10 to 50	max. 70	K3	40.0	100.1
26	TC-DEL/-TEL	G24q-3/GX24q-3	1×25.0	ELXd 142.709	188923	220-240	Al BAT	10 to 50	max. 65	K2	27.5	106.8
2×26	TC-DEL/-TEL	G24q-3/GX24q-3	2×24.0	ELXd 242.711	188974	220-240	Al BAT	10 to 50	max. 70	K3	56.0	97.9
32	TC-TEL	GX24q-3	1×32.0	ELXd 142.709	188923	220-240	Al BAT	10 to 50	max. 65	K2	34.5	106.3
2×32	TC-TEL	GX24q-3	2×32.0	ELXd 242.711	188974	220-240	Al BAT	10 to 50	max. 70	K3	69.0	97.6
42	TC-TEL	GX24q-4	1×42.0	ELXd 142.709	188923	220-240	Al BAT	10 to 50	max. 65	K2	45.0	103.8
2×42	TC-TEL	GX24q-4	2×42.0	ELXd 242.711	188974	220-240	Al BAT	10 to 50	max. 70	K3	90.0	99.1

Circuit diagrams see pages 255-259

Independent electronic ballasts

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature $\mid \mathrm{ta}_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mid \mathrm{tc}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
14	TC-TEL	GR14q-1	1×16.7	ElXd 117.715	188865	220-240	AIBAT	10 to 50	max. 65	K2	18.0	103.8
2×14	TC-TEL	GR14q-1	2×14.0	ElXd 217.717	188867	220-240	AIBAT	10 to 60	max. 70	K3	33.8	95.9
17	TC-TEL	GR14q-1	1×20.0	ElXd 117.715	188865	220-240	AlBAT	10 to 50	max. 65	K2	22.0	105.3
2×17	TC-TEL	GR14q-1	2×17.0	ElXd 217.717	188867	220-240	AlBAT	10 to 60	max. 70	K3	40.7	95.2
18	TC-DEL/TEL	G24q-2/GX24q-2	1×16.5	ELXd 118.705	188953	220-240	AIBAT	10 to 50	max. 65	K2	20.2	105.5
2×18	TC-DEL/-TEL	G24q-2/GX24q-2	2×18.0	ElXd 218.707	188955	220-240	AlBAT	10 to 60	max. 70	K3	40.0	100.1
26	TC-DEL/-TEL	G24q-3/GX24q-3	1×25.0	ElXd 142.709	188924	220-240	AlBAT	10 to 50	max. 65	K2	27.5	106.3
2×26	TC-DEL/-TEL	G24q-3/GX24q-3	2×24.0	ElXd 242.711	188975	220-240	AIBAT	10 to 50	max. 70	K3	56.0	97.9
32	TC-TEL	GX24q-3	1×32.0	ElXd 142.709	188924	220-240	AlBAT	10 to 50	max. 65	K2	34.8	106.3
2×32	TC-TEL	GX24q-3	2×32.0	ElXd 242.711	188975	220-240	AlBAT	10 to 50	max. 70	K3	69.0	97.6
42	TC-TEL	GX24q-4	1×42.0	ElXd 142.709	188924	220-240	AlBAT	10 to 50	max. 65	K2	45.0	103.8
2×42	TC-TEL	GX24q-4	2×42.0	ELXd 242.711	188975	220-240	AlBAT	10 to 50	max. 70	K3	90.0	99.1

[^53]
ELXs - Warm Start
 for T5 and
 T8 Lamps

Electronic built-in ballasts
Casing: heat-resistant polyamide
Power factor: approx. 0.6
(depending on the lamp output)

DC voltage operation: 198-264 V
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$
RFI-suppressed
For luminaires of protection class I and II
Degree of protection: IP20
Fixing slots for screws M4
For lighting systems with
high switching frequency (>5/day)
EOL shut down approved
acc. to EN 61347 Test 2

K20

K21

Lamp				Electronic ballast							System
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature $t_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W

For T5 lamps											
4	T5	G5	1×4.6	ELXs 116.900	188661	220-240	A3	-15 to 55	max. 75	K20	5.9
			1×4.6	ELXs 116.903	188662	220-240	A3	- 15 to 55	max. 75	K21	5.9
6	T5	G5	1×6.0	ELXs 116.900	188661	220-240	A2	- 15 to 55	max. 75	K20	7.5
			1×6.0	ELXs 116.903	188662	220-240	A2	- 15 to 55	max. 75	K21	7.5
8	T5	G5	1×7.1	ELXs 116.900	188661	220-240	A2	-15 to 55	max. 75	K20	8.6
			1×7.1	ELXs 116.903	188662	220-240	A2	-15 to 55	max. 75	K21	8.6
13	T5	G5	1×12.0	ELXs 116.900	188661	220-240	A2	- 15 to 55	max. 75	K20	13.1
			1×12.0	ELXs 116.903	188662	220-240	A2	-15 to 55	max. 75	K21	13.1
14	T5	G5	1×14.1	ELXs 121.901	188663	220-240	A2	- 15 to 55	max. 80	K20	16.3
			1×14.1	ELXs 121.904	188664	220-240	A2	- 15 to 55	max. 80	K21	16.3
21	T5	G5	1×19.1	ELXs 121.901	188663	220-240	A2	- 15 to 55	max. 80	K20	21.8
			1×19.1	ELXs 121.904	188664	220-240	A2	- 15 to 55	max. 80	K21	21.8
24	T5	G5	1×20.1	ELXs 124.902	188665	220-240	A2	-15 to 55	max. 85	K20	21.5
			1×20.1	ELXs 124.905	188666	220-240	A2	- 15 to 55	max. 85	K21	21.5

For 78 lamps											
14	T8	G13	1×13.5	ELXs 124.902	188665	220-240	A2	- 15 to 55	max. 85	K20	16.2
			1×13.5	ELXs 124.905	188666	220-240	A2	- 15 to 55	max. 85	K21	16.2
15	T8	G13	1×14.1	ELXs 124.902	188665	220-240	A2	- 15 to 55	max. 85	K20	17.6
			1×14.1	ELXs 124.905	188666	220-240	A2	- 15 to 55	max. 85	K21	17.6
16	T8	G13	1×12.0	ELXs 116.900	188661	220-240	A2	- 15 to 55	max. 75	K20	13.4
			1×12.0	ELXs 116.903	188662	220-240	A2	- 15 to 55	max. 75	K21	13.4
18	T8	G13	1 $\times 15.9$	ELXs 124.902	188665	220-240	A2	- 15 to 55	max. 85	K20	18.5
			1×15.9	ELXs 124.905	188666	220-240	A2	- 15 to 55	max. 85	K21	18.5

[^54]
ELXc - Warm Start
 for T 5 and T8 Lamps

Slim independent ectronic ballasts
With cord grip for leads: HO3VVH2-F $2 \times 0.75 \mathrm{~mm}^{2}$
Preheating with adjustable lamp output
Casing: heat-resistant polyamide
DC voltage operation: 198-255 V
Push-in terminals: 0.5-1.5 mm²
RFI-suppressed
For luminaires of protection class I
Degree of protection: IP20
Fixing slots for screws M4
Automatic restart after lamp has been changed
For lighting systems with
high switching frequency (> 5/day)
EOL shut down approved
acc. to EN 61347 Test 2

K7.3

(1)

Lamp				Electronic ballast								System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Mains current mA	Energy efficiency	Power factor	Ambient temperature $t_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Output W	Luminous factor $\%$

For T5 lamps

new	14	T5	G5	1×13.2	ELXc 135.225	183103	220-240	60-80	A2	> 0.90	-25 to 50	max. 90	16,3	101,0
new	21	T5	G5	2×20.7	ELXc 135.225	183103	220-240	80-100	A2	> 0.92	-25 to 50	max. 90	23,1	100,0
new	28	T5	G5	1×27.8	ELXc 135.225	183103	220-240	110-130	A2	> 0.95	-25 to 50	max. 90	30,1	100,0
new	35	T5	G5	2×34.7	ELXc 135.225	183103	220-240	150-180	A2	> 0.95	-25 to 50	max. 90	36,9	98,0
	For 18 lamps													
new	15	T8	G13	1×13.5	ELXc 136.226	183104	220-240	60-80	A2	> 0.93	-25 to 50	max. 90	15,8	105,0
new	18	T8	G13	1×16.0	ELXc 136.226	183104	220-240	80-100	A2	> 0.93	-25 to 50	max. 90	18,1	102,0
new	30	T8	G13	1×24.0	ELXc 136.226	183104	220-240	110-130	A2	> 0.95	-25 to 50	max. 90	33,8	105,0
new	36	T8	G13	1×32.0	ELXc 136.226	183104	220-240	150-180	A2	> 0.95	-25 to 50	max. 90	34.5	97,0

Electronic Ballasts for TC and T Lamps

ELXc - Warm Start for T5 and T8 Lamps

Electronic built-in ballasts
Casing: metal
Power factor: ≥ 0.95
RFI-suppressed
For luminaires of protection class I

Degree of protection: IP20
For lighting systems with
high switching frequency (> 5/day)

M6

M22/M24

ELXc - Warm start for $\mathbf{T} 5$ lamps with lamp detection

DC voltage
for operation: 176-276 V
for ignition: 198-264 V
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5

EOL shut down approved
acc. to EN 61347 Test 2
Automatic lamp detection ($\mathrm{T} 5 \mathrm{HO} / \mathrm{HE}$)
Optimum pre-heating of the filament ensures
lamps can be ignited within 1 second.

[^55]
ELXc - Warm Start for T5 and T8 Lamps

DC voltage
for operation: 176-264 V
for ignition: 198-264 V
(ELXC 135.856, 235.857, 149.858, 154.864,
180.866, 270.206; 280.538:

DC voltage cannot be reduced to 176 V)
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$

For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
EOL shut down approved
acc. to EN 61347 Test 2 (for T5)
EOL shut down (for T8)
15
18
TC BUILT-IN
1-10V
DALI/PUSH

								T5 T8	TC	UILT-IN DEPEND	NT	1-10 V DALI/PUSH
Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
For T5 lamps - Casing: $\mathrm{M} 8, \mathrm{M} 10$ and M 11												
14	T5	G5	1×14.0	ELXc 135.856	188093	220-240	A2 BAT	- 15 to 55	max. 70	M10	17.0	110.7
2×14	T5	G5	2×14.0	ELXC 235.857	188094	220-240	A2 BAT	-15 to 55	max. 70	M10	33.4	107.0
3×14	T5	G5	3×14.0	ELXc 414.868	188438	220-240	A2 BAT	-15 to 55	max. 70	M8	48.0	105.4
4×14	T5	G5	4×14.0	ELXc 414.868	188438	220-240	A2 BAT	-15 to 55	max. 70	M8	63.0	102.3
21	T5	G5	1×21.0	ELXc 135.856	188093	220-240	A2 BAT	- 15 to 55	max. 70	M10	24.0	107.4
2×21	T5	G5	2×21.0	ELXc 235.857	188094	220-240	A2 BAT	-15 to 55	max. 70	M1O	50.2	110.6
24	T5	G5	1×22.5	ELXc 140.862	188140	220-240	A2 BAT	- 15 to 55	max. 70	M10	27.0	114.0
2×24	T5	G5	2×22.5	ELXc 240.863	188616	220-240	A2 BAT	- 15 to 55	max. 70	M 10	51.0	107.4
3×24	T5	G5	3×22.5	ELXc 424.223	183039	220-240	A2 BAT	- 15 to 55	max. 75	M8	78.0	103.7
4×24	T5	G5	4×22.5	ELXc 424.223	183039	220-240	A2	-15 to 55	max. 75	M8	101.7	103.5
28	T5	G5	1×28.0	ELXc 135.856	188093	220-240	A2 BAT	-15 to 55	max. 70	M10	32.0	104.9
2×28	T5	G5	2×28.0	ELXC 235.857	188094	220-240	A2 BAT	-15 to 55	max. 70	M10	60.6	106.2
3x28	T5	G5	3×27.9	ELXC 328.224	183094	220-240	A2	- 15 to 55	max. 70	M8	89.9	100.0
35	T5	G5	1×35.0	ELXc 135.856	188093	220-240	A2 BAT	-15 to 55	max. 70	M10	39.5	102.7
2×35	T5	G5	2×35.0	ELXC 235.857	188094	220-240	A2 BAT	-15 to 55	max. 70	M10	74.5	102.5
39	T5	G5	1×38.0	ELXc 140.862	188140	220-240	A2 BAT	- 15 to 55	max. 70	M10	43.0	107.0
2×39	T5	G5	2×38.0	ELXc 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	82.0	97.9
49	T5	G5	1×49.0	ELXc 149.858	188095	220-240	A2 BAT	- 15 to 55	max. 70	M10	54.0	102.5
2×49	T5	G5	2×49.0	ELXc 249.859	188617	220-240	A2 BAT	- 15 to 50	max. 70	M10	113.0	106.6
54	T5	G5	1×54.0	ELXc 154.864	188142	220-240	A2 BAT	-15 to 55	max. 65	M10	59.0	101.1
2×54	T5	G5	2×54.0	ELXc 254.865	188618	220-240	A2 BAT	-15 to 50	max. 70	M10	119.0	106.0
80	T5	G5	1×80.0	ELXc 180.866	188144	220-240	A2 BAT	-15 to 55	max. 70	M10	87.0	97.6
2×80	T5	G5	2×80.0	ELXc 280.538	188619	220-240	A2 BAT	-15 to 50	max. 70	M11	175.0	97.2
For T8 lamps - Casing: M8												
3×18	T8	G13	3×16.0	ELXC 418.204	188744	220-240	A2 BAT	-15 to 55	max. 70	M8	56.0	100.8
4×18	T8	G13	4×16.0	ELXc 418.204	188744	220-240	A2 BAT	-15 to 55	max. 70	M8	71.5	98.9
3×36	T8	G13	3×32.0	ELXc 336.214	188595	220-240	A2 BAT	- 15 to 50	max. 65	M8	105.0	99.4

Circuit diagrams see pages 255-259

ELXc EffectLine - Warm start

Warm start for T5 and T8 lamps - Casing: M6, M8 and M 10

DC voltage
for operation: 176-264 V
for ignition: 198-264 V
(not possible for T8)
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$
EOL shut down approved
acc. to EN 61347 Test 2 (for T5)
EOL shut down (for T8)

T5	TC	BUILT-IN	1-10V
T8		INDEPENDENT	DALI/PUSH

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	Voltage AC $\begin{aligned} & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature $\mathrm{t}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	$\begin{aligned} & \text { Luminous } \\ & \text { factor } \\ & \% \end{aligned}$
For T5 lamps - Casing: M6 and M10												
14	T5	G5	1×14.3	ELXc 135.220	188921	220-240	A2 BAT	-15 to 55	max. 70	M6	17.0	104.8
2×14	T5	G5	2×14.3	ELXc 235.221	188922	220-240	A2 BAT	-15 to 55	max. 70	M 10	34.5	101.9
21	T5	G5	1×20.4	ELXc 135.220	188921	220-240	A2 BAT	- 15 to 55	max. 70	M6	23.3	106.9
2×21	T5	G5	2×21.4	ELXc 235.221	188922	220-240	A2 BAT	-15 to 55	max. 70	M 10	48.3	104.9
28	T5	G5	1×26.7	ELXc 135.220	188921	220-240	A2 BAT	-15 to 55	max. 70	M6	29.9	107.5
2×28	T5	G5	2×28.7	ELXc 235.221	188922	220-240	A2 BAT	- 15 to 55	max. 70	M 10	62.1	109.0
35	T5	G5	1×32.6	ELXc 135.220	188921	220-240	A2 BAT	-15 to 55	max. 70	M6	36.5	103.0
2×35	T5	G5	2×35.6	ELXc 235.221	188922	220-240	A2 BAT	- 15 to 55	max. 70	M 10	78.2	100.8

For T8 lamps - Casing: $M 8$

For T8 lamps - Casing: M8												
18	T8	G13	1×16.0	ELXC 136.207	$\mathbf{1 8 8 7 0 4}$	$220-240$	A2 BAT	-20 to 55	max. 60	M8	18.4	105.0
2×18	T8	G13	2×16.0	ELXc 236.208	$\mathbf{1 8 8 7 0 5}$	$220-240$	A2 BAT	-20 to 50	max. 60	M8	35.2	106.0
36	T8	G13	1×32.0	ELXC 136.207	$\mathbf{1 8 8 7 0 4}$	$220-240$	A2 BAT	-20 to 55	max. 60	M8	35.4	97.0
2×36	T8	G13	2×32.0	ELXc 236.208	$\mathbf{1 8 8 7 0 5}$	$220-240$	A2 BAT	-20 to 50	max. 60	M8	69.7	98.0
58	T8	G13	1×50.0	ELXC 158.209	$\mathbf{1 8 8 7 0 6}$	$220-240$	A2 BAT	-20 to 50	max. 60	M8	52.6	106.0
2×58	T8	G13	2×50.0	ELXc 258.210	$\mathbf{1 8 8 7 0 7}$	$220-240$	A2	-20 to 50	max. 65	M8	109.9	105.0

Circuit diagrams see pages 255-259

Warm start for T8 lamps - Casing: M8

For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
EOL shut down

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \\ & \hline \end{aligned}$	Energy efficiency	Ambient temperature $\mathrm{ta}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
18	T8	G13	1×16.0	ELXc 136.207	188708	220-240	A2 BAT	-20 to 55	max. 60	M8	18.4	105.0
2×18	T8	G13	2×16.0	ELXc 236.208	188709	220-240	A2 BAT	-20 to 50	max. 60	M8	35.2	106.0
36	T8	G13	1×32.0	ELXc 136.207	188708	220-240	A2 BAT	-20 to 55	max. 60	M8	35.4	97.0
2×36	T8	G13	2×32.0	ELXc 236.208	188709	220-240	A2 BAT	-20 to 50	max. 60	M8	69.7	98.0
58	T8	G13	1×50.0	ELXc 158.209	188710	220-240	A2 BAT	-20 to 50	max. 60	M8	52.6	106.0
2×58	T8	G13	2×50.0	ELXc 258.210	188711	220-240	A2	-20 to 50	max. 65	M8	109.9	105.0

Circuit diagrams see pages 255-259

ELXc EffectLine II - Warm start

Warm start for T8 lamps - Casing: M8

DC voltage
for operation: 176-264 V
(DC voltage can be reduced to 176 V for 2 hours)
for ignition: 198-264 V
IDC terminals: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC/push-in terminals for leads HO5V-U 0.5
EOL 2 shut down

$\mathbf{T 5}$	TC	BUILT-IN	1-10V
T8		OINDEPENDENT	DALI/PUSH

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature $\operatorname{ta}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mid \mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	\qquad $\begin{aligned} & \text { factor } \\ & \% \\ & \hline \end{aligned}$
18	T8	G13	1×16.0	ELXc 136.216	188868	220-240	A2 BAT	-20 to 55	max. 65	M8	19.8	105.7
2×18	T8	G13	2×16.0	ELXc 236.217	188869	220-240	A2 BAT	-20 to 60	max. 70	M8	38.0	101.6
36	T8	G13	1×32.0	ELXc 136.216	188868	220-240	A2 BAT	-20 to 55	max. 65	M8	34.4	97.5
2×36	T8	G13	2×32.0	ELXc 236.217	188869	220-240	A2 BAT	-20 to 60	max. 70	M8	71.9	110.6
58	T8	G13	1×50.0	ElXc 158.218	188870	220-240	A2 BAT	-20 to 60	max. 65	M8	56.0	100.8
2×58	T8	G13	2×50.0	ELXc 258.219	188871	220-240	A2	-20 to 55	max. 70	M8	110.0	101.0

Circuit diagrams see pages 255-259

Warm start for T8 lamps - Casing: M8

DC voltage
for operation: 176-264 V
(DC voltage can be reduced to 176 V for 2 hours)
for ignition: 198-264 V
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$
EOL 2 shut down

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature $\operatorname{ta}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mid \mathrm{tc}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
18	T8	G13	1×16.0	ELXc 136.216	188912	220-240	A2 BAT	-20 to 55	max. 65	M8	19.8	105.7
2×18	T8	G13	2×16.0	ELXc 136.217	188913	220-240	A2 BAT	-20 to 60	max. 60	M8	38.0	101.6
36	T8	G13	1×32.0	ELXc 136.216	188912	220-240	A2 BAT	-20 to 55	max. 65	M8	34.4	97.5
2×36	T8	G13	2×32.0	ELXc 236.217	188913	220-240	A2 BAT	-20 to 60	max. 70	M8	71.9	110.6
58	T8	G13	1×50.0	ELXc 158.218	188914	220-240	A2 BAT	-20 to 60	max. 65	M8	56.0	100.8
2×58	T8	G13	2×50.0	ELXc 258.219	188915	220-240	A2	-20 to 50	max. 70	M8	110.0	101.0

Circuit diagrams see pages 255-259

ELXc - Warm Start New T5 Effectline

Electronic built-in ballasts
Casing: metal
DC voltage
for operation: 176-264 V
for ignition: 198-264 V
Push-in terminals with lever opener: $0.5-1 \mathrm{~mm}^{2}$ RFI-suppressed
For luminaires of protection class I Degree of protection: IP20
For lighting systems with
high switching frequency (> 5/day)
Automatic restart after lamp has been changed Suitable for use in luminaires for emergency lighting systems acc. to VDE 0108 EOL shut down approved acc. to EN 61347 Test 1

Lamp				T5 TC BUILT-IN 18 INDEPENDENT										1-10 VDALI/PUSH	
				Electronic ballast										System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage } \mathrm{AC} \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \\ & \hline \end{aligned}$	Energy efficiency	Power factor	Ambient temperature $t_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing	$\mathrm{I}_{\mathrm{mm}}^{\mathrm{L}}$	W mm	Output W	$\begin{aligned} & \text { Luminous } \\ & \text { factor } \\ & \% \end{aligned}$
14	T5 HE	G5	1×14.0	ElXc 228.229	183111	220-240	EEI=A2	> 0.90	0 to 50	max. 75	M7.1	280	30	16,5	100
				ELXc 135.231	183113	220-240	EEI=A2	> 0.90	0 to 50	max. 75	M7.1	280	30	16,5	100
2×14	T5 HE	G5	2×14.0	ELXC 228.229	183111	220-240	EEI=A2	> 0.92	0 to 50	max. 75	M7. 1	280	30	31,0	100
3×14	T5 HE	G5	3×14.0	ELXc 414.227	183109	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M7.2	280	39	48,0	100
4×14	T5 HE	G5	4×14.0	ELXc 414.227	183109	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M7.2	280	39	63,0	100
21	T5 HE	G5	1×21.0	ElXc 228.229	183111	220-240	EEI=A2	> 0.90	0 to 50	max. 75	M7.1	280	30	24,0	100
				ELXc 135.231	183113	220-240	EEI=A2	> 0.92	0 to 50	max. 75	M7.1	280	30	24,0	100
2×21	T5 HE	G5	2×21.0	ELXC 228.229	183111	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M7.1	280	30	47,5	100
24	T5 HO	G5	1×24.0	ELXC 239.233	183115	220-240	EEI=A2	> 0.90	0 to 50	max. 75	M7.1	280	30	28,0	100
2×24	T5 HO	G5	2×24.0	ELXC 239.233	183115	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M7. 1	280	30	53,5	100
3×24	T5 HO	G5	3×24.0	ELXC 424.228	183110	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M7.2	280	39	76,0	100
4×24	T5 HO	G5	4×24.0	ELXC 424.228	183110	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M7.2	280	39	100,0	100
28	T5 HE	G5	1×28.0	ElXc 228.229	183111	220-240	EEI=A2	> 0.92	0 to 50	max. 75	M7. 1	280	30	31,0	100
				ElXc 135.231	183113	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M7. 1	280	30	32,0	100
2×28	T5 HE	G5	2×28.0	ELXC 228.229	183111	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M7.1	280	30	61,0	100
				ELXc 328.230	183112	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M7.2	280	39	61,0	100
3×28	T5 HE	G5	3×28.0	ELXC 328.230	183112	220-240	EEI=A2	>0.95	0 to 50	max. 75	M7.2	280	39	94,0	100
35	T5 HE	G5	1×35.0	ELXc 135.231	183113	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M7. 1	280	30	38,0	100
2×35	T5 HE	G5	2×35.0	ELXc 235.232	183114	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M10.2	360	30	74,0	100
39	T5 HO	G5	1×39.0	ELXC 239.233	183115	220-240	EEI=A2	> 0.92	0 to 50	max. 75	M7. 1	280	30	43,5	100
2×39	T5 HO	G5	2×39.0	ELXc 239.233	183115	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M7.1	280	30	83,0	100
49	T5 HO	G5	1×49.0	ELXc 149.234	183116	220-240	EEI=A2	>0.95	0 to 50	max. 75	M7.1	280	30	51,0	100
2×49	T5 HO	G5	2×49.0	ELXc 249.235	183117	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M10.2	360	30	108,0	100
54	T5 HO	G5	1×54.0	ELXC 254.236	183118	220-240	EEI=A2	> 0.92	0 to 50	max. 75	M7.1	280	30	58,0	100
2×54	T5 HO	G5	2×54.0	ELXC 254.236	183118	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M7.1	280	30	113,0	100
80	T5 HO	G5	1×80.0	ELXc 180.237	183119	220-240	EEI=A2	> 0.95	0 to 50	max. 75	M7.1	280	30	86,0	100

M7.1 / M 10.2

M7.2

new
new
new
new
new
new
new

new

new
new
new
new
new
new

new

new
new $\frac{2 \times 35}{39}$
new
new
new
new
new
new

[^56]
ELXc - ECO EffectLine
 Warm Start for T5 and T8 Lamps

Electronic built-in ballasts
Casing: PC, white
DC voltage: 198-264 V
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$ RFI-suppressed
For luminaires of protection class I
Degree of protection: IP20
For lighting systems with
high switching frequency (>5/day)
EOL shut down approved acc. to EN 61347 Test 1 (for T5 lamps); EOL shut down (for T8 lamps)

Lamp				Electronic ballast									System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Power factor	Ambient temperature $\mathrm{t}_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Casing $\left\lvert\, \begin{aligned} & \mathrm{W} \\ & \mathrm{~mm} \end{aligned}\right.$	H mm	Output W	Luminous factor $\%$

For T5 lamps

$\begin{array}{ll}\text { new } \\ \text { new } & \frac{14}{2 \times 1} \\ \frac{4}{2} \\ \text { new } & \frac{2}{2} \\ \frac{2}{2}\end{array}$

new	18	T8	G13	1×15.5	ELXC 118.243	183127	220-240	A2	> 0.95	- 15 to 50	max. 70	K5.1	30	28	18.5	98
new	2×18	T8	G13	2×15.5	ELXc 218.246	183130	220-240	A2	> 0.96	- 15 to 50	max. 70	K5.1	30	28	35.0	98
new	4×18	T8	G13	4×15.5	ELXC 418.249	183133	220-240	A2	> 0.98	- 15 to 50	max. 70	K5.2	40	30	69.0	97
new	36	T8	G13	1×30.5	ELXC 136.244	183128	220-240	A2	> 0.96	- 15 to 50	max. 70	K5.1	30	28	34.0	95
new	2×36	T8	G13	2×31.0	ELXc 236.247	183131	220-240	A2	> 0.98	-15 to 50	max. 70	K5.2	40	30	68.0	97
new	58	T8	G13	1×48.0	ELXc 158.245	183129	220-240	A2	> 0.96	- 15 to 50	max. 70	K5.1	30	28	53.5	96
new	2×58	T8	G13	2×49.5	ELXc 258.248	183132	220-240	A2	> 0.98	- 15 to 50	max. 80	K5.2	40	30	107.0	100

[^57]K7.1 / K7.2

K5.1 / K5.2

ELXd - Dimmable for T5 and T8 Lamps

Electronic built-in ballasts
Casing: metal
Power factor: ≥ 0.95 at 100% operation DC voltage
for operation: 154-276V(M22, M23, M24)
for operation: 176-264 V (M9)
for ignition: 198-264 V
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
RFI-suppressed
For luminaires of protection class I
Degree of protection: IP20
For lighting systems with
high switching frequency (> 5/day)
Suitable for use in luminaires for emergency
lighting systems acc. to VDE 0108

M9

M23

M22/M24

ELXd - Dimmable 1-10 V with lamp detection

Dimming range:

approx. 1-100\% of lamp power
Control voltage: DC 1-10 V acc. to EN 60929 with earth leakage current 0.5 mA (protected if connected to mains voltage)

For use with open- or closed-loop control units
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
EOL shut down approved
acc. to EN 61347 Test 2 (for T5)
EOL 2 shut down (for T8)

	T5 lamps - Casing: M10, M22, M23 and M24												
	14	T5	G5	1×14.0	ELXX 135.823	188717	220-240	Al BAT	10 to 55	max. 65	M10	17.0	99.5
					ELXX 124.607	188336	220-240	Al BAT	10 to 50	max. 75	M22	16.0	100.0
new	2×14	T5	G5	2×13.6	ELXd 235.735	183059	220-240	Al BAT	10 to 50	max. 70	M 11	33.4	98.7
				2×14.0	ELXd 224.608	188337	220-240	Al BAT	10 to 50	max. 75	M24	31.0	100.0
	3×14	T5	G5	3×14.0	ELXd 324.623	188597	220-240	Al BAT	10 to 50	max. 75	M23	45.3	100.0
	4×14	T5	G5	4×14.0	ELXd 424.624	188598	220-240	Al BAT	10 to 50	max. 75	M23	60.4	100.0
	21	T5	G5	1×21.0	ELXX 135.823	188717	220-240	Al BAT	10 to 55	max. 65	M10	24.0	99.0
					ELXX 139.609	188338	220-240	Al BAT	10 to 50	max. 75	M22	23.0	100.0
new	2×21	T5	G5	2×20.5	ElXd 235.735	183059	220-240	Al BAT	10 to 50	max. 70	M 11	47.0	95.1
				2×21.0	ElXd 239.610	188339	220-240	Al BAT	10 to 50	max. 75	M24	45.0	100.0
	24	T5	G5	1×23.0	ELXX 124.607	188336	220-240	Al BAT	10 to 50	max. 75	M22	26.0	100.0
	2×24	T5	G5	2×23.0	ELXd 224.608	188337	220-240	Al BAT	10 to 50	max. 75	M24	50.0	100.0
	3×24	T5	G5	3×23.0	ELXd 324.623	188597	220-240	Al BAT	10 to 50	max. 75	M23	73.4	100.0
	4×24	T5	G5	4×23.0	ELXd 424.624	188598	220-240	Al BAT	10 to 50	max. 75	M23	97.6	100.0
	28	T5	G5	1×28.0	ELXX 135.823	188717	220-240	Al BAT	10 to 55	max. 65	M10	32.0	98.6
					ELXd 154.611	188340	220-240	Al BAT	10 to 50	max. 75	M22	31.0	100.0
new	2×28	T5	G5	2×27.3	ELXd 235.735	183059	220-240	Al BAT	10 to 50	max. 70	M11	62.1	97.6
				2×28.0	ElXd 254.612	188341	220-240	Al BAT	10 to 50	max. 75	M24	61.0	100.0
	35	T5	G5	1×35.0	ELXX 135.823	188717	220-240	Al BAT	10 to 55	max. 65	M10	38.0	95.0
					ELXX 180.613	188342	220-240	Al BAT	10 to 50	max. 75	M22	38.0	100.0
new	2×35	T5	G5	2×33.9	ELXX 235.735	183059	220-240	Al BAT	10 to 50	max. 70	M 11	76.9	96.7
				2×35.0	ELXd 249.614	188343	220-240	Al BAT	10 to 50	max. 75	M24	75.0	100.0
					ELXd 280.630	188604	220-240	Al BAT	10 to 50	max. 75	M24	75.0	100.0
	39	T5	G5	1×38.0	ELXX 139.609	188338	220-240	Al BAT	10 to 50	max. 75	M22	42.0	100.0
	2×39	T5	G5	2×38.0	ELXd 239.610	188339	220-240	Al BAT	10 to 50	max. 75	M24	82.0	100.0
	49	T5	G5	1×49.0	ELXX 180.613	188342	220-240	Al BAT	10 to 50	max. 75	M22	54.0	100.0
	2×49	T5	G5	2×49.0	ELXd 249.614	188343	220-240	Al BAT	10 to 50	max. 75	M24	104.0	100.0
					ELXd 280.630	188604	220-240	Al BAT	10 to 50	max. 75	M24	104.0	100.0
	54	T5	G5	1×54.0	ELXX 154.611	188340	220-240	Al BAT	10 to 50	max. 75	M22	59.0	100.0
	2×54	T5	G5	2×54.0	ELXd 254.612	188341	220-240	Al BAT	10 to 50	max. 75	M24	115.0	100.0
	80	T5	G5	1×80.0	ELXX 180.613	188342	220-240	Al BAT	10 to 50	max. 75	M22	88.0	100.0
	2×80	T5	G5	2×80.0	ELXd 280.630	188604	220-240	Al BAT	10 to 50	max. 75	M24	165.0	100.0

T8 lamps - Casing: M9 and M23

18	T8	G13	1×16.0	ELXd 118.718	$\mathbf{1 8 8 8 7 3}$	$220-240$	EEI=A1	10 to 50	max. 70	M9	21.0	102.1
2×18	T8	G13	2×16.0	ELXd 218.719	$\mathbf{1 8 8 8 7 4}$	$220-240$	EEI=A1	10 to 50	max. 70	M9	41.5	104.6
3×18	T8	G13	3×16.0	ELXd 318.622	$\mathbf{1 8 8 5 9 6}$	$220-240$	Al BAT	-20 to 50	max. 75	M 23	53.6	100.0
4×18	T8	G13	4×16.0	ELXd 418.625	$\mathbf{1 8 8 5 9 9}$	$220-240$	A1 BAT	-20 to 50	max. 75	M 23	69.3	100.0
36	T8	G13	1×32.0	ELXd 136.720	$\mathbf{1 8 8 8 7 5}$	$220-240$	A1 BAT	10 to 50	max. 70	M9	37.3	101.6
2×36	T8	G13	2×32.0	ELXd 236.721	$\mathbf{1 8 8 8 7 6}$	$220-240$	EEI A A	10 to 50	max. 70	M9	72.0	98.9
58	T8	G13	1×50.0	ELXd 158.722	$\mathbf{1 8 8 8 7 7}$	$220-240$	A1 BAT	10 to 50	max. 70	M9	55.0	101.3
2×58	T8	G13	2×50.0	ELXd 258.723	$\mathbf{1 8 8 8 7 8}$	$220-240$	EEI=A1	10 to 50	max. 75	M9	109.0	96.5

[^58]
ELXd - Dimmable with push key or DALI with lamp detection

Dimming range:

approx. 1-100\% of lamp power

PUSH: dimmable with usual push key
DALI: poles are not polarity sensitive
(protected if connected to mains voltage) for use with DALI compatible control units
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
EOL shut down approved
acc. to EN 61347 Test 2 (for T5)
EOL 2 shut down (for T8)
standby power consumption: $\leq 0.2 \mathrm{~W}$

Complete implementation of the DALI-standard: addressable, memory store for scenes and groups, revertive information communication, physical and RND-selection, standardized lamp characteristic Low-power design ensures very low standby power consumption
Compatible with IEC 62386

Lamp				Electronic ballast							System	
Output W	Type	Base	Power con- sumption W	Type	Ref. No.	Voltage AC $50,60 \mathrm{~Hz}$ $V \pm 10 \%$	Energy efficiency	Ambient temperature $\mathrm{ta}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$	Casing	Outpu W	Luminous factor \%

For T5 lamps - Casing: $\mathrm{M} 10, \mathrm{M} 11, \mathrm{M} 22, \mathrm{M} 23$ and M 24

new	14	T5	G5	1×13.7	ELXd 135.724	188932	220-240	Al BAT	10 to 50	max. 65	M 10	16.4	102.6
				1×14.0	ElXd 124.600	188329	220-240	Al BAT	10 to 50	max. 75	M22	16.0	100.0
new	2×14	T5	G5	2×13.6	ElXd 235.725	188933	220-240	Al BAT	10 to 50	max. 70	M 11	33.4	96.7
				2×14.0	ElXd 224.601	188330	220-240	Al BAT	10 to 50	max. 75	M24	31.0	100.0
	3×14	T5	G5	3×14.0	ElXd 324.626	188600	220-240	Al BAT	10 to 50	max. 75	M23	45.3	100.0
	4×14	T5	G5	4×14.0	ElXd 424.628	188602	220-240	Al BAT	10 to 50	max. 75	M23	60.4	100.0
new	21	T5	G5	1×20.7	ELXd 135.724	188932	220-240	Al BAT	10 to 50	max. 65	M 10	24.3	102.7
				1×21.0	ElXd 139.602	188331	220-240	Al BAT	10 to 50	max. 75	M22	23.0	100.0
new	2×21	T5	G5	2×20.5	ELXd 235.725	188933	220-240	Al BAT	10 to 50	max. 70	M 11	47.0	97.6
				2×21.0	ELXd 239.621	188350	220-240	Al BAT	10 to 50	max. 75	M24	45.0	100.0
	24	T5	G5	1×23.0	ELXd 124.600	188329	220-240	Al BAT	10 to 50	max. 75	M22	26.0	100.0
	2×24	T5	G5	2×23.0	ELXd 224.601	188330	220-240	Al BAT	10 to 50	max. 75	M24	50.0	100.0
	3×24	T5	G5	3×23.0	ELXd 324.626	188600	220-240	Al BAT	10 to 50	max. 75	M23	73.4	100.0
	4×24	T5	G5	4×23.0	ElXd 424.628	188602	220-240	Al BAT	10 to 50	max. 75	M23	97.6	100.0
new	28	T5	G5	1×27.8	ELXd 135.724	188932	220-240	Al BAT	10 to 50	max. 65	M10	32.0	104.1
				1×28.0	ELXd 154.603	188332	220-240	Al BAT	10 to 50	max. 75	M22	31.0	100.0
new	2x28	T5	G5	2×27.3	ElXd 235.725	188933	220-240	Al BAT	10 to 50	max. 70	M 11	62.1	95.1
				2×28.0	ElXd 254.604	188333	220-240	Al BAT	10 to 50	max. 75	M24	61.0	100.0
new	35	T5	G5	1×34.7	ElXd 135.724	188932	220-240	Al BAT	10 to 50	max. 65	M10	40.0	107.5
				1×35.0	ElXd 180.605	188334	220-240	Al BAT	10 to 50	max. 75	M22	38.0	100.0
new	2×35	T5	G5	2×33.9	ELXd 235.725	188933	220-240	Al Bat	10 to 50	max. 70	M 11	76.9	98.7
new				2×35.0	ElXd 280.631	188605	220-240	Al BAT	10 to 50	max. 75	M24	74,0	100,0
					ELXd 249.606	188335	220-240	Al BAT	10 to 50	max. 75	M24	75.0	100.0
	39	T5	G5	1×38.0	ELXd 139.602	188331	220-240	Al BAT	10 to 50	max. 75	M22	42.0	100.0
	2×39	T5	G5	2×38.0	ElXd 239.621	188350	220-240	Al BAT	10 to 50	max. 75	M24	82.0	100.0
	49	T5	G5	1×49.0	ELXd 180.605	188334	220-240	Al BAT	10 to 50	max. 75	M22	54.0	100.0
new	2×49	T5	G5	2×49.0	ElXd 280.631	188605	220-240	Al BAT	10 to 50	max. 75	M24	101,0	100,0
					ELXd 249.606	188335	220-240	Al BAT	10 to 50	max. 75	M24	104.0	100.0
	54	T5	G5	1×54.0	ELXd 154.603	188332	220-240	Al BAT	10 to 50	max. 75	M22	59.0	100.0
	2×54	T5	G5	2×54.0	ElXd 254.604	188333	220-240	Al BAT	10 to 50	max. 75	M24	115.0	100.0
	80	T5	G5	1×80.0	ELXd 180.605	188334	220-240	Al BAT	10 to 50	max. 75	M22	88.0	100.0
	2×80	T5	G5	2×80.0	ELXd 280.631	188605	220-240	Al BAT	10 to 50	max. 75	M24	165.0	100.0

[^59]
ELXd - Dimmable with push key or DALI with lamp detection

Lamp
Output
W Type

[^60]
Accessories for Dimmable Electronic Ballasts

Manual controller
Dimmer for EB with low-voltage interface $1-10 \mathrm{~V}$
Dimensions: $67 \times 67 \times 51 \mathrm{~mm}$
Push-button change-over switch with stud 4 mm for installation in flushtype boxes with $\varnothing 55 \mathrm{~mm}$
Max. 50 EBs per dimmer
Weight: 60/30 g, unit: 25 pcs.
Without cover plate

Ref. No.: 172778

Cover plate with rotary knob
Dimensions: $80 \times 80 \times 9 \mathrm{~mm}$

Light sensor
Constant light control with clamp
fastening for fluorescent lamps T8 (T26)
and compact fluorescent lamps
Dimensions: $33.5 \times 40 \times 96 \mathrm{~mm}$
With connection lead: $2 \times 0.24 \mathrm{~mm}^{2}$
Length: 800 mm
Max. 50 EBs per light sensor
Weight: 55 g , unit: 60 pcs.
Ref. No.: 172776

Multi sensor
Dimensions: $58.5 \times 70.5 \times 42 \mathrm{~mm}$
With the sensor the lighting can be kept
on a pre-defined level
With integrated motion detector
Max. 50 EBs per multi sensor
Weight: 125 g , unit: 25 pcs.
Ref. No.: 172777

Electronic Ballasts for TC and T Lamps

RELIABLE AND DURABLE

ELECTROMAGNETIC BALLASTS

The following chapter presents Vossloh-Schwabe's broad range of electromagnetic ballasts for compact fluorescent lamps and tubular fluorescent lamps. The variety of available performance properties and shapes satisfies the most diverse design requirements.

Vossloh-Schwabe's electromagnetic ballasts are characterized by extremely tight impedance-value tolerances, which are achieved by individual adjustment of the air gap during the automated production and testing process of the ballasts. This optimises both light output as well as the service life of fluorescent lamps.
Electromagnetic ballasts for compact fluorescent lamps
Standard ballasts 168-171
Ballasts 120 V, 60 Hz 172
Electromagnetic ballasts for tubular fluorescent lamps 173-176
Standard ballasts173-175
Ballasts $120 \mathrm{~V}, 60 \mathrm{~Hz}$ 176
Technical details for fluorescent lamps 243-271
General technical details 394-401
Glossary402-404

Standard Ballasts 5-16 W, 230/240/220 V

For compact fluorescent lamps

Shape: $\mathbf{2 8 \times 4 1 m m}$

Push-in terminal for leads: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring
IDC terminals for leads H05V-U 0.5
tw 130
Protection class I

5	TC-S	G23	180	L7/9/11.307	163694	230,50	85	75	34	0.32	60/85	B2	2.0	50
2×5	TC-S	G23	180	LN 13.805	169647	230,50	85	75	34	0.32	50/85	B1	2.0	70
				LN 13.313	163711	230,50	85	75	34	0.32	55/80	B2	2.0	70
7	TC-S	G23	175	L7/9/11.307	163694	230,50	85	75	34	0.32	60/85	B2	2.0	50
2×7	TC-S	G23	160	LN 13.805	169647	230,50	85	75	34	0.32	50/85	B1	2.0	70
				LN 13.313	163711	230,50	85	75	34	0.32	55/80	B2	2.0	70
9	TC-S	G23	170	L7/9/11.307	163694	230,50	85	75	34	0.32	60/85	B1	2.0	60
2x9	TC-S	G23	140	LN 13.805	169647	230,50	85	75	34	0.32	50/85	B1	2.0	70
				LN 13.313	163711	230,50	85	75	34	0.32	55/80	B2	2.0	80
10	TC-D	G24d-1	190	LN 13.805	169647	230,50	85	75	34	0.32	50/85	B1	2.0	70
				LN 13.313	163711	230,50	85	75	34	0.32	55/80	B2	2.0	70
	TC-DD	GR10q	180	LN 13.805	169647	230,50	85	75	34	0.32	50/85	B1	2.0	70
				LN 13.313	163711	230,50	85	75	34	0.32	55/80	B2	2.0	70
11	TC-S	G23	155	L7/9/11.307	163694	230,50	85	75	34	0.32	60/85	B1	2.0	80
13	TC-D/TC-T	G24d-1/GX24d-1	175	LN 13.805	169647	230,50	85	75	34	0.32	50/85	B1	2.0	80
				LN 13.313	163711	230,50	85	75	34	0.32	55/80	B2	2.0	80
16	TC-DD	GR8/GR10q	195	LN 16.316	163730	230,50	85	75	34	0.32	60/125	B1	2.0	100

240 V, $\mathbf{5 0 ~ H z}$

5	TC-S	G23	180	L 7/9/11.411	164335	240, 50	85	75	34	0.32	60/85	B2	2.0	50
2x5	TC-S	G23	180	LN 13.413	164342	240,50	85	75	34	0.32	60/90	B2	2.0	70
7	TC-S	G23	175	L 7/9/11.411	164335	240,50	85	75	34	0.32	60/85	B2	2.0	50
2×7	TC-S	G23	160	LN 13.413	164342	240,50	85	75	34	0.32	60/90	B2	2.0	70
9	TC-S	G23	170	L7/9/11.411	164335	240,50	85	75	34	0.32	60/85	B1	2.0	60
2x9	TC-S	G23	140	LN 13.413	164342	240,50	85	75	34	0.32	60/90	B2	2.0	80
10	TC-D	G24d-1	190	LN 13.413	164342	240,50	85	75	34	0.32	60/90	B2	2.0	70
	TC-DD	GR10q	180	LN 13.413	164342	240,50	85	75	34	0.32	60/90	B2	2.0	70
11	TC-S	G23	155	L7/9/11.411	164335	240,50	85	75	34	0.32	60/85	B1	2.0	80
13	TC-D/TC-T	G24d-1/GX24d-1	175	LN 13.413	164342	240,50	85	75	34	0.32	60/90	B1	2.0	80
16	TC-DD	GR8/GR10q	195	LN 16.417	164358	240,50	85	75	34	0.32	60/130	B1	2.0	100
$220 \mathrm{~V}, 60 \mathrm{~Hz}$														
5	TC-S	G23	180	L 7/9/11.207	163305	220,60	85	75	34	0.32	35/65	-	2.0	70
2x5	TC-S	G23	180	L13.210	520992	220,60	85	75	34	0.32	45/80	-	2.0	90
7	TC-S	G23	175	L 7/9/11.207	163305	220,60	85	75	34	0.32	35/65	-	2.0	70
2×7	TC-S	G23	160	L 13.210	520992	220,60	85	75	34	0.32	45/80	-	2.0	90
9	TC-S	G23	170	L 7/9/11.207	163305	220,60	85	75	34	0.32	35/65	-	2.0	70
2×9	TC-S	G23	140	L 13.210	520992	220,60	85	75	34	0.32	45/80	-	2.0	90
10	TC-D	G24d-1	190	L 13.210	520992	220,60	85	75	34	0.32	45/80	-	2.0	80
	TC-DD	GR10q	180	L 13.210	520992	220,60	85	75	34	0.32	45/80	-	2.0	80
11	TC-S	G23	155	L7/9/11.207	163305	220,60	85	75	34	0.32	35/65	-	2.0	80
13	TC-D/TC-T	G24d-1/GX24d-1	165	L 13.210	520992	220,60	85	75	34	0.32	45/80	-	2.0	110

[^61]
Standard Ballasts 18-58 W, 230 V

For compact fluorescent lamps

 Shape: $\mathbf{2 8 \times 4 1 m m}$Vacuum-impregnated with polyester resin Push-in terminal for leads: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:

IDC terminals for leads H05V-U 0.5
tw 130
Protection class I

[^62]
Standard Ballasts
 18-58 W, 240 V

For compact fluorescent lamps

Shape: $\mathbf{2 8 \times 4 1} \mathbf{~ m m}$

240 V, $\mathbf{5 0 ~ H z}$

Standard Ballasts
 18-58 W, 220 V

For compact fluorescent lamps

Shape: $\mathbf{2 8 \times 4 1} \mathbf{~ m m}$

Lamp				Ballast									Capacitor	
Output W	Type	Base	Current mA	Type	Ref. No.	Voltage V, Hz		b		Weight kg	$\Delta t / \Delta \mathrm{t}_{\mathrm{an}} \text {. }$	Energy efficiency*	Cp μF	Current mA
220 V, 50 Hz														
18	TC-F/TC-L	2G10/2G11	370	118.933	534624	220,50	150	140	45	0.43	70/160	-	4.5	120
	T-U	2G13	370	L18.933	534624	220,50	150	140	45	0.43	70/160	-	4.5	120
2×18	TC-F/TC-L	2G10/2G11	400	L 36.158	530252	220,50	150	140	45	0.43	65	-	4.0	210
24	TC-F/TC-L	2G10/2G11	345	L18.933	534624	220,50	150	140	45	0.43	70/160	-	4.5	150
26	TC-D/TC-T	G24d-3/GX24d-3	325	118.933	534624	220,50	150	140	45	0.43	70/160	-	3.5	140
28	TC-DD	GR8/GR10q	320	L18.933	534624	220,50	150	140	45	0.43	70/160	-	3.5	150
36	TC-F/TC-L	2G10/2G11	430	L 36.158	530252	220,50	150	140	45	0.43	65	-	4.5	210
36/40	T-U/T-R	2G13/G10q	430	L 36.158	530252	220,50	150	140	45	0.43	65	-	4.5	210
38	TC-DD	GR10q	430	L 36.158	530252	220,50	150	140	45	0.43	65	-	4.5	210
58	T-U	2G13	670	L 58.625	164828	220,50	190	180	92	0.80	55/155	-	7.0	320

18	TC-D/TC-T	G24d-2/GX24d-2	220	L 181.602	164779	220,60	85	75	34	0.32	45/110	-	2.0	110
	TC-F/TC-L	2G10/2G11	370	L 18.121	532149	220,60	110	100	45	0.42	65/145	-	4.0	150
				L 18.121	528582	220,60	150	140	45	0.43	65/145	-	4.0	150
				L 18.249	538801	220,60	150	140	34	0.32	75/140	-	4.0	150
	T-U	2G13	370	L 18.121	532149	220,60	110	100	45	0.42	65/145	-	4.0	150
				L18.121	528582	220,60	150	140	45	0.43	65/145	-	4.0	150
				L 18.249	538801	220,60	150	140	34	0.32	75/140	-	4.0	150
2×18	TC-F/TC-L	2G10/2G11	400	L 36.120	509373	220,60	150	140	45	0.43	60/170	-	4.0	210
24	TC-F/TC-L	2G10/2G11	345	L 18.121	532149	220,60	110	100	45	0.42	65/145	-	4.0	190
				L 18.121	528582	220,60	150	140	45	0.43	65/145	-	4.0	190
				L 18.249	538801	220,60	150	140	34	0.32	75/140	-	4.0	190
26	TC-D/TC-T	G24d-3/GX24d-3	325	L 18.121	532149	220,60	110	100	45	0.42	65/145	-	3.0	160
				L 18.121	528582	220,60	150	140	45	0.43	65/145	-	3.0	160
				L 18.249	538801	220,60	150	140	34	0.32	75/140	-	3.0	160
28	TC-DD	GR8/GR10q	320	L 18.121	532149	220,60	110	100	45	0.42	65/145	-	3.0	155
				L 18.249	538801	220,60	150	140	34	0.32	75/140	-	3.0	155
36	TC-F/TC-L	2G10/2G11	430	L 36.120	509373	220,60	150	140	45	0.43	60/170	-	4.0	210
36/40	T-U/T-R	2G13/G10q	430	L 36.120	509373	220,60	150	140	45	0.43	60/170	-	4.0	220
38	TC-DD	GR10q	430	L 36.120	509373	220,60	150	140	45	0.43	60/170	-	4.0	220
58	T-U	2G13	670	L 58.657	164870	220,60	195	180	92	0.80	55/140	-	6.0	320

[^63]
Ballasts

5-20 W

120 V/60 Hz

For compact fluorescent lamps

 Shape: $\mathbf{2 8 \times 4 1} \mathbf{~ m m}$

Vacuum-impregnated with polyester resin

Push-in terminal for leads: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring
IDC terminals for leads H05V-U 0.5
tw 130
Protection class 1

Lamp				Ballast								Capacitor	
Output W	Type	Base	Current mA	Type	Ref. No.	Voltage V, Hz	a mm	b mm	c mm	Weight kg	$\begin{aligned} & \Delta t / \Delta \tan . \\ & \mathrm{K} \end{aligned}$	Cp_{P}	Current mA
$120 \mathrm{~V}, 60 \mathrm{~Hz}$													
5	TC-S	G23	180	L 7/9.209	163318	120,60	85	75	34	0.32	25/40	3.0	90
7	TC-S	G23	175	L 7/9.209	163318	120,60	85	75	34	0.32	25/40	3.0	90
9	TC-S	G23	170	L 7/9.209	163318	120,60	85	75	34	0.32	25/40	3.0	90
18	TC-F/TC-L	2G10/2G11	370	L 20.122	163256	120,60	85	75	34	0.32	35/80	5.0	150
20	T-U	2G13	370	L 20.122	163256	120,60	85	75	34	0.32	35/80	5.0	190

Standard Ballasts

4-13 W

230/240/220 V
For fluorescent lamps Shape: $\mathbf{2 8 \times 4 1 m m}$

Vacuum-impregnated with polyester resin
Push-in terminal for leads: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
tw 130

Protection class 1

Lamp				Ballast									Capacitor	
Output W	Type	Base	Current mA	Type	Ref. No.	Voltage		b mm		Weight kg	$\begin{aligned} & \Delta t / \Delta \mathrm{t}_{\text {an }} . \\ & \mathrm{K} \\ & \hline \end{aligned}$	Energy efficiency*	Cp μF	Current mA
$\mathbf{2 3 0 ~ V , ~} \mathbf{5 0 ~ H z}$														
4	T5 (T16)	G5	170	L 4/6/8.304	163683	230, 50	85	75	34	0.32	55/85	B2	2.0	40
2×4	T5 (T16)	G5	155	L 4/6/8.304	163683	230,50	85	75	34	0.32	55/85	B1	2.0	50
6	T5 (T16)	G5	160	L 4/6/8.304	163683	230,50	85	75	34	0.32	55/85	B1	2.0	50
2×6	T5 (T16)	G5	175	LN 13.313	163711	230,50	85	75	34	0.32	55/80	B1	2.0	65
8	T5 (T16)	G5	145	L 4/6/8.304	163683	230,50	85	75	34	0.32	55/85	B1	2.0	60
2×8	T5 (T16)	G5	155	LN 13.313	163711	230,50	85	75	34	0.32	55/80	B1	2.0	85
13	T5 (T16)	G5	165	LN 13.313	163711	230,50	85	75	34	0.32	55/80	B1	2.0	80
$\mathbf{2 4 0 ~ V , ~} \mathbf{5 0 ~ H z}$														
4	T5 (T16)	G5	170	L 4/6/8.404	164326	240,50	85	75	34	0.32	55/80	B2	2.0	40
2×4	T5 (T16)	G5	155	L 4/6/8.404	164326	240,50	85	75	34	0.32	55/80	B1	2.0	50
6	T5 (T16)	G5	160	L 4/6/8.404	164326	240,50	85	75	34	0.32	55/80	B1	2.0	50
2×6	T5 (T16)	G5	175	LN 13.413	164342	240,50	85	75	34	0.32	60/90	B1	2.0	65
8	T5 (T16)	G5	145	L 4/6/8.404	164326	240,50	85	75	34	0.32	55/80	B1	2.0	60
2×8	T5 (T16)	G5	155	LN 13.413	164342	240,50	85	75	34	0.32	60/90	B1	2.0	85
13	T5 (T16)	G5	165	LN 13.413	164342	240,50	85	75	34	0.32	60/90	B 1	2.0	80
$220 \mathrm{~V}, 60 \mathrm{~Hz}$														
4	T5 (T16)	G5	170	L 4/6/8.218	532644	220,60	85	75	34	0.32	60/80	-	2.0	40
2×4	T5 (T16)	G5	155	L 4/6/8.218	532644	220,60	85	75	34	0.32	60/80	-	2.0	50
6	T5 (T16)	G5	160	L 4/6/8.218	532644	220,60	85	75	34	0.32	60/80	-	2.0	50
2×6	T5 (T16)	G5	175	L 13.210	520992	220,60	85	75	34	0.32	45/80	-	2.0	65
8	T5 (T16)	G5	145	L 4/6/8.218	532644	220,60	85	75	34	0.32	60/80	-	2.0	60
2×8	T5 (T16)	G5	155	L 13.210	520992	220,60	85	75	34	0.32	45/80	-	2.0	85
13	T5 (T16)	G5	165	L 13.210	520992	220,60	85	75	34	0.32	45/80	-	2.0	80

[^64]
Standard Ballasts 14-65 W, 230 V

For fluorescent lamps
 Shape: $\mathbf{2 8 \times 4 1 ~ m m}$

Vacuum-impregnated with polyester resin
Push-in terminal for leads: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
tw 130
Protection class 1

$230 \mathrm{~V}, \mathbf{5 0 ~ H z}$

14	T8 (T26)	G13	395	LN 18.510	164572	230,50	155	140	92	0.80	40/65	B2	4.5	150
15	T8 (T26)	G13	310	LN 15.329	163861	230,50	150	140	60	0.55	50/80	B2	3.5	120
2×15	T8 (T26)	G13	340	LN 30.801	169645	230,50	150	140	60	0.55	55/110	B2	4.0	185
				L 30.347**	164033	230,50	150	140	60	0.55	60/150	-	4.0	185
16	T8 (T26)	G13	200	LN 16.316	163730	230,50	85	75	34	0.32	60/125	B1	2.0	90
18/20	T8 (T26)/T12 (T38)	G13	370	LN 18.510	164572	230,50	155	140	92	0.80	40/65	B1	4.5	120
				LN 18.131	530941	230,50	150	140	60	0.55	55/95	B2	4.5	120
				L 18.934**	534621	230,50	150	140	45	0.43	70/150	-	4.5	120
2×18/20	T8 (T26)/T12 (T38)	G13	400	LN 2×18.135	532155	230,50	150	140	45	0.43	65	B1	4.0	210
				L 36.334	530007	230,50	150	140	60	0.55	60/155	B1	4.0	210
25	T12 (T38)	G13	290	L 25.346	164013	230,50	150	140	60	0.55	45/80	B1	3.5	130
30	T8 (T26)	G13	365	LN 30.801	169645	230,50	150	140	60	0.55	55/110	B2	4.5	180
36-1	T8 (T26)	G13	556	L 361.342	538072	230,50	195	180	110	0.87	50/120	B2	6.5	250
36/40	T8 (T26)/T12 (T38)	G13	430	LN 36.570	169779	230,50	155	140	92	0.80	35/90	B1	4.5	210
				LN 36.511	164590	230,50	155	140	92	0.80	35/95	B1	4.5	210
				LN 36.130	527191	230,50	150	140	60	0,55	50/140	B2	4.5	210
				LN 36.149	529029	230,50	150	140	60	0.55	55/150	B2	4.5	210
				L 36.132**	535977	230,50	150	140	45	0.43	65	-	4.5	210
38	T8 (T26)	G13	430	LN 36.570	169779	230,50	155	140	92	0.80	35/90	B1	4.5	210
				LN 36.511	164590	230,50	155	140	92	0.80	35/95	B1	4.5	210
				LN 36.149	529029	230,50	150	140	60	0.55	55/150	B2	4.5	210
				L 36.132**	535977	230,50	150	140	45	0.43	65	-	4.5	210
58/65	T8 (T26)/T12 (T38)	G13	670	LN 58.568	169389	230,50	233	220	160	1.31	35/95	B1	7.0	320
				LN 58.990	509349	230,50	190	180	110	0.95	50/130	B2	7.0	320
				LN 58.116	508186	230,50	190	180	92	0.80	55/160	B2	7.0	320
				L58.718**	169658	230,50	190	180	92	0.80	60/170	-	7.0	320

[^65]
Standard Ballasts
 15-75 W, 240/220 V

For fluorescent lamps
Shape: $\mathbf{2 8 \times 4 1 m m}$

Lamp				Ballast									Capacitor	
Output	Type	Base	Current	Type	Ref. No.	Voltage	a	b	c	Weight	$\Delta t / \Delta t_{\mathrm{tan}}$	Energy efficiency*	Cp	Current
W			mA			V, Hz	mm	mm	mm	kg	K		$\mu \mathrm{F}$	mA

18/20	T8 (T26)/T12 (T38)	G13	370	L 18.933	534624	220,50	150	140	45	0.43	70/160		4.5	120
2×18/20	T8 (T26)/T 12 (T38)	G13	430	L 36.158	530252	220,50	150	140	45	0.43	65	-	4.0	210
$36 / 40$	T8 (T26)/T12 (T38)	G13	430	L 36.158	530252	220,50	150	140	45	0.43	65	-	4.5	210
38	T8 (T26)	G13	430	L 36.158	530252	220,50	150	140	45	0.43	65	-	4.5	210
58/65	T8 (T26)/T12 (T38)	G13	670	L 58.625	164828	220,50	190	180	92	0.80	55/155	-	7.0	320

220 V, 60 Hz

15	T8 (T26)	G13	310	L 15.007	537744	220,60	150	140	45	0.43	55/80	-	3.0	120
2×15	T8 (T26)	G13	350	L 30.006	537750	220,60	150	140	45	0.43	60/120	-	4.0	185
18/20	T8 (T26)/T 12 (T38)	G13	370	L 18.121	532149	220,60	110	100	45	0.42	65/145	-	4.0	190
				L 18.121	528582	220,60	150	140	45	0.43	65/145	-	4.0	190
				L 18.149	538801	220,60	150	140	34	0.32	75/140	-	4.0	190
2×18/20	T8 (T26)/T12 (T38)	G13	430	L 36.120	509373	220,60	150	140	45	0.43	60/170	-	4.0	220
30	T8 (T26)	G13	365	L 30.006	537750	220,60	150	140	45	0.43	60/120	-	4.0	180
36/40	T8 (T26)/T12 (T38)	G13	430	L 36.120	509373	220,60	150	140	45	0.43	60/170	-	4.0	220
38	T8 (T26)	G13	430	L 36.120	509373	220,60	150	140	45	0.43	60/170	-	4.0	230
58/65	T8 (T26)/T12 (T38)	G13	670	L 58.657	164870	220,60	195	180	92	0.80	55/140	-	6.0	320

[^66]
Ballasts

14-20 W
 120 V/60 Hz

For fluorescent lamps Shape: $\mathbf{2 8 \times 4 1} \mathbf{~ m m}$

Vacuum-impregnated with polyester resin
Push-in terminal for leads: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
tw 130
Protection class I

Lamp				Ballast								Capacitor	
Output W	Type	Base	Current mA	Type	Ref. No.	Voltage V. Hz	a mm	b mm	c mm	Weight kg	$\left\lvert\, \begin{aligned} & \Delta t / \Delta \mathrm{t}_{\mathrm{an}} . \\ & \mathrm{K} \end{aligned}\right.$	C_{p} $\mu \mathrm{F}$	Current mA
120 V ,	Hz												
14	T8 (T26)	G13	395	L 14.139	170117	120,60	85	75	34	0.32	55/90	7.0	175
15	T8 (T26)	G13	350	L 15.308	163702	120,60	85	75	34	0.32	35/65	7.0	170
18/20	T8 (T26)/T12 (T38)	G13	370	L 20.122	163256	120,60	85	75	34	0.32	35/80	5.0	190

Electromagnetic Ballasts for TC and T Lamps

COMPACT AND VERSATILE

VS LAMPHOLDERS FOR COMPACT FLUORESCENT LAMPS

Vossloh-Schwabe provides a broad range of lampholders for singleended compact fluorescent lamps, with regard to which the numerous fixing methods make just about any luminaire design possible.

As compact fluorescent lamps generate considerably less heat in comparison to incandescent lamps, the advantages provided by thermoplastics can be fully utilized for lampholder design.

Almost all VS lampholders for compact fluorescent lamps are made of thermoplastic PBT and therefore bear the T marking T140, which refers to the maximum base temperature in accordance with EN 61199 (VDE 0715 T9). The use of this highly heat-resistant material was born of close cooperation between Vossloh-Schwabe and the world's leading lamp manufacturers that also use PBT for producing lamp bases. In connection with fatigue-resistant, stainless steel lamp mounting springs, harmonizing the casing material ensures a permanent and secure lamp fit.

3 Lampholders and Accessories for TC Lamps
G24, GX24 lampholders 180-187
2G7 lampholders 187-188
G23 lampholders 188-191
GR8, GR 10q, GRY 10q-3, GRZ 10d, GRZ 10t lampholders 191-192
2G10 lampholders 192
2G11/2GX11 lampholders 193-194
Accessories 195-197
GX53-1 lampholders, accessories 198-199
Technical details for fluorescent lamps 243-271
General technical details 394-401
Glossary 402-404

G24, GX24 Lampholders

For single-ended compact fluorescent lamps TC-D, TC-T, TC-DEL, TC-TEL

The drawings and photos contained in this chapter only show lampholders for lamps with base G24q-1. Further drawings of lamp bases can be found on page 266.

When mounting the lampholder it has to be considered that the TC-T and TC-TEL lamp is wider than the lampholder. When using the central hole for mounting additional depressions for anti-rotation pips have to be provided.

G24, GX24 lampholders

Plain casing
Casing: PBT GF, white, T 140
Nominal rating: 2/500
Push-in twin terminals: 0.5-1 mm² (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Rear fixing holes for self-tapping screws acc. to ISO 1481 /7049-ST4.2-C/F
Front fixing holes for screws M3
Central fixing hole for screw M3
Rotation stop
For cover caps (see p. 336-338)

Type	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71501	$\mathbf{5 2 7 7 3 5}$	G24d-1/GX24d-1	TC-D/TC-T	$10,13 / 13$	13	500
71502	$\mathbf{5 2 7 7 3 6}$	G24d-2/GX24d-2	TC-D/TC-T	$18 / 18$	13	
71503	$\mathbf{5 2 7 7 3 7}$	G24d-3/GX24d-3	TC-D/TC-T	$26 / 26$	500	
71511	$\mathbf{5 2 7 7 3 9}$	G24q-1/GX24q-1	TC-DEL/TC-TEL	$10,13 / 13$	14.5	
71512	$\mathbf{5 2 7 7 4 0}$	G24q-2/GX24q-2	TC-DEL/TC-TEL	$18 / 18$	500	
71513	$\mathbf{5 2 7 7 4 1}$	G24q-3/GX24q-3	TC-DEL/TC-TEL	$26 / 26,32$	14.5	
71519	$\mathbf{5 2 7 7 4 5}$	$\mathbf{5 2 7 7 4 2}$	GX24q-3/-4*	TC-TEL	$26,32 / 42$	14.5
71514	$\mathbf{5 2 7 7 4 3}$	GX24q-4	TC-TEL	42	500	
71515	$\mathbf{5 2 7 7 4 4}$	GX24q-5	TC-TEL	57	14.5	
71516	GX24q-6	70	15.1	500		

* Lampholder 527745 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

G24, GX24 lampholders
External thread 40×2.5 IEC 60399
Casing: PBT GF, white, T 140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit) Rear fixing holes for self-tapping screws acc. to ISO $1481 / 7049-S T 4.2-C / F$
Front fixing holes for screws M3
Central fixing hole for screw M3

Rotation stop
For cover caps (see p. 336-338)
For screw rings (see p. 451)

Type	Ref. No.	Base	Lamp	Output (W)	Weight (g)	
71001	$\mathbf{5 2 7 5 0 2}$	G24d-1/GX24d-1	TC-D/TC-T	$10,13 / 13$	12.7	
71002	$\mathbf{5 2 7 5 0 3}$	G24d-2/GX24d-2	TC-D/TC-T	$18 / 18$	12.7	500
71003	$\mathbf{5 2 7 5 0 4}$	G24d-3/GX24d-3	TC-D/TC-T	$26 / 26$	500	
71011	$\mathbf{5 2 7 5 0 6}$	G24q-1/GX24q-1	TC-DEL/TC-TEL	$10,13 / 13$	12.7	
71012	$\mathbf{5 2 7 5 0 7}$	G24q-2/GX24q-2	TC-DEL/TC-TEL	$18 / 18$	500	
71013	$\mathbf{5 2 7 5 0 8}$	G24q-3/GX24q-3	TC-DEL/TC-TEL	$26 / 26,32$	15.2	
71019	$\mathbf{5 2 7 5 1 2}$	GX24q-3/-4*	TC-TEL	$26,32 / 42$	15.2	
71014	$\mathbf{5 2 7 5 0 9}$	GX24q-4	TC-TEL	42	500	
71015	$\mathbf{5 2 7 5 1 0}$	TC-TEL	57	15.2		
71016	$\mathbf{5 2 7 5 1 1}$	TC-TEL	70	500		

* Lampholder 527512 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

G24, GX24 lampholders
External thread 40×2.5 IEC 60399
Casing: PBT GF, white T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Front fixing holes for screws M3
Central fixing hole for screw M3
Rotation stop
For cover caps (see p. 336-338)
For screw rings (see p. 451)

Type	Ref. No.	Base	Lamp	Output (W)	Weight (g)	
35812	$\mathbf{1 0 1 4 1 0}$	G24d-1/GX24d-1	TC-D/TC-T	$10,13 / 13$	18	
35842	$\mathbf{1 0 6 2 6 2}$	G24d-2/GX24d-2	TC-D/TC-T	$18 / 18$	50	
35862	$\mathbf{1 0 1 4 4 8}$	G24d-3/GX24d-3	TC-D/TC-T	$26 / 26$	500	
35912	$\mathbf{1 0 6 9 1 2}$	G24q-1/GX24q-1	TC-DEL/TC-TEL	$10,13 / 13$	18	
35942	$\mathbf{5 0 2 5 5 5}$	G24q-2/GX24q-2	TC-DEL/TC-TEL	$18 / 18$	500	
35962	$\mathbf{5 0 2 5 5 6}$	G24q-3/GX24q-3	TC-DEL/TC-TEL	$26 / 26,32$	19.5	

G24, GX24 lampholders
Profiled shape
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit)
Central fixing hole for screw M3
Rotation stop

Type	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71101	527529	G24d-1/GX24d-1	TC-D/TC-T	10,13 / 13	8.5	500
71102	527530	G24d-2/GX24d-2	TC-D/TC-T	18/18	8.5	500
71103	527531	G24d-3/GX24d-3	TC-D/TC-T	26/26	8.5	500
71111	527533	G24q-1/GX24q-1	TC-DEL/TC-TEL	10,13/13	10.9	500
71112	527534	G24q-2/GX24q-2	TC-DEL/TC-TEL	18/18	10.9	500
71113	527535	G24q-3/GX24q-3	TC-DEL/TC-TEL	26/26,32	10.9	500
71119	527539	GX24q-3/-4*	TC-TEL	26, 32 / 42	10.9	500
71114	527536	GX24q-4	TC-TEL	42	10.9	500
71115	527537	GX24q-5	TC-TEL	57	11.1	500
71116	527538	GX24q-6	TC-TEL	70	11.1	500

* Lampholder 527539 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

G24, GX24 push-fit lampholders
Lamp position: 45°
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$
for wall thickness 0.6-1 mm
Foot with facility for cable routing

Type	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71301	527585	G24d-1/GX24d-1	TC-D/TC-T	10,13 / 13	10.2	500
71302	527586	G24d-2/GX24d-2	TC-D/TC-T	18/18	10.2	500
71303	527587	G24d-3/GX24d-3	TC-D/TC-T	26/26	10.2	500
71311	527589	G24q-1/GX24q-1	TC-DEL/TC-TEL	10,13/13	12.1	500
71312	527590	G24q-2/GX24q-2	TC-DEL/TC-TEL	18/18	12.1	500
71313	527591	G24q-3/GX24q-3	TC-DEL/TC-TEL	26/26,32	12.1	500
71319	527596	GX24q-3/-4*	TC-TEL	26, $32 / 42$	12.1	500
71314	527592	GX24q-4	TC-TEL	42	12.1	500
71315	527594	GX24q-5	TC-TEL	57	12.6	500
71316	527595	GX24q-6	TC-TEL	70	12.6	500

[^67]G24 push-fit lampholders
Lamp position: 45°
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
In addition for G24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Split pins for wall thickness up to 1.2 mm

G24, GX24 push-fit lampholders
Casing: PBT GF, white, T 140
Nominal rating: 2/500
Push-in twin terminals: 0.5-1 mm² (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$
for wall thickness $0.6-1 \mathrm{~mm}$
Foot with facility for cable routing

Type	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71801	$\mathbf{5 2 8 0 2 9}$	G24d-1/GX24d-1	TC-D/TC-T	$10,13 / 13$	10.2	500
71802	$\mathbf{5 2 8 0 3 0}$	G24d-2/GX24d-2	TC-D/TC-T	$18 / 18$	10.2	500
71803	$\mathbf{5 2 8 0 3 1}$	G24d-3/GX24d-3	TC-D/TC-T	$26 / 26$	10.2	
71811	$\mathbf{5 2 8 0 3 3}$	G24q-1/GX24q-1	TC-DEL/TC-TEL	$10,13 / 13$	12.1	500
71812	$\mathbf{5 2 8 0 3 4}$	G24q-2/GX24q-2	TC-DEL/TC-TEL	$18 / 18$	12.1	
71813	$\mathbf{5 2 8 0 3 5}$	G24q-3/GX24q-3	TC-DEL/TC-TEL	$26 / 26,32$	12.1	500
71819	$\mathbf{5 2 8 0 3 9}$	GX24q-3/-4*	TC-TEL	$26,32 / 42$	12.1	50
71814	$\mathbf{5 2 8 0 3 6}$	GX24q-4	TC-TEL	42	500	
71815	$\mathbf{5 2 8 0 3 7}$	TC-TEL	57	12.1		
71816	$\mathbf{5 2 8 0 3 8}$	TC-TEL	70	12.7	500	

* Lampholder 528039 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

G24, GX24 surface-mounted lampholders Casing: PBT GF, white, T140, Nominal rating: 2/500 Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Base fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F Base oblong holes for screws M4 Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST2.9-C/F and ST4.2-C/F

Front fixing holes for screws M3

Type	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71701	527790	G24d-1/GX24d-1	TC-D/TC-T	10,13/13	13.2	500
71702	527791	G24d-2/GX24d-2	TC-D/TC-T	18/18	13.2	500
71703	527792	G24d-3/GX24d-3	TC-D/TC-T	26/26	13.2	500
71711	527794	G24q-1/GX24q-1	TC-DEL/TC-TEL	10,13/13	15.2	500
71712	527795	G24q-2/GX24q-2	TC-DEL/TC-TEL	18/18	15.2	500
71713	527796	G24q-3/GX24q-3	TC-DEL/TC-TEL	26/26,32	15.2	500
71719	527800	GX24q-3/-4*	TC-TEL	26, $32 / 42$	15.2	500
71714	527797	GX24q-4	TC-TEL	42	15.2	500
71715	527798	GX24q-5	TC-TEL	57	15.8	500
71716	527799	GX24q-6	TC-TEL	70	15.8	500

* Lampholder 527800 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

G24, GX24 surface-mounted lampholders
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit) Front fixing holes for screws M3

Type	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71201	527556	G24d-1/GX24d-1	TC-D/TC-T	10,13 / 13	12	500
71202	527557	G24d-2/GX24d-2	TC-D/TC-T	18/18	12	500
71203	527558	G24d-3/GX24d-3	TC-D/TC-T	26/26	12	500
71211	527560	G24q-1/GX24q-1	TC-DEL/TC-TEL	10,13/13	12.9	500
71212	527561	G24q-2/GX24q-2	TC-DEL/TC-TEL	18/18	12.9	500
71213	527562	G24q-3/GX24q-3	TC-DEL/TC-TEL	26/26,32	12.9	500
71219	527566	GX24q-3/-4*	TC-TEL	26,32 / 42	12.9	500
71214	527563	GX24q-4	TC-TEL	42	12.9	500
71215	527564	GX24q-5	TC-TEL	57	13.5	500
71216	527565	GX24q-6	TC-TEL	70	13.5	500

[^68]G24, GX24 push-fit lampholders
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit) Base split pins for wall thickness $0.8-1.7 \mathrm{~mm}$

Type	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
71601	$\mathbf{5 2 7 7 6 2}$	G24d-1/GX24d-1	TC-D/TC-T	$10,13 / 13$	10.5	500
71602	$\mathbf{5 2 7 7 6 3}$	G24d-2/GX24d-2	TC-D/TC-T	$18 / 18$	10.5	
71603	$\mathbf{5 2 7 7 6 4}$	G24d-3/GX24d-3	TC-D/TC-T	$26 / 26$	10.5	500
71611	$\mathbf{5 2 7 7 6 6}$	G24q-1/GX24q-1	TC-DEL/TC-TEL	$10,13 / 13$	12	500
71612	$\mathbf{5 2 7 7 6 8}$	G24q-2/GX24q-2	TC-DEL/TC-TEL	$18 / 18$	12	500
71613	$\mathbf{5 2 7 7 6 9}$	G24q-3/GX24q-3	TC-DEL/TC-TEL	$26 / 26,32$	12	500
71619	$\mathbf{5 2 7 7 7 3}$	GX24q-3/-4*	TC-TEL	$26,32 / 42$	12	500
71614	$\mathbf{5 2 7 7 7 0}$	GX24q-4	TC-TEL	TC-TEL	42	500
71615	$\mathbf{5 2 7 7 7 1}$	GX24q-5	TC-TEL	57	12	500
71616	$\mathbf{5 2 7 7 7 2}$	GX24q-6	70	12.6	500	

G24, GX24 push-fit lampholders
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit) Base split pins for wall thickness $0.8-1.7 \mathrm{~mm}$

Type	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
72201	$\mathbf{5 3 0 4 5 8}$	G24d-1/GX24d-1	TC-D/TC-T	$10,13 / 13$	10.5	50
72202	$\mathbf{5 3 0 4 5 9}$	G24d-2/GX24d-2	TC-D/TC-T	$18 / 18$	10.5	500
72203	$\mathbf{5 3 0 4 6 0}$	G24d-3/GX24d-3	TC-D/TC-T	$26 / 26$	10.5	
72211	$\mathbf{5 3 0 4 6 2}$	G24q-1/GX24q-1	TC-DEL/TC-TEL	$10,13 / 13$	12	500
72212	$\mathbf{5 3 0 4 6 3}$	G24q-2/GX24q-2	TC-DEL/TC-TEL	$18 / 18$	500	
72213	$\mathbf{5 3 0 4 6 4}$	G24q-3/GX24q-3	TC-DEL/TC-TEL	$26 / 26,32$	12	5
72219	$\mathbf{5 3 0 4 6 8}$	GX24q-3/-4*	TC-TEL	$26,32 / 42$	12	5
72214	$\mathbf{5 3 0 4 6 5}$	GX24q-4	TC-TEL	TC-TEL	TC-TEL	57
72215	$\mathbf{5 3 0 4 6 6}$	GX24q-5	GX24q-6	70	12	500
72216	$\mathbf{5 3 0 4 6 7}$			12.6	500	

[^69]G24, GX24 push-fit lampholders
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit) Rear split pins for wall thickness $0.8-1.7 \mathrm{~mm}$ Width of split pin: 6.5 mm

Type	Ref. No.	Base	Lamp	Output (W)	Weight (g)	
72001	$\mathbf{5 2 8 0 8 9}$	G24d-1/GX24d-1	TC-D/TC-T	$10,13 / 13$	10.4	Unit (pcs.)
72002	$\mathbf{5 2 8 0 9 0}$	G24d-2/GX24d-2	TC-D/TC-T	$18 / 18$	500	
72003	$\mathbf{5 2 8 0 9 1}$	G24d-3/GX24d-3	TC-D/TC-T	$26 / 26$	10.4	500
72011	$\mathbf{5 2 8 0 9 3}$	G24q-1/GX24q-1	TC-DEL/TC-TEL	$10,13 / 13$	12.3	
72012	$\mathbf{5 2 8 0 9 4}$	G24q-2/GX24q-2	TC-DEL/TC-TEL	$18 / 18$	500	
72013	$\mathbf{5 2 8 0 9 5}$	G24q-3/GX24q-3	TC-DEL/TC-TEL	$26 / 26,32$	12.3	12.3
72019	$\mathbf{5 2 8 0 9 9}$	GX24q-3/-4*	TC-TEL	$26,32 / 42$	12.3	500
72014	$\mathbf{5 2 8 0 9 6}$	TC-TEL	42	500		
72015	$\mathbf{5 2 8 0 9 7}$	GX24q-4	TC-TEL	57	12.3	
72016	$\mathbf{5 2 8 0 9 8}$	TC-TEL	70	12.9	500	

Lampholder 528099 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

G24, GX24 push-fit lampholders
Casing: PBT GF, white, T140
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) In addition for G24q, GX24q lampholders: push-in terminals: 0.5-1 mm² (starter circuit) Rear split pins for wall thickness $0.8-1.7 \mathrm{~mm}$ Width of split pin: 4.5 mm

Type	Ref. No.	Base	Lamp	Output (W)	Weight (g)	Unit (pcs.)
72101	528116	G24d-1/GX24d-1	TC-D/TC-T	10,13 / 13	10.4	500
72102	528117	G24d-2/GX24d-2	TC-D/TC-T	18/18	10.4	500
72103	528118	G24d-3/GX24d-3	TC-D/TC-T	26/26	10.4	500
72111	528120	G24q-1/GX24q-1	TC-DEL/TC-TEL	10,13/13	12.3	500
72112	528121	G24q-2/GX24q-2	TC-DEL/TC-TEL	18/18	12.3	500
72113	528122	G24q-3/GX24q-3	TC-DEL/TC-TEL	26/26,32	12.3	500
72119	528126	GX24q-3/-4*	TC-TEL	26, 32 / 42	12.3	500
72114	528123	GX24q-4	TC-TEL	42	12.3	500
72115	528124	GX24q-5	TC-TEL	57	12.9	500
72116	528125	GX24q-6	TC-TEL	70	12.9	500

[^70]G24, GX24 rotary lock lampholders
External thread 40×2.5 IEC 60399
Casing: PBT GF, white, T120
Nominal rating: 1/500
Push-in twin terminals: $0.5-0.75 \mathrm{~mm}^{2}$ (lamp circuit) Push-in terminals: 0.5-0.75 mm^{2} (starter circuit) Front fixing holes for screws M3
For screw rings (see p. 451)

Type	Ref. No.	Base	Lamp	Output (W)	Weight (g)	
45940	$\mathbf{5 0 7 9 9 3}$	G24q-2/GX24q-2	TC-DEL/TC-TEL	$18 / 18$	20.2	Unit (pcs.)
45960	$\mathbf{5 0 7 9 9 4}$	G24q-3/GX24q-3	TC-DEL/TC-TEL	$26 / 26,32$	20.2	500
45930	$\mathbf{5 0 7 9 9 2}$	G24q-3/GX24q-3/-4*	TC-DEL/TC-TEL	$26 / 26,32 / 42$	20.2	
45980	$\mathbf{5 0 7 9 9 5}$	GX24q-4	TC-TEL	42	20.2	500

* Lampholder 507992 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

2G7 Lampholders

For single-ended compact fluorescent lamps TC-SEL

2G7 push-fit lampholder
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: 0.5-1 mm² (lamp circuit) Push-in terminals: 0.5-1 mm² (starter circuit)
Rear fixing hole for self-tapping screw acc. to ISO 1481 /7049-ST4.2-C/F
Front fixing holes for screws M3
Locking of the lampholder by a 15° turn
Weight: 13.7 g , unit: 500 pcs.
Type: 35610

Ref. No.: 109235

2G7 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) Push-in terminals: 0.5-1 mm² (starter circuit)
Push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$
for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 18 g , unit: 500 pcs.
Type: 35613

Ref. No.: 500574

2G7 surface-mounted lampholder
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: 0.5-1 mm² (lamp circuit)
Push-in terminals: 0.5-1 mm² (starter circuit)
Fixing holes for screws M4
Lateral and rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 18.1 g , unit: 500 pcs.
Type: 35611

Ref. No.: 109238

2 G7 surface-mounted lampholder
Casing: PBT GF, white, T 140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
Push-in terminals: 0.5-1 mm² (starter circuit)
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 14 g , unit: 500 pcs.
Type: 35612
Ref. No.: 109240

G23 Lampholders

For single-ended compact fluorescent lamps TC-S

If the central hole is used for mounting,
make sure there is no risk of rotation.
G23 surface-mounted lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ Rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST2.9-C/F
Central fixing hole for screw M3
Weight: 11.6 g , unit: 500 pcs.

Type: 35002
Ref. No.: 101290

G23 lampholder

Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Front and rear fixing holes for self-tapping
screws acc. to ISO 1481 /7049-ST2.9-C/F
Central fixing hole for screw M3
Weight: 9 g , unit: 500 pcs.
Type: 35003
Ref. No.: 101294

G23 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Split pins for wall thickness up to 1.2 mm
Central fixing hole for screw M3
Weight: 12 g , unit: 500 pcs.
Type: 35004

Ref. No.: 101298

G23 surface-mounted lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Central fixing hole for screw M3
Weight: 12.4 g, unit: 500 pcs.
Type: 35006
Ref. No.: 101306

G23 lampholder
For push-fit on track
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Fixing holes for screws M4
Central fixing hole for screw M3
Weight: 14 g , unit: 500 pcs.
Type: 35007

Ref. No.: 101310

G23 surface-mounted lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Central fixing hole for screw M3
Weight: 11.1 g , unit: 500 pcs.
Type: 35008

Ref. No.: 101314

G23 lampholder, for cover caps (see p. 336-338) External thread 40×2.5 IEC 60399
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Central fixing hole for screw M3
When using the central hole for mounting
additional depressions for anti-rotation pips
have to be provided.
For screw rings (see p. 451)
Weight: 16.3 g , unit: 500 pcs.
Type: 35010
Ref. No.: 101320

10

G23 lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: 0.5-1 mm²
Lateral pivots for bracket 105820 (see p. 195)
Central fixing hole for screw M3
Weight: 11 g , unit: 500 pcs.
Type: 35011

Ref. No.: 101324

G23 surface-mounted lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Front fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Weight: 11.9 g , unit: 500 pcs .
Type: 35012

Ref. No.: 108898

G23 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for wall thickness $0.8-1.3 \mathrm{~mm}$
Central fixing hole for screw M3
Weight: 11 g , unit: 500 pcs.
Type: 35051

Ref. No.: 101344

G23 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Front split pins for wall thickness $0.8-1.3 \mathrm{~mm}$
Central fixing hole for screw M3
Weight: 12 g , unit: 500 pcs.
Type: 35052
Ref. No.: 101346

G23 lampholder

Casing: PBT GF, white, T 140
Nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Central fixing hole for screw M3
Particularly suitable for narrow mounting (e.g. for insertion into tube systems)

Weight: 8 g , unit: 500 pcs.
Type: 35201
Ref. No.: 101364

GR8, GR10q, GRY10q-3,
 GRZ10d, GRZ 10t Lampholders

For single-ended compact fluorescent lamps TC-DD

GR8 push-fit lampholder
Casing: PC, white
Nominal rating: 2/250
Base and front push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing clips for wall thickness up to 1 mm
Weight: 5.4 g , unit: 500 pcs.
Type: 35100
Ref. No.: 101358

GR 10q push-fit lampholder
Casing: PC, white, T1 10
Nominal rating: 2/250
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base fixing clip for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 6.2 g , unit: 1000 pcs.
Type: 35500
Ref. No.: 108927

GR10q push-fit lampholder
Casing: PC, white, T1 10
Nominal rating: 2/250
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 6.2 g , unit: 1000 pcs.
Type: 35510
Ref. No.: 108928

GR10q push-fit lampholder
Material: PBT, white, T1 10
Nominal rating: 2/250
Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base fixing clip for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 7.2 g , unit: 1000 pcs.
Type: 35530
Ref. No.: 108932

GR 1Oq push-fit lampholder
Material: PBT, white, T1 10
Nominal rating: 2/250
Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 7.2 g , unit: 1000 pcs.
Type: 35540
Ref. No.: 108933

2G 10 Lampholders

For single-ended compact fluorescent lamps TC-F

2G10 surface-mounted lampholder, with lamp lock Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral lamp insertion
Front fixing holes for cheese-head screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Base fixing holes for screws M4
Weight: 25.5 g , unit: 250 pcs.
Type: 36300
Ref. No.: 101521

2G11/2GX11 Lampholders

For single-ended compact fluorescent lamps TC-L

2G11 surface-mounted lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500 Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) Push-in terminals: 0.5-1 mm² (starter circuit) Lateral pivots for bracket 105824 (see p. 195) Base fixing holes for screws M4 Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 13.7 g , unit: 500 pcs.
Type: 36050
Ref. No.: 101485

2G11 surface-mounted lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
Push-in terminals: 0.5-1 mm² (starter circuit)
Lateral pivots for bracket 105824 (see p. 195)
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 12.7 g , unit: 500 pcs.
Type: 36051
Ref. No.: 101489
2GX11 surface-mounted lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500 Push-in twin terminals: 0.5-1 mm² (lamp circuit) Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Lateral pivots for bracket 105824 (see p. 195)
Base fixing holes for screws M4
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 13.7 g , unit: 500 pcs.
Type: 36020

Ref. No.: 546609

2GX11 surface-mounted lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
Push-in terminals: 0.5-1 mm² (starter circuit)
Lateral pivots for bracket 105824 (see p. 195)
Rear fixing holes for self-tapping screws
acc. to ISO $1481 / 7049-S T 4.2-C / F$
Front fixing holes for screws M3
Weight: 12.7 g , unit: 500 pcs.
Type: 36021
Ref. No.: 546612

2G11 push-fit lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
Push-in terminals: 0.5-1 mm² (starter circuit)
Lamp position: vertical
Rear fixing holes for self-tapping screws
acc. to ISO $1481 / 7049-S T 4.2-C / F$
Front fixing holes for screws M3
Weight: 14.3 g , unit: 500 pcs.
Type: 36052

Ref. No.: 101491

2G11 push-fit lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
Push-in terminals: 0.5-1 mm² (starter circuit)
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Option for base wiring
Weight: 14.1 g , unit: 500 pcs.
Type: 36053

Ref. No.: 101493

2G11 push-fit lampholder
For the automatic luminaire wiring
Casing: PBT GF, white, T140
Nominal rating: 2/250
IDC terminals for leads H05V-U 0.5
The lampholder is wired in its horizontal position before being brought into its vertical service position, to assist lamp changes, it can be swiveled by 25°
Weight: 12 g , unit: 500 pcs.
Type: 36010

Ref. No.: 500105

2G11 built-in lampholder
For the automatic luminaire wiring
Casing: PBT GF, white, T140
Nominal rating: 2/250
IDC terminals for leads H05V-U 0.5
Front and rear split pins
for wall thickness up to 1.2 mm
Weight: 10.5 g , unit: 500 pcs .
Type: 36011
Ref. No.: 500106

wiring position

Accessories

For single-ended compact fluorescent lamps

The luminaire manufacturer is responsible for the right choice of accessories.
Cover caps for G24/GX24 lampholders
(see p. 336-338)

Bracket

For G23 lampholder 101324 (see p. 190)
To swivel the lampholder when changing the lamp
Material: PC, white
Oblong holes for screws M4
Weight: 3.1 g , unit: 500 pcs.
Type: 97515
Ref. No.: 105820

Bracket

For 2G11 lampholders 101485 and 101489
(see p. 193)
To swivel the lampholder when changing the lamp Material: PC, white
Oblong holes for screws M4
Base fixing holes for self-tapping screws
acc. to ISO $1481 / 7049-S T 2.9-C / F$
Weight: 3.7 g , unit: 500 pcs.
Type: 97516
Ref. No.: 105824
Lamp support for TC-D, TC-DEL lamps
Material: PC, white, UV-stabilised
Lamp position: 45°
Fixing foot with slot for screw M3.5
Weight: 1.5 g , unit: 500 pcs.
Type: 97031

Ref. No.: 105448

Lamp supports for TC-S, TC-SEL lamps
Height adjustable H: 17.5/20.5/23.5 mm
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: $0.4 / 0.8 / 0.8 \mathrm{~g}$, unit: 500 pcs .
Type: 35060
Ref. No.: 105775 foot, PC, white
Ref. No.: 105776 bracket, PC, crystal-clear, UV-stabilised
Ref. No.: 106416
bracket, PC, white,
UV-stabilised

Lamp supports for TC-S, TC-SEL lamps
Height adjustable H: 27.5/30.5/33.5 mm
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: $0.7 / 0.8 / 0.8 \mathrm{~g}$, unit: 500 pcs.
Type: 35061

Ref. No.: 105931

Ref. No.: 105776 bracket, PC, crystal-clear,
UV-stabilised
Ref. No.: 106416
bracket, PC, white,
UV-stabilised

Lamp supports for TC-L lamps
Height adjustable H: $21 / 24 / 27 \mathrm{~mm}$
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: 0.4/1.3/1.1 g, unit: 500 pcs.
Type: 35760
Ref. No.: 105775 foot, PC, white
Ref. No.: 105777 bracket, PC, crystal-clear, UV-stabilised
Ref. No.: 106417
bracket, PC, white,
UV-stabilised

Lamp supports for TC-L lamps
Height adjustable H: $31 / 34 / 37 \mathrm{~mm}$
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: 0.7/1.3/1.1 g, unit: 500 pcs.
Type: 35761
Ref. No.: 105931 foot, PC, white
Ref. No.: 105777 bracket, PC, crystal-clear, UV-stabilised
Ref. No.: 106417 bracket, PC, white,
UV-stabilised

Lamp supports for TC-S, TC-SEL lamps
Material: stainless steel
Weight: 1.3 g, unit: 500 pcs.
Type: 93056 push-fit foot for $\varnothing 5.5 \mathrm{~mm}$
Ref. No.: 509522
Type: 93057 push-fit foot for $8.5 \times 10.5 \mathrm{~mm}$ Ref. No.: 509521

Lamp supports for TC-F, TC-L lamps
Material: stainless steel
Weight: 1.5 g , unit: 500 pcs .
Type: 93058 push-fit foot for $\varnothing 5.5 \mathrm{~mm}$
Ref. No.: 509520
Type: 93059 push-fit foot for $8.5 \times 10.5 \mathrm{~mm}$

Ref. No.: 509519

$\stackrel{T}{-9.50,1}^{\text {- }}$

$\overbrace{\varnothing 5,5+0,1}$

Lamp supports for TC-F, TC-L lamps
For wall thickness 0.6-1 mm
Material: PC, white, UV-stabilised
Weight: 1.3 g , unit: 500 pcs.
Type: 97638 push-fit foot for $\varnothing 5.5 \mathrm{~mm}$

Ref. No.: 105981

Lamp support for TC-L lamps
Material: PC, white, UV-stabilised
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: 0.7 g , unit: 500 pcs.
Type: 36060
Ref. No.: 108878

Lamp support for TC-L lamps
Material: PC, crystal-clear, UV-stabilised Lockable
Base split pins for wall thickness $0.6-1 \mathrm{~mm}$ Weight: 4 g , unit: 500 pcs.
Type: 36061
Ref. No.: 101497

$\underbrace{}_{\triangle 5.5+0.1}$

ϕ
$\Phi 5.5+0.1$

3

GX53-1 Lampholders, Accessories

For single-ended compact fluorescent lamps with integrated ballasts

GX53-1 lampholder

Casing: PC, white, T100, nominal rating: 2/250
Push-in terminals for through-wiring
for single-core leads: $0.5-1 \mathrm{~mm}^{2}$
for stranded leads:
$0.75 \mathrm{~mm}^{2}$, tinned lead ends
Fixing holes for screws M3
Weight: 12.8 g , unit: 200 pcs.
Type: 11000

Ref. No.: 530878

GX53-1 lampholder

Fixing springs for installation into furniture panels Casing: PC, white, T100, nominal rating: 2/250
Push-in terminals for through-wiring
for single-core leads: $0.5-1 \mathrm{~mm}^{2}$
for stranded leads:
$0.75 \mathrm{~mm}^{2}$, tinned lead ends
Cut-out: $\varnothing 78^{+0.2} \mathrm{~mm}$
Weight: 13.2 g, unit: 200 pcs.
Type: 11010

Ref. No.: 530879

Cord grip/cover plate for GX53-1 lampholders
For leads HO3VVH2-F 2X0.75, tinned lead ends
For luminaires of protection class II
Material: PC, white
Weight: 1.6 g , unit: 200 pcs.
Type: 97278
Ref. No.: 504939

Surface-mounted installation ring
For wood or furniture panels
Material: PC, white
Weight: 10.4 g , unit: 100 pcs.
Type: 97277
Ref. No.: 504938

Surface-mounted installation ring, flat
For built-in into furniture panels
Material: PC, white
Weight: 2.1 g , unit: 200 pcs.
Type: 97272
Ref. No.: 504933

Surface-mounted installation ring, high
For built-in into furniture panels
Material: PC, white
Weight: 5.7 g , unit: 100 pcs.
Type: 97281
Ref. No.: 505118

3

Surface-mounted installation ring
For built-in into furniture panels
Material: PC, transparent
Weight: 12.5 g , unit: 100 pcs
Type: 97280
Ref. No.: 505003

LAMPHOLDERS FOR T5, T8, T12 AND T2 LAMPS

VS LAMPHOLDERS FOR DOUBLEENDED FLUORESCENT LAMPS

Vossloh-Schwabe's comprehensive range of lampholders for doubleended fluorescent lamps covers all major fixing methods. Push-through, push-fit and built-in lampholders with split pins or catches are available just as models with screw and push fittings.

High-grade materials for the contacts and thermoplastics for the casings guarantee reliable contacts and a long service life of the components.

Special G13 lampholders for the USA and Canada can be found under www.unvlt.com.
G5 lampholders 202-209
G5 lampholders, accessories 202-206
G5 twin lampholder 207
G5 lampholders, degree of protection IP54/IP65/IP67 207-208
2GX13 lampholders, accessories 209
G 13 lampholders210-229
G13 push-through lampholders 210-212
G13 push-fit lampholders 213-215
G13 push-fit twin lampholders, accessories 216-217
G13 built-in lampholders 217-221
G13 surface-mounted lampholders221-222
Accessories for T8 and T12 lamps222-224
G13 lampholders, degree of protection IP54/IP65/IP67, accessories 225-229
G10q lampholders, accessories 230
W4.3 x 8.5d lampholders 231
Technical details for fluorescent lamps 243-271
General technical details 394-401
Glossary 402-404

G5 Lampholders, Accessories

For fluorescent lamps T5 (T16)

Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G5 push-through/surface-mounted lampholder Lamp axis push-through lampholder: 13.2 mm Lamp axis surface-mounted lampholder: 15.2 mm Casing: PC, white, T 110
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$
Fixing slot for screw M3
Weight: 3.2 g, unit: 1000 pcs.
Type: 09105

Ref. No.: 100305

G5 built-in lampholder
Casing: PC, white, T1 10
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Weight: 2.6 g , unit: 1000 pcs.
Type: 09205
Ref. No.: 100310

G5 built-in/push-fit lampholder
Lamp axis: 12 mm
Casing: PC, white, T1 10
Nominal rating: 2/500
Push-in terminals: 0.5-1 mm²
Rear split pins for wall thickness up to 1.2 mm
Base split pins for wall thickness up to 1 mm
Weight: 2.9 g, unit: 1000 pcs.
Type: 09210
Ref. No.: 106455

G5 push-through lampholders
For the automatic luminaire wiring
Casing: PBT GF, white, frontplate: PC, white
Rotor: PBT GF, white, T140, lamp axis: 15 mm
Nominal rating: 2/500
IDC terminals for leads H05V-U 0.5
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$
Weight: 5 g , unit: 1000 pcs.
Type: 09420/ 0942

Ref. No.: 532377

Ref. No.: 532378
with stop
without stop

G5 push-through lampholders
For the automatic luminaire wiring
Casing: PBT GF, white, frontplate: PC, white
Rotor: PBT GF, white, T140, lamp axis: 20 mm
Nominal rating: 2/500
IDC terminals for leads H05V-U 0.5
Lateral fixing clips for wall thickness 0.5-1.5 mm
Weight: 5.6 g, unit: 1000 pcs.
Type: 09422/09423
Ref. No.: 532379 with stop
Ref. No.: 532380 without stop

G5 push-fit lampholder
For the automatic luminaire wiring
Lamp axis: 18 mm
Casing: PC, white, rotor: PBT GF, white, T130
Nominal rating: 2/500
IDC terminals for leads H05V-U 0.5
Lateral push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Weight: 5.5 g , unit: 1000 pcs.
Type: 09900

Ref. No.: 534644

G5 built-in lampholders
For the automatic luminaire wiring
Casing: PC, white, rotor: PBT GF, white, T130
Nominal rating: 2/500
IDC terminals for leads H05V-U 0.5
Rear split pins for wall thickness up to 1.2 mm
Weight: $3.7 / 4.1 \mathrm{~g}$, unit: 1000 pcs.
Type: 09145

Ref. No.: 501533

Type: 09146 with spring adjustment

Ref. No.: 501534

G5 built-in lampholder
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips
Weight: 2.8 g , unit: 1000 pcs.
Type: 09404

Ref. No.: 505732

G5 built-in lampholders
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Weight: 2.9/3.3 g, unit: 1000 pcs.
Type: 09405

Ref. No.: 505733

Type: 09406 with spring adjustment
Ref. No.: 505734

$\square_{\quad A-1}$

3

G5 built-in lampholder

Lampholder thickness: 12.5 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1 mm Weight: 3 g, unit: 1000 pcs.
Type: 09407

Ref. No.: 508590

G5 built-in lampholders

Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Weight: 2.9/3.2 g, unit: 1000 pcs.
Type: 09415

Ref. No.: 505735

Type: 09416 with spring adjustment

Ref. No.: 505736

G5 push-through lampholders
Lamp axis: 15 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$
Weight: $3.5 / 3.4 \mathrm{~g}$, unit: 1000 pcs.
Type: 09420/09421
Ref. No.: 505737
Ref. No.: 505739
with stop
without stop

G5 push-through lampholders
Lamp axis: 20 mm
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$
Weight: 4.1 g , unit: 1000 pcs.
Type: 09432/09433
Ref. No.: 545933
Ref. No.: 545935 without stop

G5 push-through lampholders
Lamp axis: 25 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$ Weight: 4.5 g , unit: 1000 pcs.
Type: 09434/09435
Ref. No.: 545937
Ref. No.: 545939
with stop
without stop

22.5

G5 push-through lampholders
Lamp axis: 35 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$
Weight: 4.6 g , unit: 1000 pcs.
Type: 09426/09427
Ref. No.: 505745
with stop
Ref. No.: 505746 without stop

G5 push-fit lampholder
Lamp axis: 14 mm
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear fixing clips for wall thickness $0.6-1 \mathrm{~mm}$
Base or lateral wiring
Weight: 3.3 g , unit: 1000 pcs.
Type: 09440

Ref. No.: 505747

G5 push-fit lampholder
Lamp axis: 18 mm
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear fixing clips for wall thickness $0.6-1 \mathrm{~mm}$
Base or lateral wiring
Weight: 3.9 g , unit: 1000 pcs.
Type: 09446
Ref. No.: 545894

G5 push-fit lampholder
Lamp axis: 23 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear fixing clips for wall thickness $0.6-1 \mathrm{~mm}$
Base or lateral wiring
Weight: 4.2 g , unit: 1000 pcs.
Type: 09447
Ref. No.: 545896

G5 push-fit lampholder
Lamp axis: 15 mm
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 3.4 g , unit: 1000 pcs.
Type: 09450
Ref. No.: 505750

3

G5 push-fit lampholder
Lamp axis: 11.8 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness up to 1 mm Lateral wiring
Weight: 3.1 g , unit: 1000 pcs
Type: 09460
Ref. No.: 505751

G5 built-in/push-fit lampholder Lamp axis: 11.8 mm
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Base split pins for wall thickness up to 1 mm
Lateral wiring
Weight: 3.2 g , unit: 1000 pcs.
Type: 09465

Ref. No.: 508314

G5 lampholder
For push-fit onto the lamp
Casing: PBT GF, white, T130
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Pin support for reliable contact
Lamp support 109685 (see below)
Weight: 3.7 g , unit: 1000 pcs.
Type: 09170

Ref. No.: 109686

Lamp support for lamps $\varnothing 16$ mm
Material: zinc-coated polished steel
Fixing hole for screw M3.5
Weight: 1.3 g , unit: 1000 pcs.
Type: 94088
Ref. No.: 109685

Lamp support for lamps $\varnothing 16$ mm Material: PC, white, UV-stabilised Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$ Weight: 1 g , unit: 500 pcs.
Type: 84001
Ref. No.: 500757

G5 Twin Lampholder

For fluorescent lamps T5 (T16)

Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G5 built-in lampholder

Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips
Weight: 2.8 g , unit: 1000 pcs.
Type: 09404
Ref. No.: 505732

Push-fit bracket
For two G5 built-in lampholders 505732
Material: PC, white
Lamp axis: 20 mm
Distance between two lamp axes: 24 mm
Push-fit foot for wall thickness $0.5-1 \mathrm{~mm}$
Weight: 3.5 g , unit: 1000 pcs.
Type: 97677

Ref. No.: 507562

G5 Lampholders, Degree of Protection IP54/IP65/IP67

For fluorescent lamps T5 (T16)

For luminaires of protection class I and II

Lampholders protected against dust and splashing water (IP54)
Lampholders protected against dust and jet of water (IP65)
Dust and watertight lampholders (IP67)

G5 push-fit lampholder for metal casing
Casing: PC, white, interior part: PBT GF T140, nominal rating: $2 / 500$
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for wall thickness: $1.4-2 \mathrm{~mm}$
Weight: 11.3 g , unit: 250 pcs
Type: 84101 system 153
Ref. No.: 529832

Pin support for reliable contact
With spring adjustment
Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

10

G5 push-fit lampholder for plastic casing Casing: PC, white, interior part: PBT GF T140, nominal rating: 2/500 Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for wall thickness: $0.4-1 \mathrm{~mm}$
Weight: 11.6 g , unit: 250 pcs.
Type: 84104 system 154

Ref. No.: 530535

Foot gaskets for systems 153 and 154
Weight: 0.5/0.7/0.7 g
Unit: 1000 pcs.
Type: 98002 degree of protection IP67
Ref. No.: 108947 material: PE foam
Type: 98087 degree of protection IP67
Ref. No.: $\mathbf{5 0 3 7 7 3}$ material: EPDM, black
Type: 98003 degree of protection IP54
Ref. No.: 108266 material: EPDM, black

G5 push-fit lampholder
Casing: PC, white, interior part: PBT GF
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for wall thickness: $1.4-2 \mathrm{~mm}$
Weight: 12.7 g, unit: 250 pcs.
Type: 84108 system 151
Ref. No.: 534073

Foot gaskets for system 15
Weight: 1/1.1/1.1 g
Unit: 1000 pcs
Type: 98004 degree of protection IP65
Ref. No.: 108267 material: cellular rubber, black

Type: 98011 degree of protection IP67
Ref. No.: 504078 material: silicone, transparent Type: 98008 degree of protection IP67
Ref. No.: 546254 profiled foot gasket material: EPDM, black

Screw ring for systems 151, 153 and 154
Ring: PBT GF, white, gasket: silicone
Weight: 11.8 g, unit: 250 pcs.
Type: 84103
Ref. No.: 529836

2GX 13 Lampholders, Accessories

For fluorescent lamps T-R5 (T-R 16)

2GX13 push-fit lampholder
Lamp axis: 15 mm
Casing: PC, white, T1 10
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base push-fit studs for
wall thickness up to 1.2 mm
Weight: 10 g , unit: 500 pcs.
Type: 58110

Ref. No.: 546656

2GX13 surface-mounted lampholder
Lamp axis: 15 mm
Casing: PC, white, T1 10
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Lateral fixing holes for screws M3
Weight: 10.6 g, unit: 500 pcs
Type: 58100

Ref. No.: 546655

Lamp support for lamps $\varnothing 16$ mm
Material: PC, white, UV-stabilised
Fixing hole for screw M3
Fixing hole for self-tapping screw acc. to ISO 1481/7049-ST4.2-C/F
Weight: 1 g , unit: 500 pcs.
Type: 84000

Ref. No.: 109532

Lamp support for lamps $\varnothing 16$ mm Material: PC, white, UV-stabilised Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$ Weight: 1 g , unit: 500 pcs.
Type: 84001
Ref. No.: 500757

G 13 Push-through Lampholders

For fluorescent lamps T8 (T26), T12 (T38)

Lampholders with integrated starter holder have
push-in twin terminals for the lamp circuit and push-in terminals for the the starter circuit.
Pin support for reliable contact
Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G13 push-through lampholders for lamps T8 and T12 Lamp axis: 23 mm
Casing: PC, white, frontplate: PBT GF, white
T140, nominal rating: $2 / 500$
Push-in terminals: 0.5-1 mm²
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$ Weight: 6 g , unit: 1000 pcs.
Type: 27700/27701
Ref. No.: 109330 with stop
Ref. No.: 109331 without stop

G13 Rotoclic push-through lampholders
for lamps T8 and T12
Lamp axis: 23 mm
Casing: PC, white, frontplate: PBT GF, white
T140, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: 6.8 g , unit: 1000 pcs.
Type: 27700/27701
Ref. No.: 546641
with stop
Ref. No.: 546642 without stop
G13 push-through lampholders for lamps T8
With starter attachment
Lamp axis: 23 mm
Casing: PC, white, frontplate: PBT GF, white
T140, nominal rating: 2/500
Push-in terminals: 0.5-1 mm²
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$ Weight: 10.4 g , unit: 500 pcs.
Type: 27800/27801
$\begin{array}{ll}\text { Ref. No.: } 109332 & \text { with stop } \\ \text { Ref. No.: } 109335 & \text { without stop }\end{array}$

G13 Rotoclic push-through lampholders for lamps T8, with starter attachment Lamp axis: 23 mm
Casing: PC, white, frontplate: PBT GF, white T140, nominal rating: 2/500
Push-in terminals: 0.5-1 mm²
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: 10.4 g, unit: 500 pcs.
Type: 27800/27801
$\begin{array}{ll}\text { Ref. No.: } 546647 & \text { with stop } \\ \text { Ref. No.: } 546648 & \text { without stop }\end{array}$

G13 push-through lampholders for lamps T8, T12 Lamp axis: 17 mm
Casing: PC, white, frontplate: PBT GF, white
T140, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: 5,4 g, unit: 1000 pcs.
Type: 26300/26310
Ref. No.: 551271
Ref. No.: 551272

G13 push-through lampholders for lamps T8 and T12 With starter attachment
Lamp axis: 22.5 mm
Casing: PC, white, rotor: PBT, white
T130, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.6-2 \mathrm{~mm}$
Weight: 9.5 g , unit: 500 pcs.
Type: 27820/27821
Ref. No.: 100579 with stop
Ref. No.: 100581 without stop

G13 push-hhrough lampholders for lamps T8 and T12 Lamp axis: 31 mm
Casing: PC, white, frontplate: PBT GF, white
T140, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: 7.8 g , unit: 1000 pcs.
Type: 28500/28501
Ref. No.: 109338
Ref. No.: 109339 without stop

G13 push-through lampholders for lamps T 8 and T 12
With starter attachment
Lamp axis: 31 mm
Casing: PC, white, frontplate: PBT GF, white
T140, nominal rating: 2/500
Push-in terminals: 0.5-1 mm²
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: $10.3 / 10.1 \mathrm{~g}$, unit: 500 pcs.
Type: 28600/28601
Ref. No.: $109340 \quad$ with stop
Ref. No.: $109341 \quad$ without stop
G13 push-hhrough lampholders for lamps T 8 and T 12 Lamp axis: 31 mm
Casing: PC, white, rotor: PBT GF, white
T130, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.6-2 \mathrm{~mm}$
Weight: 9.6 g, unit: 500 pcs.
Type: 28740/28741
Ref. No.: 542983 with stop
Ref. No.: 542984 without stop

3

G13 push-through lampholders for lamps T8 and T12 Lamp axis: 31 mm
Casing: PC, white, rotor: PBT, white
T130, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.6-2 \mathrm{~mm}$
Weight: 9.9 g , unit: 1000 pcs.
Type: 28500/28501
Ref. No.: 100591 with stop

Ref. No.: 100593 without stop

G13 push-through lampholders for lamps T8 and T12
For the automatic luminaire wiring
Lamp axis: 23 mm
Casing: PC, white, frontplate: PBT GF, white
T140, nominal rating: 2/500
IDC terminals for leads H05V-U 0.5
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: $7.7 / 7.5 \mathrm{~g}$, unit: 1000 pcs.
Type: 27780/27781
Ref. No.: 526019
with stop
Ref. No.: 526020 without stop

G13 push-hhrough lampholders for lamps T8 and T12 For the automatic luminaire wiring Lamp axis: 31 mm
Casing: PC, white, frontplate: PBT GF, white T140, nominal rating: 2/500
IDC terminals for leads HO5V-U 0.5
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: 8.8/8.6 g, unit: 1000 pcs.
Type: 28580/28581
Ref. No.: 526021
with stop
Ref. No.: 526022 without stop

G 13 Push-fit Lampholders

For fluorescent lamps T8 (T26), T12 (T38)

Lampholders with integrated starter holder are equipped with big rotor and have push-in twin terminals for the lamp circuit and push-in terminals for the the starter circuit. Pin support for reliable contact

G13 Rotoclic push-fit lampholders for lamps T8 and T12 T140, nominal rating: $2 / 500$, suitable for Top Test Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for luminaire cut-out $13.3 \times 25.5 \mathrm{~mm}$ with wall thickness $0.6-1 \mathrm{~mm}$
Lampholder foot/luminaire: IP40 (537135: IP50)
Weight: 5.9/5.9/6/6 g, unit: 1000 pcs.
Type: 24100/24110/24170/24150
Ref. No.: 537132 lamp axis H: 25 mm
Ref. No.: 537135 lamp axis H: 25 mm, IP50
Ref. No.: 537150 lamp axis H: 21 mm
Ref. No.: 537144 lamp axis H: 18 mm

G13 push-fit lampholders with starter attachment
for lamps T8 and T12, lamp axis $\mathrm{H}: 25 \mathrm{~mm}$
T130, nominal rating: 2/500
Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for luminaire cut-out $13.3 \times 25.5 \mathrm{~mm}$
with wall thickness 0.6-1 mm
Lampholder foot/luminaire: IP40 (100540: IP50)
Weight: $10.4 / 12 \mathrm{~g}$, unit: $1000 / 500$ pcs.
Type: 27200/27201
Ref. No.: 100536 IP40
Ref. No.: 100540 IP50

G13 Rotoclic push-fit lampholders for lamps T8 and T12 T140, nominal rating: 2/500, suitable for Top Test Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for luminaire cut-out $10 \times 20 \mathrm{~mm}$
with wall thickness 0.6-1 mm
Lampholder foot/luminaire: IP40
Weight: $5.7 / 6$ g, unit: 1000 pcs.
Type: 24120/24160
Ref. No.: 537138 lamp axis H: 25 mm
Ref. No.: $\mathbf{5 3 7 1 4 7}$ lamp axis H: 21 mm

G13 push-fit lampholders for lamps T8
Lamp axis: 18 mm
T130, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit feet for luminaire cut-out $13.3 \times 25.5 \mathrm{~mm}$
with wall thickness 0.7 mm
Weight: 6 g , unit: 1000 pcs.
Type: 27151
Ref. No.: 100532

Casing: PC, white, frontplate/rotor: PBT GF, white
Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$
T-Marking acc. to IEC
IP50 version: push-fit foot with gasket

G 13 Rotoclic push-fit lampholders for lamps T8
T140, nominal rating: 2/500
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness up to 1.2 mm Lampholder foot/luminaire: IP40
Weight: 5.9/5.7 g, unit: 1000 pcs.
Type: 24360/24350
Ref. No.: 537155
Ref. No.: 537153
lamp axis $\mathrm{H}: 30 \mathrm{~mm}$
lamp axis H: 23.5 mm

G13 Rotoclic push-fit lampholders for lamps T8 T140, nominal rating: 2/500
Suitable for Top Test
Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness up to 1.2 mm Lampholder foot/luminaire: IP40
Weight: 6/5.8/5.3 g, unit: 1000 pcs.
Type: 23360/23350/23370
Ref. No.: 537160 lamp axis H: 30 mm
Ref. No.: $\mathbf{5 3 7 1 5 7}$ lamp axis H: 23.5 mm
Ref. No.: $\mathbf{5 3 9 1 2 8}$ lamp axis H: 18 mm

G13 push-fit lampholders with starter attachment for lamps T8
T130, nominal rating: 2/250
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness up to 1.2 mm
Lampholder foot/luminaire: IP40
Weight: $9.7 / 9.5 \mathrm{~g}$, unit: 1000 pcs.
Type: 27460/27450
Ref. No.: 100559 lamp axis H: 30 mm
Ref. No.: 100557 lamp axis H: 23.5 mm

G13 push-fit lampholders for lamps T 8 and T 12
Lamp axis H: 25 mm
T130, nominal rating: 2/500
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for luminaire cut-out $13.3 \times 25.5 \mathrm{~mm}$
with wall thickness 0.5-1 mm
Lampholder foot/luminaire: IP40
Weight: 5/11 g, unit: 500 pcs.
Type: 28100/28200
Ref. No.: 100585
Ref. No.: 100588 with starter attachment

G13 push-fit lampholder for lamps T8
For the automatic luminaire wiring
Lamp axis: 21 mm
T130, nominal rating: 2/250
IDC terminals for leads H05V-U 0.5
Base split pins for wall thickness up to 1 mm
The lampholder is wired in its horizontal position before being brought into its vertical service position Weight: 6.7 g , unit: 1000 pcs.
Type: 48230

Ref. No.: 108730

G13 push-fit lampholder for lamps T8
For the automatic luminaire wiring
Lamp axis: 31 mm
T130, nominal rating: 2/500
IDC terminals for leads H05V-U 0.5
Base split pins for wall thickness up to 1 mm Weight: 7.2 g , unit: 1000 pcs.
Type: 28310
Ref. No.: 506007

G13 push-fit lampholder for lamps T8
For the automatic luminaire wiring
Lamp axis: 26.5 mm
T130, nominal rating: 2/500
IDC terminals for leads H05V-U 0.5
Base split pins for wall thickness up to 1 mm
Weight: 7.1 g , unit: 1000 pcs.
Type: 28315
Ref. No.: 504202

G13 push-fit lampholder for lamps T8
For the automatic luminaire wiring
Lamp axis: 31 mm
T130, nominal rating: 2/500
IDC terminals for leads HO5V-U 0.5
Lateral push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness up to 1 mm
Front cable holder for up to 3 individual conductors
Weight: 8 g , unit: 1000 pcs.
Type: 28330

Ref. No.: 508423

G13 push-fit lampholders
Lamp axis: 25 mm
T130, nominal rating: 5/500
Lateral and base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for luminaire cut-out $10 \times 20 \mathrm{~mm}$
for wall thickness 0.4-1 mm
Weight: $6 / 8.5 \mathrm{~g}$, unit: 500 pcs.
Type: 28921/28920
Ref. No.: 108438 for lamps T8 and T12
Ref. No.: 108437 for lamps T8
with starter attachment

G 13 Push-fit Twin Lampholders, Accessories

For fluorescent lamps T8 (T26), T 12 (T38)

Casing: PC, white, rotor: PBT GF, white
Pin support for reliable contact
Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G13 twin lampholder for lamps T8
Lamp axis: 22 mm
Distance between two lamp axes: 50 mm
T130, nominal rating: 2/500
Base wiring
Push-in terminals: 0.5-1 mm²
Push-fit foot for wall thickness 1 mm
Weight: 14 g , unit: 400 pcs.
Type: 22900

G13 twin lampholders for lamps T8 and T12 Lamp axis: 25 mm
Distance between two lamp axes: 76 mm T130, nominal rating: 2/500
Base push-in twin terminals: 0.5-1 mm² (lamp circuit) Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Push-fit foot for wall thickness $0.6-1$ mm
Weight: 21 g , unit: 200/500 pcs.
Type: 22604/22602 without starter attachment

Ref. No.: 108816 with stop
 Ref. No.: 100487 without stop

Type: 22600/22601 with starter attachment
Ref. No.: 100484 with stop
Ref. No.: 100486 without stop

G13 twin lampholders for lamps T8 and T12
Lamp axis: 31.5 mm
Distance between two lamp axes: 76 mm
T130, nominal rating: 2/500
For wiring inserts 108777/108778
and 545261/545262
Weight: 17 g , unit: 250 pcs.
Type: 22800/22801
Ref. No.: 108773
with starter attachment
Ref. No.: 108775 without starter attachment

Wiring inserts with push-fit foot
For G13 twin lampholders 108773/108775
Material: PC, white
Push-in terminals: $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads HO5V-U 0.5
Weight: 5.3 g , unit: 500 pcs.
Type: 22850/22851
$\begin{array}{ll}\text { Ref. No.: } 108777 & \text { with stop } \\ \text { Ref. No.: } 108778 & \text { without stop }\end{array}$

Wiring inserts with push-fit foot
For G13 twin lampholders 108773/108775
Material: PC, white
Push-in terminals: 0.5-1 mm²
Weight: 4.4 g , unit: 500 pcs.
Type: 22860/22861
Ref. No.: 545261
Ref. No.: 545262
with stop
without stop

For fluorescent lamps T8 (T26), T12 (T38)

Lampholders with integrated starter holder are equipped with big rotor and have push-in twin terminals for the lamp circuit and push-in terminals for the the starter circuit.
Pin support for reliable contact
(except for type 485)

G 13 built-in lampholders for lamps T8 and T12
Lampholder thickness: 13 mm
T140, nominal rating: 2/500
Push-in terminals: 0.5-1 mm²
Rear split pins for wall thickness up to 1.2 mm
Weight: 4.6/5.4 g, unit: 1000 pcs.
Type: 47105/47106
Ref. No.: 509152
Ref. No.: 509154 with spring adjustment

G13 built-in lampholders for lamps T 8 and T 12
Lampholder thickness: 9.5 mm
T140, nominal rating: 2/500
Push-in terminals: 0.5-1 mm²
Rear split pins for wall thickness up to 1.2 mm
Weight: 4.4/5.1 g, unit: 1000 pcs.
Type: 47505/47506

Ref. No.: 509162

Ref. No.: 509164 with spring adjustment

G13 built-in lampholder for lamps T8 and T12
Lampholder thickness: 10.5 mm
T140, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Weight: 4.6 g , unit: 1000 pcs.
Type: 47304

Ref. No.: 509156

Casing: PC, white, frontplate/rotor: PBT GF, white Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$
T-Marking acc. to IEC

G 13 Rotoclic built-in lampholders for lamps T8 and T12
T140, nominal rating: 2/500
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes $\varnothing 3.2 \mathrm{~mm}$
Weight: 5 g , unit: 1000 pcs.
Type: 49100/49500
Ref. No.: 537165 lampholder thickness: 13 mm
Ref. No.: $\mathbf{5 3 7 1 7 3}$ lampholder thickness: 9.5 mm

G13 built-in lampholders with spring adjustment
for lamps T8 and T12
T130, nominal rating: 2/500
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 6/5.5 g, unit: 1000 pcs.
Type: 47102/47502
Ref. No.: 101681 lampholder thickness: 13 mm
Ref. No.: 101740 lampholder thickness: 9.5 mm

G13 Rotoclic built-in lampholders for lamps T8 and T12
T140, nominal rating: 2/500
Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Suitable for Top Test
Fixing holes $\varnothing 3.2 \mathrm{~mm}$
Weight: $5 / 4.7$ g, unit: 1000 pcs.
Type: 59100/59500
Ref. No.: 537181 lampholder thickness: 13 mm
Ref. No.: $\mathbf{5 3 7 2 0 5}$ lampholder thickness: 9.5 mm

G13 built-in lampholders with starter attachment
for lamps T8 and T12
T130, nominal rating: 2/500
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: $8.7 / 10.3 / 8 \mathrm{~g}$, unit: 1000 pcs .
Type: 47200/47402 lampholder thickness: 13 mm

Ref. No.: 101706

Ref. No.: 101708
with spring adjustment
Type: 47600 lampholder thickness: 9,5 mm

Ref. No.: 101765

G13 Rotoclic built-in lampholders for lamps T 8 and T 12
T140, nominal rating: 2/500
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Weight: 5.1/5.9/5/5.5 g, unit: 1000 pcs.
Type: 49105/49106 lampholder thickness: 13 mm

Ref. No.: 537166

Ref. No.: 537167
with spring adjustment
Type: 49505/49506 lampholder thickness: 9.5 mm

Ref. No.: 537174

Ref. No.: 537175
with spring adjustment

G13 Rotoclic built-in lampholders for lamps T 8 and T 12 T140, nominal rating: 2/500
Lateral push-in terminals: $0.5-1 \mathrm{~mm}^{2}$, suitable for Top Test Rear split pins for wall thickness up to 1.2 mm Weight: $5.1 / 5.9 / 5 / 5.5 \mathrm{~g}$, unit: 1000 pcs .
Type: 59105/59106 lampholder thickness: 13 mm

Ref. No.: 537182

Ref. No.: 537183 with spring adjustment
Type: 59505/59506 lampholder thickness: 9.5 mm
Ref. No.: 537206
Ref. No.: 537207 with spring adjustment

G 13 built-in lampholders with starter attachment for lamps T8 and T12, T130, nominal rating: 2/500 Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Weight: 9/9.5/8/8.5 g, unit: 1000 pcs.
Type: 47205/47206 lampholder thickness: 13 mm

Ref. No.: 101712

Ref. No.: 101716
with spring adjustment
Type: 47605/47606 lampholder thickness: 9.5 mm

Ref. No.: 101769

Ref. No.: 101773
with spring adjustment

G 13 built-in lampholders for lamps T8
For the automatic luminaire wiring
T130
Nominal rating: 2/500, lampholder thickness: 10.5 mm , IDC terminals for leads H05V-U 0.5

Rear split pins for wall thickness up to 1.2 mm
Weight: $5 / 5.5 \mathrm{~g}$, unit: 1000 pcs.
Type: 48205/48206

Ref. No.: 507133

Ref. No.: 507134 with spring adjustment

G13 built-in lampholder for lamps T8 and T12
Lampholder thickness: 10.7 mm
T130
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips
Weight: 4.7 g , unit: 1000 pcs.
Type: 47504

Ref. No.: 101745

G13 lampholder
For push-fitting onto lamps T12
Lampholder thickness: 9.5 mm
Casing: PC, white, T1 10
Front cover plate: PBT GF, white
Nominal rating: 2/250
Push-in terminals: 0.5-1 mm²
Fixing holes for screws M3
Weight: 10.5 g, unit: 1000 pcs.
Type: 47700
Ref. No.: 101781

G13 lampholder

For push-fitting onto lamps T8
Lampholder thickness: 9.5 mm
Casing: PC, white, T1 10
Front cover plate: PBT GF, white
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing hole for screw M3
Weight: 5.3 g , unit: 1000 pcs.
Type: 47900

Ref. No.: 101784

G13 lampholder with starter attachment
For push-fitting onto lamps T8
Lampholder thickness: 9.5 mm
Casing: PC, white, T1 10
Front cover plate: PBT GF, white
Nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing hole for screw M3
Weight: 8.1 g , unit: 1000 pcs.
Type: 47920

Ref. No.: 101785

Endbox with integrated G13 lampholder for lamps T8 and T12
For recessed luminaires in modular ceilings T130, nominal rating: 2/500
Push-in terminals: $0.5-0.75 \mathrm{~mm}^{2}$, single-core
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
Clip fixing for wall thickness up to 1 mm
Weight: 20.8 g, unit: 200 pcs.
Type: 48300

Ref. No.: 109487

G13 built-in lampholder with lamp lock
for lamps T8 and T12
Contacts on both sides
Casing: PBT GF, white, T130, nominal rating: 2/500
Screw terminals: 0.5-2.5 mm²
Fixing holes for screws M3
Weight: 12.9/18 g, unit: 500 pcs.
Type: 46100/46101
Ref. No.: 101643
Ref. No.: 101647 with spring adjustment

G13 built-in lampholders for lamps T8 and T12
Casing: PC, white, T1 10
Nominal rating: 2/500
Screw terminals: 0.5-2.5 mm²
Fixing holes for screws M3
5 rotation stops
Weight: 9/10.6 g, unit: 1000 pcs.
Type: 48500/48501
Ref. No.: 101787
Ref. No.: 101789 with spring adjustment

Ref. No.: 101812

G 13 Surface-mounted Lampholders

For fluorescent lamps T8 (T26), T12 (T38)

Pin support for reliable contact
(except for type 485)
Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G13 surface-mounted lampholder for lamps T8 and T12
Lamp axis: 25.5 mm
Casing: PC, white, rotor: PBT GF, white, T130
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing hole: $\varnothing 3.8 \mathrm{~mm}$
Weight: 7.2 g , unit: 500 pcs.
Type: 27722

Ref. No.: 100572

G13 surface-mounted lampholder with starter attachment
for lamps T8 and T12
Lamp axis: 25.5 mm
Casing: PC, white, rotor: PBT GF, white, T130
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing hole: $\varnothing 3.8 \mathrm{~mm}$
Weight: 9.5 g , unit: 500 pcs.
Type: 27822
Ref. No.: 100583

G13 surface-mounted lampholder for lamps T8
Lamp axis: 17 mm
Casing: PC, white, rotor: PBT GF, white, T130
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing hole for self-tapping screw
acc. to ISO 1481/7049-ST3.5-C/F
Weight: 5.4 g , unit: 1000 pcs.
Type: 27356
Ref. No.: 100551

G13 surface-mounted lampholders with lamp lock
for lamps T8 and T12, lamp axis: 25 mm
Contacts on both sides
Casing: PBT GF, white, T 130
Screw terminals: 0.5-2.5 mm^{2}, nominal rating: 2/500
Bracket: zinc-coated polished steel
Fixing slołs for screws M4
Weight: $35 / 36 \mathrm{~g}$, unit: 500 pcs.
Type: 46102/46103
Ref. No.: 101651
Ref. No.: 101655 with spring adjustment

G13 surface-mounted lampholders
for lamps T8 and T12
Lamp axis: 25 mm, casing: PC, white, T1 10
Screw terminals: 0.5-2.5 mm^{2}, nominal rating: $2 / 500$
Bracket: zinc-coated polished steel
Fixing slots for screws M4
5 rotation stops
Weight: 26/28.1 g, unit: 500 pcs.
Type: 48502/48503

Ref. No.: 101791

Ref. No.: 101793
with spring adjustment

Accessories

For lampholders for fluorescent lamps $\mathbf{T 8}$ (T26), 12 (T38)

The luminaire manufacturer is responsible for
the right choice of accessories.
Lamp supports
Fixing hole for screw M4
Weight: $4.3 / 6.8 \mathrm{~g}$, unit: 500 pcs.
Type: 20400 for lamps 78
Ref. No.: 100442 material: zinc-coated polished steel
Type: 20401 for lamps T12
Ref. No.: 100444 material: CrNi-steel

Lamp supports for lamps T8
Material: PC, crystal-clear
Fixing hole for screw M4
Weight: 2 g, unit: 1000 pcs.
Type: 20501
Ref. No.: 100448

Push-fit bracket

For G13 built-in lampholder 537174, 537206
(see p. 218-219) and starter holder 101627 and 109792 (see p. 235-236), material: PC, white Lamp axis optional: 46/51/56 mm
or 43 mm (lateral lamp insertion) Push-fit foot for wall thickness $0.5-1$ mm
Option for lateral or base wiring
Weight: 5.3 g , unit: 1000 pcs.
Type: 97532

Ref. No.: 105843

Push-fit bracket
For G13 built-in lampholder 537181, 537166, 537174
(see p. 218), 537206 and 507133 (see p. 219)
Material: PC, grey
Lamp axis optional: 33/40/46/51/56
or 43 mm (lateral lamp insertion)
Push-fit foot for wall thickness $0.5-1 \mathrm{~mm}$
Weight: 6 g , unit: 1000 pcs.
Type: 97044

Ref. No.: 108780

Foot gasket for degree of protection IP50
For push-fit bracket 108780
Material: EPDM, black
Weight: 0.7 g
Type: 98003
Ref. No.: 108266

Push-fit bracket, right
For G13 built-in lampholders 101769, 537174 and 537206 (see p. 218-219)
Material: PC, white
Lamp axis optional: 25/45 mm, distance
between two lamp axes optional: $30 / 35 \mathrm{~mm}$
Push-fit foot for wall thickness $0.5-1$ mm
Option for lateral or base wiring
Weight: 6.6 g , unit: 1000 pcs.
Type: 97533

Ref. No.: 105845

Push-fit bracket, left
For G 13 built-in lampholders 537174, 537206
(see p. 218-219)
Material: PC, white
Lamp axis optional: 25/45 mm, distance
between two lamp axes optional: $30 / 35 \mathrm{~mm}$
Push-fit foot for wall thickness $0.5-1 \mathrm{~mm}$
Option for lateral or base wiring
Weight: 6.7 g , unit: 1000 pcs.
Type: 97534
Ref. No.: 105847

Cable holder

Material: PA, white
Push-fit foot for cut-out $\varnothing 4$ mm
for wall thickness 0.6-1.2 mm
Weight: 0.2 g , unit: 5000 pcs.
Type: 97147
Ref. No.: 109086

Cable holder

For the automatic luminaire wiring
and manual wiring
Material: PC, white
Degree of protection IP50
Weight: 0.5 g , unit: 5000 pcs.
Type: 97117

Ref. No.: 108845

Cable holder
For the automatic luminaire wiring
and manual wiring
Material: PA, white
Weight: 2.1 g, unit: 7500 pcs.
Type: 0607

Ref. No.: 159968

G 13 Lampholders, Degree of Protection IP54

For fluorescent lamps $\mathrm{T8}$ (T26), 12 (T38)
 For luminaires of protection class I and II

Lampholders protected against dust and splashing water (IP54)
To convert luminaires from IP20 to IP54
Pin support for reliable contact
With spring adjustment

G13 push-fit lampholder for lamps T8/T12
Casing: PC, white, interior part: PBT GF, white Rotor: PBT GF, white, T140
Nominal rating: 2/500
Push-in terminals: 0.5-1 mm²
Fixing clips for wall thickness 0.7 mm
Screw rings see page 229
Weight: 17.1 g , unit: 500 pcs.
Type: 84171 system 161
Ref. No.: 107957

G13 push-fit twin lampholder for lamps T8/T12 Casing: PC, white, interior part: PBT GF, white Rotor: PBT GF, white, T140
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing clips for wall thickness 0.7 mm
Screw rings see page 229
Weight: 33.6 g , unit: 250 pcs.
Type: 84173 system 162
Ref. No.: 107959

Food gasket for degree of protection IP54
For lampholder systems 161, 162
Material: EPDM, black
Weight: 0.7 g
Type: 98003
Ref. No.: 108266

Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G 13 Lampholders, Degree of Protection IP65/IP67

For fluorescent lamps T8 (T26), T12 (T38)
 For luminaires of protection class I and II

Lampholders protected against dust and jet of water (IP65)
Dust and watertight lampholders (IP67)
Pin support for reliable contact with spring adjustment

G13 push-fit lampholders for lamps T8/T12
Casing: PC, interior part: PBT GF
Rotor: PBT GF, white, T140
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing clips for wall thickness $1.4-2 \mathrm{~mm}$
Screw rings see page 229
Weight: 17.3 g , unit: 500 pcs.
Type: 84172 system 163

Ref. No.: 107958
 Ref. No.: 108666
 casing white
 casing grey

G13 push-fit twin lampholders for lamps T8/T12
Casing: PC, interior part: PBT GF
Rotor: PBT GF, white, T140
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing clips for wall thickness $1.4-2 \mathrm{~mm}$
Screw rings see page 229
Weight: 34.2 g , unit: 250 pcs.
Type: 84174 system 164
Ref. No.: 107960 casing white
Ref. No.: 108669 casing grey
G13 push-fit lampholders for lamps T8/T12
Casing: PC, interior part: PBT GF, T140
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing clips for wall thickness $1.4-2 \mathrm{~mm}$
With slot insertion
Screw rings see page 229
Weight: 14.5 g , unit: 250 pcs.
Type: 84175 system 165
Ref. No.: 108608 casing white
Ref. No.: 108614 casing grey

Foot gaskets
For lampholder systems 163, 164, 165
Weight: $1 / 1.1 \mathrm{~g}$
For degree of protection IP65
Material: cellular rubber
Type: 98004

Ref. No.: 108267

For degree of protection IP67
Material: silicone, transparent
Type: 98011
Ref. No.: 504078

Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

Profiled foot gasket
For degree of protection IP67
For lampholder systems 163, 164, 165
Material: EPDM, black
Weight: 1.1 g , unit: 1000 pcs.
Type: 98008

Ref. No.: 546254

G13 lampholder for lamps T8/T12
Casing: PC, interior part: PBT GF, T140
Nominal rating: 2/500
With slot insertion
For wiring insert 108819
Screw rings see page 229
Weight: 15.1 g , unit: 500 pcs.
Type: 84180 system 167
Ref. No.: 108948 casing white

G13 twin lampholder for lamps T8/T12
Casing: PC, interior part: PBT GF, T140
Nominal rating: 2/500
With slot insertion
For wiring insert 108819
Screw rings see page 229
Weight: 30.6 g , unit: 250 pcs.
Type: 84181 system 168
Ref. No.: 108994 casing white

Wiring insert with push-fit foot
For lampholder systems 167, 168
Material: PC, grey
Push-in terminals: $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
Push-fit foot for wall thickness $1.4-2 \mathrm{~mm}$
Weight: 5.1 g , unit: 500 pcs.
Type: 22852
Ref. No.: 108819

Foot gasket for degree of protection IP67
For lampholder systems 167, 168
Material: PE foam
Weight: 0.5 g
Type: 98002
Ref. No.: 108947

Foot gasket, profiled shape
For degree of protection IP67
For lampholder systems 167, 168
Material: EPDM, black
Weight: 0.7 g , unit: 1000 pcs
Type: 98087

Ref. No.: 503773

G13 lampholder for lamps T8/T12
Casing: PC, white, interior part: PBT GF, T140
Nominal rating: 2/500
Screw fixing foot with tapped holes M4
Screw rings see page 229
With slot insertion
Weight: 14 g , unit: 250 pcs.

Type: 84105 system 152
Ref. No.: 521123

Foot gasket for degree of protection IP65/IP67
For lampholder system 152
Material: EPDM, black
Weight: 1.4 g , unit: 1000 pcs
Type: 98085
Ref. No.: 106094

Screw Rings for G13 Lampholders, Degree of Protection IP54, IP65, IP67

For lampholder systems 152, 161, 162, 163, 164, 165, 167, 168

Screw rings

Ring: PBT GF, gasket: silicone
Weight: 17/20 g, unit: 500/250 pcs.
Type: 84122 for lamps 78
Ref. No.: 103710
white
Ref. No.: 103709 grey
Type: 84123 for lamps T12 or
for lamps T8 with protection tube $\varnothing 38 \mathrm{~mm}$
Ref. No.: 103712 white
Ref. No.: 103711 grey

Screw rings with heat dissipator
For lamps 78 with
plastic protection tube $\varnothing 38 \mathrm{~mm}$
Ring: PBT GF
Gasket: silicone, shell: aluminium
Weight: 40 g, unit: 250 pcs.
Type: 84154
Ref. No.: 103744 white
Ref. No.: 103743 grey

Screw rings
For protection tube $\varnothing 50 \mathrm{~mm}$
Ring: PBT GF
Gasket: EPDM
Weight: 43.8 g, unit: 125 pcs.
Type: 84159 not suitable for system 152
Ref. No.: 103750
white
Ref. No.: 103749 grey

G 10q Lampholders, Accessories

For fluorescent lamps T-R

G10q push-fit lampholder
Casing: PC, white, T1 10
Spring bracket $\varnothing 32$ mm: CrNi-steel
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lamp axis: 23 mm
Push-fit foot for wall thickness up to 1.2 mm
Weight: 8.4 g , unit: 500 pcs.
Type: 40100

Ref. No.: 101528

Lamp support for T-R lamps
For lampholder 101528
Material: PC, white
Spring bracket $\varnothing 32 \mathrm{~mm}$: CrNi-steel
Lamp axis: 23 mm
Push-fit foot for wall thickness up to 1.2 mm
Weight: 4.4 g , unit: 500 pcs.
Type: 40150
Ref. No.: 101532

G1Oq surface-mounted lampholder
Casing: PC, white, T1 10
Spring bracket $\varnothing 32 \mathrm{~mm}$: CrNi-steel
Nominal rating: 2/250
Connection leads: H05V2-U 1×0.75,

$$
\text { max. } 105^{\circ} \mathrm{C} \text {, length: } 270 \mathrm{~mm}
$$

Lamp axis: 35 mm
Fixing plates with tapped holes M4
Weight: 25 g, unit: 250 pcs.
Type: 58016

Ref. No.: 102409

Lamp support for T-R lamps
For lampholder 102409
Material: PC, white
Spring bracket $\varnothing 32$ mm: CrNi-steel Lamp axis: 35 mm
Fixing plates with tapped holes M4
Weight: 8 g , unit: 500 pcs.
Type: 58001
Ref. No.: 102407

W4.3x 8.5d Surface-mounted Lampholder

For fluorescent lamps T2 (T7)

W4.3×8.5d surface-mounted lampholder
Casing: PC, white, T1 10
Nominal rating: 2/250
Leads: H05V-K 1×0.5 max. $90^{\circ} \mathrm{C}$,
length: 450 mm , ferrules on bare end of core Fixing hole: $\varnothing 2.6$ mm
Spring-mounted insert for reliable contact
Weight: 10.3 g , unit: 500 pcs.
Type: 09000

Ref. No.: 107536

OPTIMUM START WITH COMPONENTS MADE BY VS

Starter holders, accessories 234-237
Terminal blocks, accessories 238-242
Built-in rocker switches 242
Technical details for fluorescent lamps 243-271
General technical details 394-401
Glossary 402-404

Starter Holders, Accessories

For starters acc. to DIN VDE 0712 part 101, IEC 60155

Starter holders with central studs, suitable for luminaires of protection class II, are available on request.

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm Weight: 2.1 g , unit: 1000 pcs.
Type: 02113
Ref. No.: 535131

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$, single-core Front and rear split pins for wall thickness up to 1.2 mm
Rear of starter holder/luminaire: IP40
Weight: 2.8 g , unit: 1000 pcs.
Type: 02110

Ref. No.: 109784

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Lateral split pins for wall thickness up to 1.25 mm
Rear of starter holder/luminaire: IP40
Weight: 3.7 g , unit: 1000 pcs.
Type: 02120
Ref. No.: 100064

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 3.8 g , unit: 1000 pcs.
Type: 02150
Ref. No.: 100069

Starter Holders and Terminal Blocks, Accessories

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: 0.5-1 mm²
Front split pins, flat
for wall thickness 0.6-1 mm
Weight: 3.1 g , unit: 1000 pcs.
Type: 02170

Ref. No.: 106818

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Rear of starter holder/luminaire: IP40
Weight: 3.3 g , unit: 1000 pcs.
Type: 43000
Ref. No.: 101627

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: 0.5-1 mm²
Lateral split pins for wall thickness up to 1 mm
Rear of starter holder/luminaire: IP40
Weight: 3.4 g , unit: 1000 pcs.
Type: 43010

Ref. No.: 101629

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear and lateral split pins
for wall thickness up to 1 mm
Rear of starter holder/luminaire: IP40
Weight: 3.5 g , unit: 1000 pcs.
Type: 43020
Ref. No.: 108671

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 3.7 g , unit: 1000 pcs.
Type: 43100
Ref. No.: 101631

Starter Holders and Terminal Blocks, Accessories

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$, single-core
Lateral split pins for wall thickness up to 1 mm
Rear of starter holder/luminaire: IP40
Weight: 3.7 g , unit: 1000 pcs.
Type: 43200

Ref. No.: 109790

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$, single-core
Rear split pins for wall thickness up to 1.2 mm Lateral split pins for wall thickness up to 1 mm Rear of starter holder/luminaire: IP40
Weight: 3.7 g , unit: 1000 pcs.
Type: 43210

Ref. No.: 109792

Starter holder with integrated extension piece
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: 0.5-1 mm²
Front split pins for wall thickness up to 0.8 mm Weight: 5.4 g, unit: 1000 pcs.
Type: 43300
Ref. No.: 101636

Starter holder with integrated extension piece
Material: PC, white
For the automatic luminaire wiring
T110, nominal rating: 2/250
IDC terminals for leads H05V-U 0.5
Front split pins for wall thickness up to 1 mm
Weight: 5.4 g , unit: 1000 pcs.
Type: 43500

Ref. No.: 108454

Starter holder
Material: PC, white
For the automatic luminaire wiring
T110, nominal rating: 2/250
IDC terminals for leads H05V-U 0.5
Rear split pins for wall thickness up to 1 mm
Weight: 3.2 g, unit: 1000 pcs.
Type: 43510
Ref. No.: 107723

Starter Holders and Terminal Blocks, Accessories

Starter holder
Material: PC, white
T110, nominal rating: 2/250
Push-in terminals: 0.5-1 mm²
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
Rear split pins for wall thickness up to 1 mm
Weight: 3 g, unit: 1000 pcs.
Type: 43520
Ref. No.: 530079

Starter holder
Material: PA, white
T110, nominal rating: 2/250
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
Lateral split pins for wall thickness up to 1 mm
Weight: 3 g , unit: 1000 pcs.
Type: 43410
Ref. No.: 107445

Extension piece
For front clip-in fixing into luminaire metal sheets
For use with starter holder 109784 (see p. 234)
For screw caps type 97065
Material: PC, white
Weight: 3.5 g , unit: 500 pcs.
Type: 97064
Ref. No.: 105482

Screw caps for degree of protection IP54/IP65/IP67
For extension piece 105482
Material: PP
Gasket: EPDM cellular rubber
Weight: 3.2/4/3.2/0.3 g, unit: 500 pcs.
Type: 97065 screw cap
Ref. No.: 105483 white
Ref. No.: 109575 grey
Ref. No.: 105484 black
Type: 98086 gasket
Ref. No.: 106095

Terminal Blocks, Accessories

Suitable only for solid conductors on the secondary connection

Terminal blocks

Casing: PC, white, T85
Nominal rating: 450 V
Primary connection with release button:
push-in twin terminals $0.5-2.5 \mathrm{~mm}^{2} / 16 \mathrm{~A}$
Secondary connection:
push-in twin terminals $0.5-1.5 \mathrm{~mm}^{2} / 16 \mathrm{~A}$ and $0.5-2.5 \mathrm{~mm}^{2} / 16 \mathrm{~A}$
Connection for X2 RFI-suppression capacitor: $0.5-0.75 \mathrm{~mm}^{2}$, capacitor's pins must be insulated (stripped lead ends: $8^{+1} \mathrm{~mm}$)

or the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5/6 A
Base split pins for wall thickness $0.6-1 \mathrm{~mm}$

Type	Ref. No.	Number of poles	Earth-contact connection	Mark	Weight (g)	Unit (pcs.)
41500	533312	3 -poles	not earthed	N, L2, L1	9.2	500
41510	533313	3 -poles	earth spike	N, PE, L1	9.4	500
41520	533314	3 -poles	earth strap M4	N, PE, L1	10	500
41530	534948	3 -poles	earth finger	N, PE, L1	10	500
41540	533315	5 -poles	not earthed	L3, L2, L4, N, L1	15.1	500
41550	533316	5-poles	earth spike	L3, L2, PE, N, L1	15.3	500
41560	533317	5 -poles	earth strap M4	L3, L2, PE, N, L1	16	500
41570	534954	5 -poles	earth finger	L3, L2, PE, N, L1	16	500

Push-in cord grip
For terminal blocks type 415
For leads with insulation max. $\varnothing 10.5 \mathrm{~mm}$
Conductor fixed with self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Material: PA, white
Weight: 2.2 g , unit: 500 pcs.
Type: 97734
Ref. No.: 535474

Starter Holders and Terminal Blocks, Accessories

Terminal blocks
Casing: PC, white, T85
Nominal rating: 450 V
Primary connection:
screw terminals $2.5 \mathrm{~mm}^{2}$
Secondary connection:
push-in twin terminals $1.5 \mathrm{~mm}^{2}$
(with IDC contacts: $1 \mathrm{~mm}^{2}$)
push-in terminal $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5

Base split pins for wall thickness $0.6-1.2 \mathrm{~mm}$

Type	Ref. No.	IDC	Number of poles	Earth-contact connection	Weight (g)	Unit (pcs.)
40660	$\mathbf{5 4 3 7 9 3}$	no	3-poles	not earthed	5.7	1000
40662	$\mathbf{5 4 3 7 9 5}$	no	3-poles	earth strap M4	8.4	1000
40666	$\mathbf{5 4 3 8 0 0}$	no	3-poles	earth finger	8.3	1000
40661	$\mathbf{5 4 3 7 9 4}$	yes	3-poles	not earthed	6	1000
40663	$\mathbf{5 4 3 7 9 6}$	yes	3-poles	earth strap M4	8.7	1000
40667	$\mathbf{5 4 7 8 0 1}$	yes	earth finger	8.6	1000	

Terminal blocks with fuse holder
Material: PC, white, T7O
nominal rating: 250 V
Primary connection: screw terminals $2.5 \mathrm{~mm}^{2}$ Secondary connection:
push-in twin terminals $1.5 \mathrm{~mm}^{2}$
(with IDC contacts: $1 \mathrm{~mm}^{2}$)
push-in terminal $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
With retaining clip for fuses $5 \times 20 \mathrm{~mm}$
With integrated fuse on request
Base split pins for wall thickness $0.6-1.2 \mathrm{~mm}$

Type	Ref. No.	IDC	Number of poles	Earth-contact connection	Weight (g)	Unit (pcs.)
40670	$\mathbf{5 4 3 8 0 2}$	no	3-poles	not earthed	8.7	1000
40672	$\mathbf{5 4 3 8 0 5}$	no	3-poles	earth strap M4	11.5	1000
40676	$\mathbf{5 4 3 8 0 9}$	no	3-poles	earth finger	14.1	1000
40671	$\mathbf{5 4 3 8 0 3}$	yes	3-poles	not earthed	9.0	1000
40673	$\mathbf{5 4 3 8 0 6}$	yes	3-poles	earth strap M4	11.8	1000
40677	$\mathbf{5 4 3 8 1 0}$	yes	3-poles	earth finger	14.4	1000

Terminal blocks
Material: PC, white, T85, nominal rating: 400 V
Primary connection: screw terminals $2.5 \mathrm{~mm}^{2}$
Secondary connection:
push-in twin terminals $1.5 \mathrm{~mm}^{2}$
push-in terminal $0.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 7.7/10.6 g, unit: 1000 pcs.
Type: 40650/40651
Ref. No.: 533860
Ref. No.: 533861 with earth strap for screw M4

Starter Holders and Terminal Blocks, Accessories

Terminal blocks with fuse holder
Material: PC, white, T70, nominal rating: 250 V
Primary connection: screw terminals $2.5 \mathrm{~mm}^{2}$
Secondary connection:
push-in twin terminals $1.5 \mathrm{~mm}^{2}$
push-in terminal $0.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: $11.2 / 14.1 \mathrm{~g}$, unit: 1000 pcs.
Type: 40655/40656

Ref. No.: 533865

Ref. No.: 533866 with earth strap for screw M4

Terminal blocks
Casing: PC, grey, T85
Nominal rating: 450 V
Primary connection:
screw terminals $2.5 \mathrm{~mm}^{2}$
Secondary connection:
push-in twin terminal $1.5 \mathrm{~mm}^{2}$
(with IDC contacts: $1 \mathrm{~mm}^{2}$)
push-in terminal $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring
IDC terminals for leads H05V-U 0.5

Base split pins for wall thickness 0.6-1.2 mm

Type	Ref. No.	IDC	Number of poles	Earth-contact connection	Weight (g)	Unit (pcs.)
40560	$\mathbf{5 4 3 7 7 0}$	no	3-poles	not earthed	8	1000
40562	$\mathbf{5 4 3 7 7 2}$	no	3-poles	earth strap M4	8.7	1000
40566	$\mathbf{5 4 3 7 7 7}$	no	3-poles	earth finger	8.8	1000
40561	$\mathbf{5 4 3 7 7 1}$	yes	3-poles	not earthed	8.3	1000
40563	$\mathbf{5 4 3 7 7 3}$	yes	3-poles	earth strap M4	9	1000
40567	$\mathbf{5 4 3 7 7 8}$	yes	e-poles	earth finger	10.1	1000

Terminal blocks with fuse holder
Material: PBT, grey, T70
Nominal rating: 250 V
Primary connection: screw terminals $2.5 \mathrm{~mm}^{2}$ Secondary connection:
push-in twin terminals $1.5 \mathrm{~mm}^{2}$
(with IDC contacts: $1 \mathrm{~mm}^{2}$)
push-in terminal $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
With retaining clip for fuses $6 \times 25 \mathrm{~mm}$
With integrated fuse on request

Base split pins for wall thickness 0.6-1.2 mm

Type	Ref. No.	IDC	Number of poles	Earth-contact connection	Weight (g)	Unit (pcs.)
40570	$\mathbf{5 4 3 7 8 1}$	no	3-poles	not earthed	11	500
40572	$\mathbf{5 4 3 7 8 3}$	no	3-poles	earth strap M4	11.7	500
40576	$\mathbf{5 4 3 7 8 7}$	no	3-poles	earth finger	11.8	
40571	$\mathbf{5 4 3 7 8 2}$	yes	3-poles	not earthed	11.3	500
40573	$\mathbf{5 4 3 7 8 4}$	yes	3-poles	earth strap M4	12	500
40577	$\mathbf{5 4 3 7 8 8}$	yes	3-poles	earth finger	12.1	500

Starter Holders and Terminal Blocks, Accessories

Terminal blocks
Casing: PC, white, T95
Nominal rating: 16/250
Primary and secondary connection with release button:
push-in twin terminals $0.5-1.5 \mathrm{~mm}^{2}$
push-in terminals $0.75 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Base split pins

Type	Ref. No.	Number of poles	Earth-contact connection	Mark	Weight (g)	Unit (pcs.)
40710	$\mathbf{5 0 9 5 3 4}$	3-poles	earth spike	N PE L	13.2	500
40711	$\mathbf{5 3 0 8 2 9}$	3-poles	with earth strap M4	N PE L	14.8	
40712	$\mathbf{5 2 9 5 9 6}$	3-poles	not earthed	N PE L	13	500
40730	$\mathbf{5 0 9 5 3 5}$	5-poles	earth spike	L3 N PE L1 L2	17.4	500
40731	$\mathbf{5 3 0 8 3 1}$	5-poles	with earth strap M4	L3 N PE L1 L2	19	500

Push-in cord grip
For terminal blocks type 407
For leads with insulation $\varnothing 9.5$ - 12.5 mm
Conductor fixed with screws
Material: PC, white
Weight: 6.2 g, unit: 500 pcs.
Type: 80016
Ref. No.: 525893

Starter Holders and Terminal Blocks, Accessories

Terminal blocks
Casing: PA, white
Primary and secondary connection:
screw terminals

Type	Ref. No.	Number of poles	Nominal rating	Cconnection primary/secondary	T-Marking	Weight g	Unit pcs.
41600	537484	2-poles	$24 \mathrm{~A} / 450 \mathrm{~V}$	$0.5-2.5 \mathrm{~mm}^{2}$	T85	5.2	2000
41600	544000	2-poles	$24 \mathrm{~A} / 450 \mathrm{~V}$	$0.5-2.5 \mathrm{~mm}^{2}$	T180	5.6	2000
41663	542503	3 -poles	$24 \mathrm{~A} / 450 \mathrm{~V}$	$0.5-2.5 \mathrm{~mm}^{2}$	T110	5.3	2000
41672	544011	12-poles	$24 \mathrm{~A} / 450 \mathrm{~V}$	$0.5-2.5 \mathrm{~mm}^{2}$	T110	21.3	2000

Built-in Rocker Switches

Built-in rocker switch 1-pole
For cut-out $16 \times 26 \mathrm{~mm}$
Casing: PC, white, T100
Contact pillar and rocker: PBT, white
Terminal: nichrome steel
Nominal rating: $6(2) / 250^{\sim}$
Push-in terminals: 0.5-1 mm²
Lateral fixing clips for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 7.2 g , unit: 500 pcs.
Type: 20200
Ref. No.: 100437

Technical Details

3
 Components for Fluorescent Lamps

Electronic ballasts
Assembly instructions for mounting and installing - Electronic ballasts 245-252
DALI system information 252-254
Circuit diagrams - Electronic ballasts 255-259
Electromagnetic ballasts 259-263
Assembly instructions for mounting and installing - Electromagnetic ballasts 260-263
Circuit diagrams - Electromagnetic ballasts 263
Connection terminals 264
Lampholders for fluorescent lamps 265
Lamp table 266-268
Key to lamp designations 268
Energy efficiency classification 269-271
General technical details 394-401
Glossary 402-404

Technical Details - Components for Fluorescent Lamps

Ballasts for fluorescent lamps

The operation of a fluorescent lamp depends on a ballast that stabilises the lamp's preheat current after connection to the mains and, in conjunction with the starter, also supplies the required lamp ignition voltage after preheating. After ignition, the ballast then serves to limit the lamp current. As fluorescent lamps are characterised by a negative characteristic current-voltage curve, lamp current stabilisation is essential with regard to both the lamp's stable operation and a long service life, which is also dependent on compliance with the starting conditions (preheat current and ignition voltage). Unfavourable starting conditions cause damage to the electrodes every time the lamp is started and thus reduce the lamp's service life. Furthermore, care should be taken to prevent crossdischarge in the electrode area during preheating, which also shortens lamp service life.

Electromagnetic (inductive) ballasts have to be operated in conjunction with starters for lamp ignition and capacitors for blind current compensation. In addition, capacitors for RFI suppression will also be required for certain circuits. Electronic ballasts do not require any additional components.

Electronic ballasts (EB)

VS electronic ballasts are designed for mains voltages of 220 V to 240 V (exceptions are devices for the North American market where the nominal mains voltage is 120 V or 277 V) and are used to operate fluorescent lamps at high frequencies. The lamps are ignited with an internally generated ignition voltage, thereby removing the need for an external starter. The power factor $(\lambda)>0.95$ also removes the need for compensation, unlike with electromagnetic ballasts. The only exceptions are low-output ELXs models, which attain a power factor of 0.6. Luminaires fitted with electronic ballasts are characterised by low energy consumption as they draw substantially less system power than conventional, inductive applications. This is firstly because the lamp consumes less power to achieve the same luminous flux and secondly because the internal loss of an electronic ballast only amounts to approx. 8% to 10% of the lamp's output. Furthermore, thanks to their modern circuitry, the power input of VS electronic ballasts remains constant even in the event of mains voltage fluctuations, thus ensuring permanently low energy consumption.

VS electronic ballasts permit a broad range of applications. For instance, the VS product range includes many ballast types for multiple lamp operation. These ballasts reduce installation and component costs and thus enable particularly efficient luminaires. Twin-lamp electronic ballasts permit so-called master-slave operation. The lamps of two single-lamp luminaires are operated by a twin-lamp electronic ballast that is built into the so-called master luminaire. The lamp of the slave luminaire is electrically connected to the electronic ballast.

Multilamp electronic ballasts also provide an interesting advantage in that several lamps of different ratings can be connected. Electronic ballasts of this kind simplify storage and logistics.

Technical Details - Components for Fluorescent Lamps

The use of electronic ballasts makes a lighting system both more convenient and efficient to operate:

- reduced power consumption (up to 30%) at undiminished light output
- 50% longer service life
- stabilised lamp output
- overvoltage protection
- no stroboscopic effect
- flicker-free lamp start
- no need for a starter or capacitor
- low wiring effort
- no radiated electromagnetic interference
- low self-heating due to minimal power loss
- automatic shutdown of defective lamps
- automatic restart once the lamp has been changed (except ELXe series)

Vossloh-Schwabe electronic ballasts are developed on the basis of the latest technological and component

Assembly Instructions for Electronic Ballasts

For mounting and installing of electronic ballasts for fluorescent lamps

Mandatory regulations

EN 61347-1 Lamp controlgear - part 1: general and safety requirements
EN 61347-2-3 Lamp controlgear - part 2-3: particular requirements for a.c. supplied electronic ballasts for fluorescent lamps

EN 60929 AC-supplied electronic ballasts for tubular fluorescent lamps
DIN VDE 0100 Erection of low voltage installations

EN 60598-1 Luminaires - part 1: general requirements and tests
EN 61000-3-2 Electromagnetic compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)

EN 55015 Maximum values and methods of measurement for RFI suppression
in electrical lighting installations and similar electrical appliances
EN 61547 Installations for general lighting purposes - EMC immunity requirements

Descriptions of VS electronic ballasts (EBs)

ELXs ballasts

The family of ELXs ballasts forms a perfect alternative to magnetic ballasts. ELXs ballasts have the same fixing hole centres as standard electromagnetic ballasts. The lamp is ignited after a preheating time (warm start) of 1.5 seconds. These ballasts are dimensioned to take system outputs (lamp output plus power loss of the electronic ballast) of up to 25 W . The power factor of these ballasts amounts to approx. O.6. The average service life of these ballasts totals 30,000 hours with a failure rate of $\leq 0.2 \%$ per 1,000 operating hours.

ELXe ballasts (instant start)

With this ballast family, the lamps ignite immediately after connection to the mains by applying an ignition voltage of max. $1,500 \mathrm{~V}$ to the gas discharge path of the lamp. The ignition time totals approx. 0.5 seconds. As this puts a severe strain on the electrodes, the realistic number of lamp starts is limited to max. 10,000 ignitions up to the end of the lamp's service life. For that reason, ELXe ballasts should only be used for applications demanding fewer than five lamp ignitions per day (e.g. in production sites, warehouses or department stores). The power factor of this device is approx. 0.98 . As there is no need for preheating, ELXe ballasts usually require one connection per electrode for lamp operation. This makes them suitable for use in explosion protected luminaires. In addition, they are very energy-efficient as there are no lamp electrode losses. The average service life of these ballasts totals 50,000 hours with a failure rate of $\leq 0.2 \%$ per 1,000 operating hours.

ELXc ballasts (warm start)

In contrast to the ELXs series, ELXc ballasts have a power factor of better than 0.95 and cover the complete capacity range
ELXc ballasts ensure the lamp is started following a defined lamp electrode preheating period of approx. 1-2.5 seconds using a fixed ignition voltage. This particularly gentle lamp start makes over 20,000 lamp starts possible. ELXc ballasts should be used for applications with high switching frequencies (e.g. hotels or offices) where energy savings as well as low maintenance costs are desired. The average service life of these ballasts totals 50,000 hours with a failure rate of $\leq 0.2 \%$ per 1,000 operating hours. For series ECO-Effectline and New T5 Effectline the average service life totals 30,000 hours with a failure rate of $\leq 0.2 \%$ per 1,000 operating hours.

ELXd ballasts (dimmable)

These are warm start ballasts with an additional dimming function that is controlled via an interface fitted to the ballast. The interface of these ballasts can be either analogue (1 - 10 Volt) or digital (DALI; PUSH); the interface enables lighting to be ideally adjusted to suit the given need. Control components can also be used as long as they comply with the respective standard (Annex to IEC/EN 60929). The power factor for these ballasts is >0.95 at 100% lamp operation. When using ELXd ballasts in a lighting system, an energy saving of 75% can be achieved if, for instance, the control inputs of the ballasts are coupled with movement detectors and light sensors. The average service life of these ballasts totals 50,000 hours with a failure rate of $\leq 0.2 \%$ per 1,000 operating hours.

To guarantee trouble-free operation and a long service life of the various types of electronic ballast, attention should be paid to the regulations and mounting instructions (page 245-252). In addition, the installation instructions for lighting systems must be observed when installing luminaires with electronic ballasts.

Mounting and installation instructions can be obtained from Vossloh-Schwabe on request or can be found online at www.vossloh-schwabe.com

Technical Details - Components for Fluorescent Lamps

Mechanical mounting

Surface Solid, flat surface for good heat dissipation required. Avoid mounting on protruding surfaces.

Mounting location
Electronic ballasts must be protected against moisture and heat. Installation in external luminaires: water protection rate of ≥ 4 (e.g. IP54 required)

Fastening With M4 screws in the designated holes

Heat transfer If the ballast is destined for installation in a luminaire, sufficient heat transfer must be ensured between the ballast and the luminaire casing.
Electronic ballasts should be mounted with the greatest possible clearance to heat sources or lamps. During operation, the temperature measured at the t_{c} point of the ballast must not exceed the specified maximum value.

Supplement for independent electronic ballasts

Mounting position Any

Clearance Min. of 0.10 m from walls, ceilings, insulation
Min. of 0.10 m from other electronic ballasts
Min. of 0.25 m from sources of heat (lamp)

Surface Solid; device must not be allowed to sink into insulation materials

Technical specifications

Operating voltage range
AC: 220 to $240 \mathrm{~V}(\pm 10 \%)$
DC: please observe the specifications on the individual product pages
Ignition time ELXe ballasts $t<0.5$ seconds (instant start)

Preheat time $\quad E L X_{C}, E L X s$ and ELXd ballasts $\dagger=0.5$ or 1.5 to 2.5 seconds (warm start)

Leak current $\leq 0.5 \mathrm{~mA}$ per electronic ballast

Product features

Overheating VS EBs for fluorescent lamps are not protected against overheating
Overvoltage protection
AC: up to 48 hours at $U_{N A C}=320 \mathrm{~V}$ and up to 2 hours at $U_{N A C}=350 \mathrm{~V}$
DC: no disorders occur with input voltages of up to UNDC 285 V . UNDC voltages
in excess of 288 V destroy the ballast.

Shutdown of defective lamps
During starting operation, the electronic ballast will detect whether a lamp is connected. If no lamp is present, the ballast will cancel the starting operation. Deactivated lamps or interrupted electrodes are detected and lead to the high-frequency supply being switched off after an unsuccessful ignition attempt. Changing a lamp during operation will lead to the high-frequency supply being switched off.

Technical Details - Components for Fluorescent Lamps

EOL effect Up to now, it has not been possible to conclusively reproduce the end-of-life effect under laboratory conditions. However, it can be qualitatively described for fluorescent lamps as follows: when the emitter material of the cathode (i.e. the filament in conventional bi-pin lamps) has been fully consumed or has otherwise lost its emitting power, the emission of electrons is hampered, which leads to a voltage drop at the cathode. Frequent cold starts accelerate active emitter loss.

Operating a lamp with a constant current (an electronic ballasts (EB) provides a nearconstant current) results in high dissipation losses that also cause the lamp base and lampholder to heat up and can even cause damage to both. This is often referred to as the EOL effect; from an electrical point of view, this is manifested in the so-called "partial rectifier effect".

The EOL cut-out ensures that a ballast is safely switched off and the lamp base does not overheat at the end of a lamp's service life.

EN 61347-2-3 (A 1:2004) describes three possible tests.
The first are now in widespread use and are described in more detail here.
The third test is not conducted at VS.

1. EOL Test 1 (61347-2-3:2000 + A1:2004 + A2:2006 17.2)

Asymmetric pulse test
2. EOL Test 2 (61347-2-3:2000 + A1:2004 + A2:2006 17.3)

Asymmetric power test
3. EOL Test 3 (61347-2-3:2000 + A1:2004 + A2:2006 17.4)

Exposed filament test

The first two tests attempt to simulate the rectifier effect:

- Test 1 pulse switching of rectifing effect
- Test 2 by applying a DC voltage that is constantly higher than required by the lamp.

VS EBs are capable of suitably assessing the altered voltage signal in comparison to normal operation so as to meet EOL requirements.

Protection against transient mains peaks
Values are in compliance with EN 61547 (interference immunity)
(1 kV for AC and 0.5 kV for DC and control conductors).

Electrical installation

Wiring
The wiring between the mains, electronic ballast and lamp must comply with the respective circuit diagram. Note: with ELXe models, one side of the lamp electrode is never connected to the electronic ballast.
The electronic ballast must be earthed using a toothed washer or similar (protection class I, ignition help, compliance with RFI/BCI standards).
To ensure compliance with RFI-suppression limits, mains conductors should not be wired in parallel to high-frequency carrying lamp conductors; maximum clearance should be ensured and all conductors marked with an * must be kept short. As a general rule, a maximum conductor length should not be exceeded when using conventional conductors (see table on page 256-259 for precise details). Luminaire must be tested for compliance with the RFI suppression limits stipulated by EN 55015.

Conductors must not exceed 3 m in length in the event of master-slave operation.
Dimmable electronic ballasts are unsuitable for master/slave operation.

Technical Details - Components for Fluorescent Lamps

Through-wiring of mains voltage
ELXC 257.836 (188400) devices permit through-wiring of mains voltage
The following list specifies the maximum No. of devices that may be connected to the first device:

- $2 \times 57 \mathrm{~W}=$ max. 3 devices
- $2 \times 42 \mathrm{~W}=$ max. 4 devices
- $2 \times 32 \mathrm{~W}=$ max. 5 devices
- $2 \times 26 \mathrm{~W}=$ max. 7 devices

Mains power can be through-wired with the following devices:

- ELXC 213.874: max. 39 devices
- ELXc 218.875: max. 31 devices
- ELXc 142.876: max. 23 devices
- ELXc 242.877: max. 11 devices

The number of devices always refers to maximum-load operation. In addition, the maximum number of devices per installed automatic fuse must be strictly observed.

It is permissible to connect the protective conductor of the ballast by aftaching the ballast to metal conductors that are connected to the protective conductor. In doing so, care must be taken to ensure the protective conductor is contacted in accordance with EN 60598. If, however, a ballast is fitted with a connection terminal for a protective conductor without through-wiring and if this is to be used to connect the protective conductor, this connection terminal may only be used for the ballast itself.

Cord grip EBs with cord grip can be used with the following conductors, for instance:

Designation	Lead type
Mains lead	HO3VV-F $3 \times 0.75 \mathrm{~mm}^{2}$ or NYM $3 \times 1.5 \mathrm{~mm}^{2}$
Control lead	HO3VV-F $2 \times 0.5 \mathrm{~mm}^{2}$
Mains and control lead in one lead	HO3VV-F $5 \times 0.75 \mathrm{~mm}^{2}$
Lamp lead	H05VV-F $4 \times 1 \mathrm{~mm}^{2}$ or $5 \times 1 \mathrm{~mm}^{2}$

Connection terminals for automatic luminaire wiring (ALF connections)

- Use copper (not stranded) wire
- Rquired diameter for push-in connection 0.5-1 mm^{2}
- Stripped lead length 8-9 mm
- Required diameter for IDC $0.5 \mathrm{~mm}^{2}$, max. $\varnothing 2 \mathrm{~mm}$ including insulation, no wire stripping required; mounting requires a special tool

Push-in terminals The integrated terminals can be used with flexible or rigid leads with a crosssection of $0.5-1.5 \mathrm{~mm}^{2}$. The stripped lead length ranges between $8.5-9.5 \mathrm{~mm}$ for a 3.5 mm terminal grid.

Error current Impulse-resistant leak-current protection must be installed. Distribute the luminaires to phases $\mathrm{L}, \mathrm{L} 2$ and L 3 ; install tri-phase FI switches. If permissible, install FI switches with 30 mA leak current; connect no more than 15 luminaires as FI switches can be triggered at half the leak current value.

Tri-phase connection of luminaires with EB

- Prior to operating newly installed lighting systems: check the mains voltage is appropriate to the electronic ballast's mains voltage range (AC, DC).
- The N-type conductor must be properly connected to all luminaires or ballasts.
- Conductors can only be connected or disconnected if the ballast is disconnected from the mains. Attention: N-type conductors must never be disconnected individually or as the first element.
- Insulation resistance test: from L to PE (L and N must not be connected)
- The neutral conductor must be reconnected after completion of the test.

Technical Details - Components for Fluorescent Lamps

Power factor/compensation
Luminaires with electronic ballasts do not require compensation:
power factor ≥ 0.95.
For ELXc ballast models 116.900, 116.903, 121.901, 121.904, 124.902, 124.905,
126.906 and 126.907 : power factor ≥ 0.6.

Selection of automatic cut-outs

Dimensioning automatic cut-outs
High transient currents occur when an EB is switched on because the capacitors have to load. Lamp ignition occurs almost simultaneously. This also causes a simultaneous high demand for power. These high currents when the system is switched on put a strain on the automatic conductor cut-outs, which must be selected and dimensioned to suit.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B and C characteristics.

No. of electronic ballasts (see the table on pages 256-259)
The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m of conductor [$2.5 \mathrm{~m}^{2}$] from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of ballasts by 10%.

EB output voltage Electronic ballasts bear the information "UOUT" on their type plates. All subsequently connected components must be designed for this EB output voltage. When using $T 5$ lamps, any components connected to the output side of the EB must be approved for a voltage of $\geq 430 \mathrm{~V}$ (especially lampholders). This also applies to dimmable T5 EBs.

Lamps and dimmed operation
For lighting systems with dimmable electronic ballasts, Vossloh-Schwabe recommends that fluorescent lamps always be replaced as a full complement to maintain uniform lighting levels and colour impressions. New lamps must be burnt in at maximum brightness for approx. 100 hours.
Without restrictions, VS electronic ballasts can be used to operate ECO T5 fluorsecent lamps (except for with types ELXc 135.856 and ELXc 235.857) and T8 fluorescent lamps. A two-lamp dimmable electronic ballast can only be used with lamps of a single lamp manufacturer. The following EBs are restricted in their suitability for dimmer operation of amalgam lamps: ELXd 118.802, 218.803, 142.806, 242.807.

Dimming interface
DC 1-10 V according to EN 60929 with power source 0.5 mA (protected in the event of mains voltage connection); designed to enable connection of control and regulation units. Dimming range: 3-100\% of lamp power

DALI (Digital Addressable Lighting Interface) dimming interface
Polarity reversible dimmer interface - protected in accordance with EN 60929 given mains voltage supply - for connecting control devices that work according to the standard digital protocol. Dimming range: 1-100\% of the lamp's rating

Potential interference with R systems
Operating lamps at frequencies of 20 to 50 kHz can cause interference with infrare systems (remote controls, sound transmission, personal pager systems). Countermeasures: optical filters, switching to infrared systems with higher carrier frequencies (over 400 kHz).

Technical Details - Components for Fluorescent Lamps

Electromagnetic Compatibility (EMC)

Vossloh-Schwabe's electronic ballast range was developed in accordance with valid EMC standards (interference, interference immunity and mains harmonics) and specially designed to ensure safe compliance with the limiting values.
It is assumed that that any remarks regarding conductor wiring and conductor length in the instructions for installing electronic ballasts in luminaires or for independent ballasts will be observed.

Vossloh-Schwabe electronic ballasts are also tested in commercially available luminaires in addition to the CISPR 30 sample luminaires.

- ELXs devices: The ELXs device family was developed for system ratings of $\leq 25 \mathrm{~W}$ on the basis of the limiting values prescribed for this in EN 61000-3-2. Vossloh-Schwabe's ELXs devices all bear the VDE EMC mark and comply with the limiting values laid down by EN 61000-3-2.
It is possible to use several ELXs ballasts in a luminaire if a separate connection terminal is available for each lamp circuit.

Mains harmonics: the maximum values laid down in EN 61547 (Interference Immunity) are satisfied.

Additional information

Information on the installation of electronic ballasts for optimising EMC
To ensure good radio interference suppression and the greatest possible operating safery, the following points should be observed when installing electronic ballasts:

- Conductors between the EB and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference). High-potential lamp conductors must be kept as short as possible, in particular with tubular lamps. Lamp conductors of this kind are labelled with an * in the wiring diagram on the type plate (see page 256-259).
- Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another. The distance between HF and mains conductors should be as large as possible, ideally $>5 \mathrm{~cm}$. (This prevents the induction of interference between the mains and lamp conductors.)
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
- Devices must be properly earthed. EBs require secure contacts to the luminaire casing or must be earthed using a PE connection. This PE connection should be effected using an independent conductor to achieve better dissipation of the leak current. EMC improves at frequencies greater than 30 MHz .
- The mains conductor must not be laid too close to the EB or the lamp (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another to avoid inducing interference between mains and HF conductors.
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Temperature Reference point temperature t_{c}
The safe operation of electronic ballasts is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point - \dagger_{c} max. - on all EB casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this t_{c} point. This point is determined by testing the convertor during normal, IEC-standardised operation at the specified ambient temperature (t_{a}), which is also indicated on the type plate. As both the design-related ambient temperature and the ballast's inherent heat, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the to point under real installation conditions.

Ambient temperature ta
The ambient temperature - as specified on every EB - denotes the permissible temperature range within the luminaire.

Reliability and service life
If the max. temperature at the t_{c} reference point /as specified on the type plate and the technical documentation of the ballast) is not exceeded, the defined service life can be expected to be achieved, assuming a switching cycle of 165 minutes on and 15 minutes off.
See page 246 for service life details regarding the various electronic ballast families.

Emergency lighting
All Vossloh-Schwabe EBs that are suitable for DC voltage operation can be used in emergency lighting systems. Consideration must, however, be taken of system requirements.

VS Dimmable Electronic Ballasts

Vossloh-Schwabe's range of electronic ballasts is rounded off by dimmable ballasts for fluorescent lamps The standardised interfaces " $1-10 \mathrm{~V}$ " and "DALI" are used for this purpose. Coupled with sensors, electronic ballasts fitted with a " $1-10 \mathrm{~V}$ " interface make it easy to create intelligent luminaires and room lighting systems, whereby the luminaires are "programmed" via the wiring to the control units, i.e. via the hardware.

The digital interface "DALI" (Digital Addressable Lighting Interface) constitutes a further development of the " 1 - 10 V" analogue interface. This digital interface was jointly developed by leading manufacturers of electronic ballasts in order to create a uniform standard for the lighting industry. The uniform interface and telegram definition dictates the function of a DALI operating device or DALI consumer and ensures exchangeability of operating devices made by various manufacturers.

Each VS DALI ballast is additionally fitted with the so-called PUSH function. The data input DA (DALI \& PUSH) is used as a control input for both signal structures, with the exception of devices featuring separate inputs. When used as a DALI ballast, control is effected via the DALI protocol; when used as a PUSH ballast, control is effected via a push key and is achieved via current flow times of differing duration.

Due to the working principle involved, dimming compact fluorescent lamps causes a negligible drop in colour temperature. However, sudden larger changes in the dimmer setting can temporarily cause greater variation in colour temperature. The dimmer function is optimised to minimise this subjective visual change in colour temperature when the dimmer setting is suddenly subjected to larger change.

VS DALI electronic ballasts are characterised by the following performance feature

- Two-strand, potential-free, polarity-independent control input
- Dimmer curve analogue to the light sensitivity of the human eye
- Addressing options: total system, group-wise or individually
- Scene memory
- Feedback in the event of defective lamps

These features ensure a number of advantages for lighting systems

- No group wiring needed
- Each DALI ballast can be individually addressed
- No need for scene memory modules
- Synchronised scene transitions
- Operating devices provide reports on lamp status
- Simple integration into facility management systems

VS DALI electronic ballasts provide the convenience of a bus system that is both easy to install and operate.

DALI and PUSH must not be
used at the same time!

Switching mains voltage to the DALI conductors within a DALI system will lead to the destruction of both the DALI power supply and the DALI master!

Technical Details - Components for Fluorescent Lamps

PUSH function characteristic

- Just one key for dimming and ON/OFF
- Polarity- and phase-independent control
- Control input with large working voltage range
- Suitable for multi-layer control
- Fully DC-compatible - no functional restrictions during DC operation
- After disconnection from the primary voltage the ballast will reproduce the last stored lighting level
- Soft start
- Automatic recognition of DALI and PUSH signals

PUSH operating voltage ranges during control signal input

EB type	ELXd 117.715, ELXd 217.717, ELXd 118.705, ELXd 218.707, ELXd 142.709, ELXd 242.711 other DALI/PUSH ballasts	
AC	$220-240 \mathrm{~V} \pm 10 \%$	$10-230 \mathrm{~V}$
DC	$198-264 \mathrm{~V}$	-
	Failing to observe these working voltage ranges can lead to non-recognition of the signals; exceeding the maximum voltages can lead to the destruction of the data inputs.	

PUSH control signals (key activation)

Short push	(80 ms <t < 460 ms)	(0 ms < + < 500 ms)
	Is used to switch between ON/OFF lighting states. After the device is switched on, the last selected lighting level is restored and the next dimming direction will be upwards.	
Long push	(460 ms < $1<10 \mathrm{~s}$)	($500 \mathrm{~ms}<\dagger<\infty$)
	Is used to dim upwards or downwards; a long push will change the dimming direction. Thus, a long push will reverse the dimming direction until the upper or lower limit is reached. If the light was off, a long push will switch it on and the dimmer will start at the lowest light intensity.	
Push to synchronise	($\dagger \gg 10 \mathrm{~s}$)	long - short - long
	Light is dimmed to the preset factory level and the next dimming direction will be upwards.	Starting situation: luminaires are switched off. The "long - short - long" combination first switches the lamp on, then off and finally on again, after which it gets gradually brighter. The EBs will be synchronised again after this procedure.
Synchronisation	Any 1-key dimmer that does not feature a central control module (as each ballast will have its own controls) can develop asynchronous behaviour (e.g. children might play with the key). The system will then be out of sync, i.e. some lamps will be on, others off or the dimming direction will differ from lamp to lamp.	
	Two methods of synchronisation can be used: - Push the key for more than 10 seconds, after which the light will be dimmed to a preset level and the next dimming direction will be upwards. - Start with a long push of the key so that all lamps are switched on. Follow with a short push to turn the system off. The system will now be resynchronised.	

Technical Details - Components for Fluorescent Lamps

Wiring examples for PUSH function

Note
Not permissible: N-type conductors must not be used as PUSH potentials for multi-phase systems. Example: if the PUSH key is not activated, the series connection of the internal resistors of the DA inputs will approach the delta voltage of 400 V (voltage between L2 and L3) (Fig. 1).

Fig. 1
N conductor must not be used as a PUSH potential

Fig. 2
Standard application for T5 and T8 lamps

Fig. 3
Standard application for TC lamps

General information on PUSH and DALI

Mains voltage and interface conductors must not be wired in parallel to the lamp conductors so as to avoid capacitive bridging of the mains filter.

If more than one device is operated with a single key during PUSH operation, asynchronous behaviour can occur, which will require manual resynchronisation using the method described. Should this be unacceptable, a DALI control module will have to be used instead. It is recommended not to control more than four devices using a single key.

When using dimmable devices, new lamps should generally be burnt in for at least 100 hours at full brightness before they are dimmed. This process can become necessary again should the lamps be physically relocated O(e.g. transport).

After initial operation of a DALI system /address assignment, luminaire allocation, group formation, scene settings) it is recommended to disconnect the primary voltage of the DALI control units at the circuit breaker for at least 3 seconds and then to reconnect it. The devices will detect this disconnection from the mains and store the settings.

DALI devices with a PUSH function must be operated with a control module (DALI control module or key pad with PUSH function). DALI devices with a PUSH function must not be operated with an open or bridged DALI/PUSH input.

To ensure the ballast does not distort and misinterpret signals when operated in PUSH mode, connected PUSH buttons must not feature a control lamp.

Technical Details - Components for Fluorescent Lamps

Circuit diagrams for Vossloh-Schwabe electronic ballasts

The circuit diagrams shown here are wiring examples for Vossloh-Schwabe electronic ballasts, whereby the number and configuration of the contacts differ. See the table on page 256-259 for details.

[^71]
Technical Details - Components for Fluorescent Lamps

Explanation of circuit diagrams for Vossloh-Schwabe electronic ballasts (see page 255)

Electronic ballasts		$\begin{array}{\|l\|} \hline \text { Lamp } \\ \hline \text { Quantity } \\ \hline \end{array}$	Electronic ballasts															Max. lead length		Operation frequency kHz	Output voltage Uout V	$\begin{array}{\|c} \hline \text { THD } \\ \% \\ \hline \end{array}$	Possible quantity of			
Ref. No.	Type		$\begin{array}{l\|l} \hline \text { Termin } \\ 1 \\ \hline \end{array}$	$\begin{aligned} & \text { minals } \\ & \|2\| 3 \end{aligned}$						8		10		12		14	15		$\left\lvert\, \begin{aligned} & \text { cold } \\ & (\mathrm{m} / \mathrm{pf}) \end{aligned}\right.$				$\begin{aligned} & \mathrm{EB} / \mathrm{au} \\ & \mathrm{~B} \\ & (10 \mathrm{~A}) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \text { tomatic } \\ \hline(16 A) \\ \hline \end{array}$	$\begin{aligned} & \text { cut-outs } \\ & \begin{array}{l} C \\ (10 \mathrm{~A}) \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & C \\ & (16 A) \\ & \hline \end{aligned}$
ELXc																										
183039	ELXC 424.223	3	x^{*}	x^{*}	-	\times	x	\times	\times	-	-	\times	\times	-	-	-	-	1/100	2/200	44	400	<10	9	14	14	22
		4	x^{*}	x^{*}	-	x \times	\times	x	\times	\times	\times	\times	\times	-	-	-	-	1/100	2/200	44	400	<10	9	14	14	22
183040	ELXC 226.878	1	$\times{ }^{\text {x }}$	\times	-	- ${ }^{*}$	x^{*}	x^{*}	${ }^{*}$	-	-	-	-	-	-	-	-	1/100	1.5/150	45	300	<10	11	18	18	30
		2	$\times{ }^{\times} \times$	\times	\times	$\times{ }^{\text {x }}$	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	1/100	1.5/150	45	300	<10	11	18	18	30
183094	EIXC 328.224	3	x^{*}	x^{*}	x	x	\times	\times	x*	x*	\times	\times	-	-	-	-	-	1/100	1.5/150	43	250	< 10	10	16	17	28
183103	ELXC 135.225	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	48	250	<10	11	18	18	30
183104	EIXC 136.226	1	x^{*}	x^{*}	\times	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	44	250	<10	11	18	18	30
183108	ELXC 226.878	1	$\times{ }^{\text {x }}$	\times	-	- ${ }^{*}$	x^{*}	x^{*}	-		-	-	-	-	-	-	-	1/100	1.5/150	45	300	< 10	11	18	18	30
		2	\times	\times	\times	$\times{ }^{\text {x }}$	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	1/100	1.5/150	45	300	< 10	11	18	18	30
183109	ElXc 414.227	3	x^{*}	x^{*}	x	$\times{ }^{\times}$	\times	x	\times	\times	${ }^{*}$	x^{*}	-	-	-	-	-	1/100	2/200	45	350	< 15	7	12	12	20
		4	x^{*}	x^{*}	x	x ${ }^{\text {x }}$	\times	\times	\times	\times	x^{*}	x^{*}	-	-	-	-	-	1/100	2/200	45	350	<15	7	12	12	20
183110	ElXc 424.228	3	x^{*}	x^{*}	\times	\times	\times	\times	\times	\times	${ }^{*}$	x^{*}	-	-	-	-	-	1/100	2/200	47	350	< 15	7	12	12	20
		4	x^{*}	x^{*}	x	x	\times	x	\times	x	x^{*}	x^{*}	-	-	-	-	-	1/100	2/200	47	350	<15	7	12	12	20
183111	ELXc 228.229	1	x^{*}	x^{*}	x	x ${ }^{\text {x }}$	\times	x	-	-	-	-	-	-	-	-	-	1/100	2/200	47	350	<15	9	15	15	25
		2	x^{*}	x^{*}	x	\times	\times	\times	-	-	-	-	-	-	-	-	-	1/100	2/200	47	350	<20	9	15	15	25
183112	ElXc 328.230	2	x^{*}	x^{*}	x	x \times	\times	\times	\times	\times	x^{*}	x^{*}	-	-	-	-	-	1/100	2/200	45	350	< 15	7	12	12	20
		3	x^{*}	x^{*}	x	x \times	\times	\times	\times	\times	x^{*}	x^{*}	-	-	-	-	-	1/100	2/200	45	350	< 15	7	12	12	20
183113	ELXC 135.231	1	x^{*}	x^{*}	\times	x	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	47	400	< 15	11	18	18	30
183114	ELXC 235.232	2	$\times{ }^{\text {x }}$	\times	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	1/100	2/200	46	400	< 15	9	15	15	25
183115	ELXC 239.233	1	x^{*}	x^{*}	\times	x	\times	\times	-	-	-	-	-	-	-	-	-	1/100	2/200	47	350	< 15	7	12	12	20
		2	x^{*}	x^{*}	x	x \times	\times	\times	-	-	-	-	-	-	-	-	-	1/100	2/200	47	350	< 15	7	12	12	20
183116	ELXC 149.234	1	x^{*}	x^{*}	x	x	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	47	250	<15	9	15	15	25
183117	EIXC 249.235	2	$\times{ }^{\text {x }}$	\times	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	1/100	2/200	47	350	<15	7	12	12	20
183118	ELXC 254.236	1	x^{*}	x^{*}	x	x ${ }^{\text {x }}$	\times	x	-	-	-	-	-	-	-	-	-	1/100	2/200	48	350	<15	7	12	12	20
		2	x^{*}	x^{*}	x	x	\times	\times	-	-	-	-	-	-	-	-	-	1/100	2/200	48	350	<15	7	12	12	20
183119	ELXC 180.237	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	46	350	< 15	9	15	15	25
183122	ELXC 114.238	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	380	<20	8	17	17	28
183123	ELXC 128.239	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	380	<20	8	17	17	28
183124	ELX 214.240	2	 \times	\times	\times	\times	x^{*}	x^{*}	\times^{*}	-	-	-	-	-	-	-	-	1/100	2/200	45	380	<20	8	17	17	28
183125	EIXC 228.241	2	$\times{ }^{\times} \times$	\times	x	x ${ }^{\text {x }}$	x^{*}	x^{*}	${ }^{*}$	-	-	-	-	-	-	-	-	1/100	2/200	45	380	<20	4	7	7	12
183126	ELXC 414.242	4	x^{*}	x^{*}	x	$\times{ }^{\times}$	\times	\times	\times	\times	${ }^{*}$	x*	-	-	-	-	-	1/100	2/200	45	430	<20	4	7	7	12
183127	ELXC 118.243	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	390	<20	8	17	17	28
183128	ELXC 136.244	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	390	<20	8	17	17	28
183129	EIXC 158.245	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	390	<20	4	7	7	12
183130	ELXC 218.246	2	x^{*}	x^{*}	x	\times	\times	\times	-	-	-	-	-	-	-	-	-	1/100	2/200	45	390	<20	8	17	17	28
183131	ELXC 236.247	2	x^{*}	x^{*}	x	\times	\times	\times	-	-	-	-	-	-	-	-	-	1/100	2/200	45	390	<20	4	7	7	12
183132	ELXC 258.248	2	x^{*}	x^{*}	x	\times	x^{*}	x^{*}	\times	-	-	-	-	-	-	-	-	1/100	2/200	45	390	<20	2	5	5	8
183133	ELXC 418.249	4	x^{*}	x^{*}	x	x ${ }^{\text {x }}$	\times	x	\times	\times	${ }^{*}$	x^{*}	-	-	-	-	-	1/100	2/200	45	390	<20	4	7	7	12
183134	ELXC 118.879	1	x^{*}	x^{*}	x	x	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	380	<20	8	17	17	28
183135	ELXC 126.880	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	380	<20	8	17	17	28
183136	ELXC 218.881	2	x^{*}	x^{*}	x	x \times	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	1/100	2/200	45	380	<20	4	7	7	12
183137	ELXC 226.882	2	x^{*}	x^{*}	x	x ${ }^{\text {x }}$	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	1/100	2/200	45	380	<20	4	7	7	12
183150	ELXC 118.879	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	380	<20	8	17	17	28
183151	ELXC 126.880	1	x^{*}	x^{*}	x	x	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	380	<20	8	17	17	28
183152	ELXC 218.881	2	x^{*}	x^{*}	x	x	x^{*}	\times^{*}	-	-	-	-	-	-	-	-	-	1/100	2/200	45	380	<20	4	7	7	12
183153	ELXC 226.882	2	x^{*}	x^{*}	x	x ${ }^{\text {x }}$	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	1/100	2/200	45	380	<20	4	7	7	12
188093	ELXC 135.856	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	44	330	<10	11	18	18	30
188094	ELXC 235.857	2	x^{*}	x^{*}	x	\times	\times	x*	x*	-	-	-	-	-	-	-	-	1/100	2/200	45	330	<10	9	15	15	25
188095	ELXC 149.858	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	28	330	<10	11	18	18	30
188140	ELXC 140.862	1	x^{*}	x^{*}	x	x	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	250	<10	11	18	18	30
188142	ELXC 154.864	1	x^{*}	x^{*}	x	x	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	34	300	<10	9	15	15	25
188144	ELXC 180.866	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	300	< 10	9	15	15	25
188400	ELXC 257.836	2	x^{*}	x^{*}	x	x	\times	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	47	350	<10	7	12	12	20
188438	EIXC 414.868	3	x^{*}	x^{*}	-	x	\times	x	x	-	-	x	\times	-	-	-	-	1/100	2/200	45	400	< 10	7	12	12	20
		4	x^{*}	x^{*}	-	 \times	\times	\times	\times	\times	\times	\times	\times	-	-	-	-	1/100	2/200	45	400	<10	7	12	12	20
188589	ELXC 128.869	1	x^{*}	${ }^{*}$	\times	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	1.5/150	54	450	<10	11	18	18	30
188590	ELXC 128.869	1	x^{*}	${ }^{*}$	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	1.5/150	54	450	<10	11	18	18	30
188595	ELX 336.214	3	$\times{ }^{\text {x }}$	x	\times	\times	\times	x	${ }^{*}$	x*	-	-	-	-	-	-	-	1/100	2/200	70	370	<10	6	11	11	18
188616	ELX 240.863	2	x^{*}	x^{*}	x	- ${ }^{-}$	\times	\times	\times	-	-	-	-	-	-	-	-	1/100	2/200	46	360	<15	7	12	12	20
188617	ELXC 249.859	2	$x^{*}{ }^{*}$	x^{*}	x	\times	x	x^{*}	x*	-	-	-	-	-	-	-	-	1/100	2/200	43	480	<10	7	12	12	20

Technical Details - Components for Fluorescent Lamps

Electronic ballasts		Lamp Quantity	Electronic ballasts															Max. lead length		Operation frequency	Output voltage UOUT	THD	Possible quantity of EB/automatic cut-outs			
Ref. No.	Type		Terminals															hot*	cold							
				12	3	4	5	6	7	8	9	10	11	$\mid 12$	13	14	$\mid 15$						B	B	C	C

188335	ELXd 249.606	2	\times	\times	\times	x^{*}	x*	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	44-120	430	< 10	8	13	13	21
188336	ELXd 124.607	1	\times	x	-	-	-	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	76-120	430	< 10	17	28	28	46
188337	ELXd 224.608	2	\times	\times	x	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	53-120	430	< 10	17	28	28	46
188338	ELXd 139.609	1	\times	x	-	-	-	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	85-120	430	< 10	17	28	28	46
188339	ELXd 239.610	2	\times	x	\times	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	53-120	430	< 10	17	28	28	46
188340	ElXd 154.611	1	\times	x	-	-	-	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	83-120	430	< 10	17	28	28	46
188341	ElXd 254.612	2	\times	x	x	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	44-120	430	< 10	8	13	13	21
188342	ELXd 180.613	1	\times	\times	-	-	-	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	91-120	430	< 10	12	19	19	31
188343	ElXd 249.614	2	\times	\times	\times	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	44-120	430	< 10	8	13	13	21
188344	ELXd 118.615	1	\times	x	-	-	-	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	51-120	300	< 10	17	28	28	46
188345	ElXd 218.616	2	\times	\times	\times	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	51-120	300	< 10	12	19	19	31
188346	ELXd 136.617	1	\times	x	-	-	-	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	48-120	430	< 10	17	28	28	46
188347	ElXd 236.618	2	x	x	x	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	48-120	430	< 10	17	28	28	46
188348	ELXd 158.619	1	\times	x	-	-	-	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	46-120	430	< 10	17	28	28	46
188349	ELXX 258.620	2	\times	x	x	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	46-120	430	< 10	8	13	13	21
188350	ELXd 239.621	2	\times	x	x	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	53-120	430	< 10	17	28	28	46
188431	ElXd 226.801	2	\times	x	x	\times	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	0.5/50	0.75/75	50-90	470	< 10	7	12	12	20
188490	ElXd 226.801	2	x	x	x	\times	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	0.5/50	0.75/75	50-90	470	< 10	7	12	12	20
188495	ElXd 170.808	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	0.5/50	0.75/75	50-90	470	< 10	7	12	12	20
188549	ElXd 218.803	2	x^{*}	x^{*}	x	\times	\times	x^{*}	x^{*}	-	-	-	-	-	-	-	-	0.5/50	0.75/75	60-99	300	< 10	11	18	18	30
188550	ELXd 242.807	2	${ }^{*}$	x^{*}	x	\times	x	x^{*}	x^{*}	-	-	-	-	-	-	-	-	0.5/50	0.75/75	45-95	400	< 10	7	12	12	20
188564	ELXd 118.802	1	\times	x	-	-	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	0.5/50	0.75/75	60-105	400	< 10	11	18	18	30
188565	ElXd 142.806	1	\times	x	-	-	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	0.5/50	0.75/75	40-95	400	< 10	11	18	18	30
188596	ElXd 318.622	3	-	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	x^{*}	x^{*}	x^{*}	x^{*}	0.5/50	-	45-120	430	< 10	17	28	28	46
188597	ELXX 324.623	3	-	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	x^{*}	x^{*}	x^{*}	x^{*}	0.5/50	-	67-120	430	< 10	8	13	13	21
188598	ELXd 424.624	4	-	x^{*}	-	-	x^{*}	x^{*}	x^{*}	x^{*}	0.5/50	-	45-120	430	< 10	8	13	13	21							
188599	ELXd 418.625	4	-	x^{*}	x^{*}	-	-	x^{*}	x^{*}	x^{*}	x^{*}	0.5/50	-	45-120	430	< 10	12	19	19	31						
188600	ElXd 324.626	3	-	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	x^{*}	x^{*}	x^{*}	x^{*}	0.5/50	-	67-120	430	< 10	8	13	13	21
188601	ELXX 318.627	3	-	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	x^{*}	x^{*}	x^{*}	x^{*}	0.5/50	-	45-120	430	< 10	17	28	28	46
188602	ElXd 424.628	4	-	x^{*}	-	-	x^{*}	x^{*}	x^{*}	x^{*}	0.5/50	-	45-120	430	< 10	8	13	13	21							
188603	ELXd 418.629	4	-	x^{*}	-	-	x^{*}	x^{*}	x^{*}	x^{*}	0.5/50	-	45-120	430	< 10	12	19	19	31							
188604	ElXd 280.630	2	\times	x	x	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	44-120	430	< 10	5	9	9	15
188605	ELXd 280.631	2	\times	\times	x	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	1.5/150	44-120	430	< 10	5	9	9	15
188694	ELXd 118.802	1	\times	\times	-	-	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	0.5/50	0.75/75	60-105	400	< 10	11	18	18	30
188695	ElXd 142.806	1	\times	x	-	-	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	0.5/50	0.75/75	40-95	400	< 10	11	18	18	30
188696	ELXd 218.803	2	x^{*}	x^{*}	x	\times	x	x^{*}	x^{*}	-	-	-	-	-	-	-	-	0.5/50	0.75/75	60-99	300	< 10	11	18	18	30
188697	ELXd 242.807	2	x^{*}	x^{*}	x	\times	x	x^{*}	x^{*}	-	-	-	-	-	-	-	-	0.5/50	0.75/75	45-95	400	< 10	7	12	12	20
188717	ELXd 135.823	1	x^{*}	x^{*}	x	x	-	-	-	-	-	-	-	-	-	-	-	1.0/75	1.5/100	45	420	< 10	30	50	30	50
188864	ELXd 117.715	1	-	-	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	0.5/50	1.5/150	47-80	400	< 10	10	15	15	25
188865	ELXd 117.715	1	-	-	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	0.5/50	1.5/150	47-80	400	< 10	10	15	15	25
188866	ElXd 217.717	2	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	0.5/50	1.5/150	34-94	250	< 10	11	18	18	30
188867	ElXd 217.717	2	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	0.5/50	0.5/50	34-94	250	< 10	11	18	18	30
188873	ElXd 118.718	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1.5/150	2.0/200	55-113	300	< 5	15	24	25	40
188874	ELXd 218.719	2	x^{*}	x^{*}	x	x	x	x^{*}	x*	-	-	-	-	-	-	-	-	1.5/150	2.0/200	42-114	400	< 5	17	27	28	46
188875	ElXd 136.720	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1.5/100	2.0/200	47-105	300	< 5	15	24	25	40
188876	ELXd 236.721	2	x^{*}	x^{*}	x	x	x	x^{*}	x*	-	-	-	-	-	-	-	-	1.5/100	2.0/200	42-107	400	< 5	17	27	27	44
188877	ELXd 158.722	1	x^{\star}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1.5/100	2.0/200	47-105	300	< 8	15	24	25	40
188878	ElXd 258.723	2	x^{*}	x^{*}	x	\times	x	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1.5/150	2.0/200	45-110	400	< 10	11	18	19	31
188923	ELXX 142.709	1	-	-	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	0.5/50	0.5/50	41-104	400	< 10	8	12	12	20
188924	ELXd 142.709	1	-	-	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	0.5/50	0.5/50	41-104	400	< 10	8	12	12	20
188932	ELXX 135.724	1	x^{*}	x^{*}	x	\times	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	43	330	< 10	11	17	18	29
188933	ElXd 235.725	2	x^{*}	x^{*}	x	\times	x	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	2/200	43	330	< 5	10	17	18	28
188952	ELXX 118.705	1	-	-	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	0.5/50	0.5/50	47	250	< 10	13	20	21	34
188953	ElXd 118.705	1	-	-	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	0.5/50	0.5/50	47	250	< 10	13	20	21	34
188954	ElXd 218.707	2	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	0.5/50	0.5/50	41	250	< 10	12	20	21	33
188955	ElXd 218.707	2	x^{*}	x^{*}	x^{\star}	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	0.5/50	0.5/50	41	250	< 10	12	20	21	33
188974	ELXd 242.711	2	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	0.5/50	0.5/50	40	250	< 10	12	20	21	33
188975	ElXd 242.711	2	x^{*}	x^{*}	x	x^{*}	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	0.5/50	0.5/50	40	250	< 10	12	20	21	33
ELXs																										
188661	ELXs 116.900	1	x^{*}	x^{*}	x	x	-	-	-	-	-	-	-	-	-	-	-	1/100	2/150	43	250	-	27	43	44	72
188662	ELXs 116.903	1	\times	x	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	-	-	1/100	2/150	43	250	-	27	43	44	72
188663	ElXs 121.901	1	x^{*}	x^{*}	x	x	-	-	-	-	-	-	-	-	-	-	-	1/100	2/150	40	250	-	54	86	88	148
188664	ELXs 121.904	1	\times	\times	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	-	-	1/100	2/150	40	250	-	54	86	88	148

Electromagnetic ballasts

Electromagnetic (inductive) ballasts are active components that in conjunction with starters preheat the lamp electrodes, supply the ignition voltage and stabilise lamp currents during operation. Series or parallel capacitors are required to compensate blind current.

For installation in luminaires, consideration must be taken of the mains voltage and mains frequency, the dimensions and maximum thermal values as well as any potential noise generation. To fulfil these special requirements, Vossloh-Schwabe provides a large variety of different ballasts.

VS magnetic ballasts have been optimised with regard to their magnetic fields and loads so that usually so that noise cannot usually be perceived. However, the luminaire design can cause magnetic vibrations to affect large areas. When designing luminaires, it might therefore be necessary to fit a concertina section or grooves to prevent vibrations from spreading and thus from noise being generated.

The service life of an inductive ballast is mainly determined by the material chosen for the winding insulation. The maximum winding temperature denotes the temperature (tw) that the insulation will withstand for a period of 10 years given continuous operation under rated conditions. This maximum winding temperature must not be exceeded in real conditions to ensure the ballast can achieve its full service life. The winding temperature of the ballast that is measured in the luminaire is made up of the ambient temperature of the luminaire, the thermal conditions within the luminaire and the power loss of the ballast. The Δt marking on the ballast type plate provides a measure of the power loss of the ballast. In addition to this, the power loss of ballast-lamp circuits is measured in accordance with EN 50294. This test method forms the basis for the CELMA energy classification of ballasts and is also applied in European Regulation 245/2009/EG "Definition of eco-design requirements regarding fluorescent lamps without an integrated ballast, high-pressure discharge lamps as well as ballasts and luminaires in their operation and the invalidation of Directive 2000/55/EC" (see pages 269-271 for further details).

As a result of their design features, inductive ballasts cause leak current that is discharged via the earth conductor of the luminaire. The maximum permissible leak current for protection class I luminaires is $1 \mathrm{~mA}, \mathrm{a}$ value of which all Vossloh-Schwabe electronic ballasts fall clearly short. Values of max. 0.1 mA are measured per electromagnetic ballast. However, as these values accumulate with the number of installed ballasts, this should be taken into account when dimensioning the F1 protective switch.

Technical Details - Components for Fluorescent Lamps

Starters for fluorescent lamps

As mentioned above, the operation of fluorescent lamps also requires starters in addition to ballasts. A distinction is made between glow starters, which are also available with automatic cut-outs, and electronic starters. The correct choice of voltage and power range is crucial. Starters are available for 220-240 V and for 110-127 V mains voltage. The latter are also required for twin-lamp operation (e.g. $2 \times 18 \mathrm{~W}$ at 230 V)

Operating SL-series VS ballasts ($100-127 \mathrm{~V}$) depends on the use of a $220-240 \mathrm{~V}$ starter as these operating devices are high-reactance transformers that supply higher voltages to the lamp. Starters should only be used with starter contacts with a hardness value of at least HB 100.

Assembly Instructions for Electromagnetic Ballasts

For mounting and installing of electromagnetic ballasts for fluorescent lamps

Mandatory regulations

DIN VDE 0100 Erection of low voltage installations

EN 60598-1 Luminaires - part 1: general requirements and tests
EN 61347-1 Operating devices for lamps - part 1: general and safety requirements

EN 61347-2-8 Operating devices for lamps - part 2-8: special requirements for ballasts for fluorescent lamps

EN $60921 \quad$ Ballasts for fluorescent tube lamps - performance requirements
EN 50294 Methods for measuring the total input power of ballast-lamp circuits

EN 55015 Maximum values and methods of measurement for RFI suppression
in electrical lighting installations and similar electrical appliances

EN 61000-3-2 Electromagnetic Compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)
EN 61547 Installations for general lighting purposes - EMC immunity requirements

Technical specifications

Operating voltage range
VS ballasts can be operated at the specified mains voltage within a tolerance range
of $\pm 10 \%$

Leak current $\leq 0.1 \mathrm{~mA}$ per ballast
Error current Impulse-resistant leak-current protection must be installed. Distribute the luminaires to phases L1, L2 and L3; install tri-phase FI switches. If permissible, install FI switches with 30 mA leak current; connect no more than 15 luminaires as Fl switches can be triggered at half the leak current value.

Power factor Inductive ballasts: $\lambda \leq 0.5$
Parallel-compensated ballasts: $\lambda \geq 0.85$

Technical Details - Components for Fluorescent Lamps

Compensation VS recommends the use of parallel capacitors owing to their technical advantages and
power balance.
Possible interference with IR systems
Are not known to occur

Mechanical mounting

Mounting position

Any

Mounting location
Ballasts are designed for installation in luminaires or comparable devices.
Independent ballasts do not need to be installed in a casing.

Fastening \quad Preferably using screws $\varnothing 4 \mathrm{~mm}$

Maximum temperatures
The stipulated winding temperature (tw 130, tw 140 and tw 150 , respectively) must not be exceeded during normal operation. The corresponding maximum values $\left(232^{\circ} \mathrm{C}, 248^{\circ} \mathrm{C}\right.$ and $264^{\circ} \mathrm{C}$, respectively) must be observed during anomalous operation. These values must be checked by measuring resistance during operation.

Temperature increase

The lamp current flowing through the ballast generates a power loss that leads to an increase in winding temperature. The Δt values for normal and abnormal operation provide a measure of this temperature increase. The Δt values are ascertained using standardised connections for measurement and are provided on the ballast type plate in Kelvin.

Example: $\Delta t=55 \mathrm{~K} / 140 \mathrm{~K}$:
The first Δt value indicates the temperature increase for normal operation at the lamp's operating current. The second value, 140 K in this case, denotes the temperature increase of the winding that results from the current that flows when the lamp's discharge path is short-circuited. The current that flows in this state is the preheat current through the lamp's electrodes.

Electromagnetic compatibility (EMC)

Interference
Interference voltage measurements have to be taken at the connection terminals for luminaires with magnetic ballasts as these are systems that operate with lamp voltages of under 100 Hz . These low-frequency interference voltages are generally not critical with magnetic ballasts.

Interference immunity
Thanks to the robust design and choice of materials, magnetic ballasts provide a high degree of interference immunity and are not impaired by admissible mains power interference.

Mains Harmonics After every zero crossing of the lamp current, fluorescent lamps experience a re-ignition peak as the lamps go out for a brief (imperceptible) moment. These re-ignition peaks generate mains harmonics that are smoothed by the ballast's impedance. The right design, i.e. determining the operating point of the magnetic ballast, ensures mains harmonics are limited to the maximum values permitted by EN 61000-3-2. VS electromagnetic ballasts all comply with the stipulated maximum values.

Technical Details - Components for Fluorescent Lamps

Selection of automatic cut-outs for VS electromagnetic ballasts

Dimensioning automatic cut-outs
When a ballast is switched on, high transient current peaks occur due to parasite capacitances that can accumulate with the number of luminaires. These high system switch-on currents put a strain on the automatic conductor cut-outs. For this reason, only surge-current-proof automatic cut-outs should be used for lighting systems.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11,
for B and C characteristics.

No. of ballasts The following values are meant as guidelines only and may vary depending on the respective lighting system. The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m of [$2.5 \mathrm{~m}^{2}$] conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of ballasts by 10%. The values quoted in the following tables are guidelines and can be affected by system-specific factors.

Possible number of ballasts connected to automatic cut-outs for compact fluorescent lamps
(single lamp operation)

Lamp output	$10 \mathrm{~A}(\mathrm{~B})$	$16 \mathrm{~A}(\mathrm{~B})$		
	Inductive	Parallel compensation	Inductive	Parallel compensation
$5 / 7 / 8 / 9 / 10 / 11 / 13$	50	90	80	130
$18($ TC-L	27	32	43	51
$18($ TC-D $)$	40	65	65	110
24	25	32	40	51
26	27	32	43	51
36	23	32	37	51

Possible number of ballasts connected to automatic cut-outs for tubular and U-shaped fluorescent lamps (single lamp operation)

Lamp output	$10 \mathrm{~A}(\mathrm{~B})$	$16 \mathrm{~A}(\mathrm{~B})$		
	Inductive	Parallel compensation	Inductive	Parallel compensation
$4 / 6 / 8 / 10$	50	90	80	130
13	45	80	70	115
$15 / 18 / 20$	27	32	43	51
$30 / 36 / 38 / 40$	23	32	37	51
$58 / 65$	15	20	22	32
70	13	18	20	30

Technical Details - Components for Fluorescent Lamps

Reliability and service life

Provided the specified maximum values for the winding temperature are complied with, a service life of 10 years can be expected. Failure rate: $\leq 0.025 \% / 1,000$ hours.

Electrical installation

Connection terminals (combination terminals)

- Use copper (not stranded) wire
- Required diameter for push-in connection 0.5-1 mm²
- Stripped lead length 8 mm
- Required cross-section for IDC zone $0.5 \mathrm{~mm}^{2}$; max. $\varnothing 2 \mathrm{~mm}$ including Insulation, no wire stripping required; mounting requires a special tool

Push-in terminals The integrated terminals can only be used with rigid leads.
Rigid leads: $0.5-1.5 \mathrm{~mm}^{2}$. The stripped lead length totals 8 mm .
Wiring The wiring between the mains, ballasts and lamps must comply with the respective circuit diagram.

Circuit diagrams for the operation of fluorescent lamps with Vossloh-Schwabe electromagnetic ballasts

Inductive single circuit

Inductive tandem circuit

Parallel-compensated single circuit with high-reactance transformer

Parallel-compensated single circuit

Parallel-compensated tandem circuit

Parallel-compensated tandem circuit with high-reactance transformer

Connection terminals

In the interest of ensuring firm contacts and long component service life, Vossloh-Schwabe uses only top-quality materials for plastic or metal parts during the production of connection terminals. These quality features apply to both Vossloh-Schwabe's luminaire connection terminals as well as to the terminals fitted to ballasts and lampholders.

Notes on connection terminals on electronic ballasts

Vossloh-Schwabe electronic ballasts are fitted with installation-friendly push-in connectors. In addition, many models for linear fluorescent lamps are also available with IDC terminals (for solid conductors $0.5 \mathrm{~mm}^{2}$) and supplementary push-in terminals (for solid conductors $0.5-1 \mathrm{~mm}^{2}$), stripped length $8-9 \mathrm{~mm}$. IDC terminals permit automated luminaire wiring and testing using the ALF system and are thus particularly efficient.

Notes on connection terminals on electromagnetic ballasts

Standard issue Vossloh-Schwabe electromagnetic ballasts are fitted with installation-friendly IDC/push-in terminals (combination terminals) or push-in terminals. The terminals are designed for use with solid conductors with cross-sections of $0.5-1 \mathrm{~mm}^{2}$ (combination terminals) or up to $1.5 \mathrm{~mm}^{2}$ (push-in terminals) and are approved for current loads of up to 6 A (combination terminal) and 16 A (push-in terminal). The lead stripping length totals 7-9 mm for push-in terminals; leads do not need to be stripped for IDC terminals.
On request, many ballasts can also be provided with screw terminals (current load up to 16 A) for conductor cross-sections of 0.5 to $2.5 \mathrm{~mm}^{2}$.

Notes on connection terminals on lampholders

Vossloh-Schwabe usually equips lampholders for T and TC lamps as well as starter lampholders with installation-friendly push-in terminals for solid conductors of $0.5-1 \mathrm{~mm}^{2}$. Most lampholders are fitted with twin push-in terminals and thus permit through-wiring. The required lead stripping length amounts to $8-9 \mathrm{~mm}$ for all types.

IDC terminals

In order to fully exploit the vast potential for rationalisation offered by automated wiring and testing with the ALF system, a totally new component family was developed that is equipped with the VDE-tested IDC terminal technology. This technology has already been used very successfully on a large scale in other branches of industry. This connection technology dispenses with the stripping of conductors that is required for the push-in, screw or crimping methods. The tried-and-tested IDC terminal technology has created the foundation for efficient automation as it ensures both high connection quality and rapid contacting. Components equipped in this fashion make it possible to through-wire several terminals with a single conductor. This constitutes a further economic advantage as it significantly reduces the required conductor lengths. Furthermore, this design principle makes it possible to use adapters to simply and reliably make electrical contact from above for a VDE-compatible final luminaire inspection.

ALF connection

Height: 12 mm
Release by twisitng and pulling the conductor at the same time

1. Insert release tool above the conductor
2. Pull out the conductor

Stripping the conductor fpr push-in terminal 0.5-1 mm: 8-9 mm

IDC/Push-in terminal for electromagnetic ballasts

Stripping the conductor for push-in terminal 0.5-1 mm²: $7-9 \mathrm{~mm}$

Lampholders for Fluorescent Lamps

Lampholders for compact fluorescent lamps

Vossloh-Schwabe produces the majority of lampholders for TC lamps using PBT, a thermoplastic material. This highly heat-resistant material is responsible for the T 140 temperature rating. Leading lamp manufacturers also use PBT for the lamp bases they produce. This material harmonisation in conjunction with fatigue-free, stainless steel lamp mounting springs ensures a permanently secure lamp fit.

Lampholders for double-ended fluorescent lamps

VS lampholders for T lamps are characterised by a number of technical features that guarantee a high degree of reliability and safety. The heat-resistant PBT rotor with which most VS lampholders are fitted is a recognised trademark. In addition to the lampholders with the field-tested large rotor, VS also provides a new generation of lampholders featuring innovative "Rotoclic" rotor technology. This new VS technology constitutes a further milestone in the development of highly heat-resistant rotor systems.

Among the special features of this new technology is a T 140 temperature rating thanks to a front plate made entirely of PBT as well as a clearly audible click when the lamp is inserted or replaced. As a result, the motion of turning the lamp from "replacement" to "operating" position is aided acoustically.

In addition to this, VS produces a further series of lampholders with a rotor-like function, whose front plates are also made of highly heat-resistant PBT and have similarly been given a T 140 temperature rating.

The maximum permissible temperature at the back of all lampholders is $T_{m} 110^{\circ} \mathrm{C}$. Another key feature common to all VS lampholders is a highly effective support for the lamp pin that reliably prevents any base pin deflection, even with older lamps, and guarantees a durable and firm contact.

Push-through lampholders

Push-through lampholders are inserted from below through a cut-out in the luminaire casing and are secured by lateral catches. This type of lampholder is frequently used in luminaires on which the lampholder remains visible from the outside, e.g. in so-called strip lighting. The electrical leads are laid beneath the sheet metal level Luminaire directive EN 60598-1 Para. 8.2 must be observed with regard to the luminaire.

Push-fit lampholders

This lampholder type, which is frequently found in surface-mounted ceiling and built-in luminaires, is pushed into the luminaire casing from above. The lampholder foot should protrude by no more than 4 mm to match the usual height of the spacing cams in the luminaire casing. These lampholders are mostly wired above the luminaire casing to the side of the lampholder. However, there are also lampholders on which the wiring runs through the lampholder foot, with the leads laid beneath the luminaire casing.

Built-in Iampholders

This design is also predominantly used for recessed ceiling and surface-mounted luminaires. However, unlike push-fit lampholders, built-in lampholders are usually fitted at the ends of the luminaire boxes. In addition to the usual fixing with split pins attached to the rear, there are also countless versions with fixing clips, push-fit studs or screw-in holes, which are also available with spring-loaded length compensation. Built-in lampholders offer luminaire designers a wealth of scope regarding the choice of lamp position in relation to the reflector. This enables great variation in light distribution as the lampholder does not dictate the distance of the centre of the lamp from the metal casing.

Surface-mounted lampholders

The fastening system of surface-mounted lampholders usually consists of screws or rivets above a fixing level, along which the wiring is also laid. As this type of installation is usually too costly nowadays for large unit numbers, these lampholders are used almost exclusively for special applications, e.g. displays or illuminated advertisements.

VS lampholders for the UL market and UL approved leads are available for all common lamp types. Further information can be found at www.unvlt.com.

Push-through lampholder

Push-fit lampholder

Built-in lampholder

Surface-mounted

 lampholder

Lamp Table - Fluorescent Lamps

Lamp type/lamp base		Output (W)	Max. length (C) acc. to IEC			
	G24q-1	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{array}{r} 95 \\ 130 \\ \hline \end{array}$			
	G24q-2	18	140			
	G24q-3	26	160			
	GX24q-1	13	90			
	GX24q-2	18	110			
	GX24q-3	$\begin{aligned} & 26 \\ & 32 \\ & \hline \end{aligned}$	$\begin{aligned} & 130 \\ & 145 \end{aligned}$			
	GX24q-4	42	155			
	GX24q-5	57	191			
	GX24q-6	70	219			
	G24d-1	$\begin{array}{r} 8 \\ 10 \\ 13 \end{array}$	$\begin{gathered} \hline 73^{*} \\ 95 \\ 130 \\ \hline \end{gathered}$			
	G24d-2	18	140			
	G24d-3	26	160			
TC-T GX24d-1 $\quad-2$-3	GX24d-1	13	90			
\square 禺	GX24d-2	18	110			
	GX24d-3	26	130			
	G23	$\begin{gathered} \hline 5 \\ 7 \\ 9 \\ 11 \end{gathered}$	85115145215			
	2G7	$\begin{array}{r} 5 \\ 7 \\ 9 \\ 11 \end{array}$	$\begin{array}{r} \hline 85 \\ 115 \\ 145 \\ 215 \end{array}$			
	2G8-1	$\begin{array}{r} 60 \\ 85 \\ 120 \end{array}$	$\begin{aligned} & 167 \\ & 208 \\ & 285 \end{aligned}$			
GR14q-1			$\begin{array}{\|l\|} \hline \mathrm{A} \\ \hline 99.7 \\ 121.7 \end{array}$	B	C	D
	GR 14q-1	$\begin{aligned} & 14 \\ & 17 \end{aligned}$		$\begin{aligned} & 120 \\ & 142 \end{aligned}$	$\begin{aligned} & 126.6 \\ & 148.6 \end{aligned}$	$\begin{aligned} & 41^{*} \\ & 41^{*} \end{aligned}$
TC-DD			A	B		
GR1Oq GRY10q-3 GRZ10d GRZ 10†	GR8	$\begin{aligned} & 16 \\ & 28 \end{aligned}$	205	$\begin{aligned} & 141 \\ & 207 \end{aligned}$		
	GR10q	$\begin{aligned} & 10 \\ & 16 \\ & 21 \\ & 28 \\ & 38 \end{aligned}$	$\begin{array}{\|r\|} \hline 92 \\ 138 \\ 138 \\ 205 \\ 205 \end{array}$	$\begin{array}{r} 95 \\ 141 \\ 141 \\ 207 \\ 207 \end{array}$		
	GRY10q-3	55	205	205*		
	GRZ10d	18	137	141*		
	GRZ $10+$	30	202	206*		
	2G10	$\begin{aligned} & 18 \\ & 24 \\ & 36 \end{aligned}$	$\begin{aligned} & 122 \\ & 165 \\ & 217 \end{aligned}$			
	2G11	$\begin{aligned} & 18 \\ & 24 \\ & 34 \\ & 36 \\ & 40 \\ & 55 \\ & 80 \end{aligned}$	$\begin{aligned} & 225 \\ & 320 \\ & 533^{*} \\ & 415 \\ & 535 \\ & 535 \\ & 565 \end{aligned}$			

* not included in IEC standard (non-committal specifications)

Lamp Table - Fluorescent Lamps

Lamp Table - Fluorescent Lamps

| Lamp type/lamp base | Base | Output (W) | $\boldsymbol{\varnothing} \mathbf{D}(\mathbf{m m})$ | A (mm) |
| :---: | :--- | :--- | :--- | :--- | :--- |

Tube lengths of plastic and glass protective tube

$\varnothing D(\mathrm{~mm})$	Length $\mathrm{L}(\mathrm{mm})$
$38^{ \pm 0.5}$	$\mathrm{~L}=\mathrm{A}-20^{ \pm 1}$
$50^{ \pm 0.8}$	$\mathrm{~L}=\mathrm{A}-30^{ \pm 1}$

Key to lamp designations

TC-S	Tube Compact-Single
TC-SEL	Tube Compact-Single Electronic
TC-D	Tube Compact-Double
TC-DEL	Tube Compact-Double Electronic
TC-T	Tube Compact-Triple
TC-TEL	Tube Compact-Triple Electronic
TC-Q	Tube Compact-Quad
TC-QEL	Tube Compact-Quad Electronic
TC-DD	Tube Compact-Double D-Shape
TC-L	Tube Compact-Long
TC-F	Tube Compact-Flat
T2 (T7)	Tube $\varnothing 2 / 8^{\prime \prime}(7 \mathrm{~mm})$
T5 (T16)	Tube $\varnothing 5 / 8^{\prime \prime}(16 \mathrm{~mm})$
T8 (T26)	Tube $\varnothing 8 / 8^{\prime \prime}(26 \mathrm{~mm})$
T12 (T38)	Tube $\varnothing 12 / 8^{\prime \prime}(38 \mathrm{~mm})$
T-U	Tube, U -Shape
T-R	Tube, Ring-Shape
T-R5 (T-R 16)	Tube, Ring-Shape $\varnothing 5 / 8^{\prime \prime}(16 \mathrm{~mm})$

Technical Details - Components for Fluorescent Lamps

Energy efficiency classification

The commission's regulation (EC) No. 245/2009 dated 18 March 2009 implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to defining ecodesign requirements for fluorescent lamps without integrated ballast, high-pressure discharge lamps and for ballasts and luminaires needed for their operation, and repealing Directive 2000/55/EC of the European Parliament and of the Council (official title), has created a legal framework in the EU that defines fundamental requirements for operating efficient lighting technology products.

Although the Regulation predominantly applies to general lighting, it is also product-orientated and thus independent of any specific application. The efficiency and performance requirements (specifications governing performance features) apply to fluorescent lamps without integrated ballast, high-pressure discharge lamps as well as ballasts and luminaires needed to operate these lamps. A brief overview of the requirements governing fluorescent lamps is provided in the following table (excerpt from the CELMA guide).

Stage	Requirements governing	
$\begin{aligned} & \mathbf{1} \\ & 13.04 .2010 \end{aligned}$	Ballasts	- Non-dimmable ballasts: minimum EEI $=$ B2 - Dimmable ballasts: minimum EEI = A1 - Standby losses ≤ 1 W - Non-dimmable ballasts for new lamps not designed for use with existing ballasts: minimum EEI = A3 - Ballasts must be labelled (for instance: EEI = A2)
Interim stage 13.09.2010	Luminaires	- Luminaire standby losses = sum of ballast limiting values (No. of installed ballasts) - After 18 months: technical information must be made available, both online and in luminaire documentation (for luminaires > 2,000 Lumens).
2	Ballasts	- Standby losses $\leq 0.5 \mathrm{~W}$
13.04.2012	Luminaires	- Luminaire standby losses = sum of ballast limiting values (No. of installed ballasts) - Luminaire designs must permit integration of 3rd-stage ballasts. Exceptions: luminaires > IP4X
$\begin{aligned} & \text { at the latest by } \\ & \mathbf{1 3 . 0 4 . 2 0 1 4} \end{aligned}$	Revision of the regulation Technological progress as well as the sum of the experience gained during the implementation of the Regulation will be taken into consideration during the revision process.	
$\begin{aligned} & \mathbf{3} \\ & 13.04 .2017 \end{aligned}$	Ballasts	- New ballast limiting values calculated using specified formula (see page 378) - That constitutes a ban on EEI = A3, B1 and B2 ballasts (magnetic ballasts can only be produced for higher lamp ratings permitted classes are A2, A2 BAT and only A1 BAT for dimmable ballasts) - Ballasts labels shortened to A2, A2 BAT or A1 BAT ("EEI =" will be dropped; this means labelled ballasts can be clearly dated.
	Luminaires	- All luminaire designs must permit the integration of 3rd-stage ballasts.

Technical Details - Components for Fluorescent Lamps

Energy efficiency classification

The following table taken from Regulation 245/2009/EC provides an overview of (1 st- and 2 nd-stage) ballast requirements, ordered according to efficiency values:

Lamp data					Ballast efficiency (Plamp/PInput) (non-dimmable ballasts)				
Type	Nominal output W	ILCOS-Code	Typical rating						
			50 Hz	HF	A2 BAT	A2	A3	B1	B2
			W	W	\%	\%	\%	\%	\%
T8	15	FD-1 5-E-G $13-26 / 450$	15	13.5	87.8	84.4	75.0	67.9	62.0
	18	FD-1 8-E-G 1 3-26/600	18	16	87.7	84.2	76.2	71.3	65.8
	30	FD-30-E-G 1 3-26/900	30	24	82.1	77.4	72.7	79.2	75.0
	36	FD-36-E-G 1 3-26/1200	36	32	91.4	88.9	84.2	83.4	79.5
	38	FD-38-E-G 1 3-26/1050	38.5	32	87.7	84.2	80.0	84.1	80.4
	58	FD-58-E-G13-26/1500	58	50	93.0	90.9	84.7	86.1	82.2
	70	FD-70-E-G13-26/1800	69.5	60	90.9	88.2	83.3	86.3	83.1
$\overline{T C-L}$	18	FSD-18-E-2G11	18	16	87.7	84.2	76.2	71.3	65.8
	24	FSD-24-E-2G11	24	22	90.7	88.0	81.5	76.0	71.3
	36	FSD-36-E-2G11	36	32	91.4	88.9	84.2	83.4	79.5
$\overline{\text { TC-F }}$	18	FSS-18-E-2G10	18	16	87.7	84.2	76.2	71.3	65.8
	24	FSS-24-E-2G10	24	22	90.7	88.0	81.5	76.0	71.3
	36	FSS-36-E-2G10	36	32	91.4	88.9	84.2	83.4	79.5
$\begin{aligned} & \hline \text { TC-D/ } \\ & \text { TC-DE } \end{aligned}$	10	FSQ-10-E-G24q=1	10	9.5	89.4	86.4	73.1	67.9	59.4
		FSQ-10--G24d=1							
	13	$\begin{aligned} & \text { FSQ-1 3-E-G24q=1 } \\ & \text { FSQ-1 3--G24d=1 } \end{aligned}$	13	12.5	91.7	89.3	78.1	72.6	65.0
	18	$\begin{aligned} & \text { FSQ-1 8-E-G24q=2 } \\ & \text { FSQ-1 8--IG24d=2 } \end{aligned}$	18	16.5	89.8	86.8	78.6	71.3	65.8
	26	$\begin{aligned} & \text { FSQ-26-E-G24q=3 } \\ & \text { FSQ-26---G24d=3 } \end{aligned}$	26	24	91.4	88.9	82.8	77.2	72.6
$\begin{aligned} & \hline \mathrm{TC-T/} \\ & \mathrm{TC}-\mathrm{TE} \end{aligned}$	13	$\begin{aligned} & \text { FSM-1 3-E-GX24q=1 } \\ & \text { FSM-13--GX24d=1 } \end{aligned}$	13	12.5	91.7	89.3	78.1	72.6	65.0
	18	FSM-1 8-E-GX24q=2 FSM-18-I-GX24d=2	18	16.5	89.8	86.8	78.6	71.3	65.8
	26	$\begin{aligned} & \text { FSM-26-E-GX24q=3 } \\ & \text { FSM-26-I-GX24d=3 } \end{aligned}$	26.5	24	91.4	88.9	82.8	77.5	73.0
$\begin{aligned} & \hline \text { TC-DD/ } \\ & \text { TC-DDE } \end{aligned}$	10	FSS-10-E-GR10q	10.5	9.5	86.4	82.6	70.4	68.8	60.5
		FSS-10-L/P/H-GR10q							
	16	$\begin{aligned} & \text { FSS-16-E-GR } 10 \mathrm{q} \\ & \text { FSS-16-I-GR } 10 \mathrm{q} \\ & \text { FSS-10-L/P/H-GR } 10 \mathrm{q} \end{aligned}$	16	15	87.0	83.3	75.0	72.4	66.1
	21	$\begin{aligned} & \text { FSS-2 1-E-GR 10q } \\ & \text { FSS-2 -I-GR10q } \\ & \text { FSS-2 1-L/P/H-GR10q } \end{aligned}$	21	19	89.4	86.4	79.2	73.9	68.8
	28	$\begin{aligned} & \text { FSS-28-E-GR10q } \\ & \text { FSS-28-IGR10q } \\ & \text { FSS-28-L/P/L-GR10q } \\ & \hline \end{aligned}$	28	26	89.7	86.7	81.3	78.2	73.9
	38	$\begin{aligned} & \text { FSS-38-E-GR10q } \\ & \text { FSS-38-L/P/L-GR10q } \end{aligned}$	38.5	36	92.3	90.0	85.7	84.1	80.4
$\overline{T C}$	5	FSD-5-I-G23 FSD-5-E-2G7	5.4	5	72.7	66.7	58.8	49.3	41.4
	7	FSD-7-I-G23 FSD-7-E-2G7	7.1	6.5	77.6	72.2	65.0	55.7	47.8
	9	FSD-9--IG23 FSD-9-E-2G7	8.7	8	78.0	72.7	66.7	60.3	52.6
	11	FSD-1 1--G23 FSD-1 1-E-2G7	11.8	11	83.0	78.6	73.3	66.7	59.6
T5	4	FD-4-E-G5-16/150	4.5	3.6	64.9	58.1	50.0	45.0	37.2
	6	FD-6-E-G5-16/225	6	5.4	71.3	65.1	58.1	51.8	43.8
	8	FD-8-E-G5-16/300	7.1	7.5	69.9	63.6	58.6	48.9	42.7
	13	FD-1 3-E-G5-16/525	13	12.8	84.2	80.0	75.3	72.6	65.0
T9-C	22	FSC-22-E-G10q-29/200	22	19	89.4	86.4	79.2	74.6	69.7
	32	FSC-32-E-G 10q-29/300	32	30	88.9	85.7	81.1	80.0	76.0
	40	FSC-40-E-G 10q-29/400	40	32	89.5	86.5	82.1	82.6	79.2

Lamp †ypes

$\square \square$

T8

TC-

TC-F

TC-D/TC-DE

TC-T/TC-TE

TC-DD/TC-DDE

TC

T5

Technical Details - Components for Fluorescent Lamps

Lamp data					Ballast efficiency (Plamp/PInput) (non-dimmable ballasts)				
Type	Nominal output W	ILCOS-Code	Typical rating						
			$\begin{aligned} & 50 \mathrm{~Hz} \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{HF} \\ & \mathrm{~W} \end{aligned}\right.$	$\begin{aligned} & \text { A2 BAT } \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A2 } \\ & \% \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { A3 } \\ \% \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{BI} \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B2} \\ & \% \\ & \hline \end{aligned}$
T2	6	FDH-6-L/P-W4.3x8.5d-7/220		5	72.7	66.7	58.8	-	-
	8	FDH-8-L/P-W4.3×8.5d-7/320		7.8	76.5	70.9	65.0	-	-
	11	FDH-11-L/P-W4.3x8.5d-7/420		10.8	81.8	77.1	72.0	-	-
	13	FDH-13-L/P-W4.3x8.5d-7/520		13.3	84.7	80.6	76.0	-	-
	21	FDH-2 1-L/P-W4.3x8.5d-7		21	88.9	85.7	79.2	-	-
	23	FDH-23-L/P-W4.3x8.5d-7		23	89.8	86.8	80.7	-	-
T5-E	14	FDH-14-L/P-G5-16/550		13.7	84.7	80.6	72.1	-	-
	21	FDH-21-L/P-G5-16/850		20.7	89.3	86.3	79.6	-	-
	24	FDH-24-L/P-G5-16/550		22.5	89.6	86.5	80.4	-	-
	28	FDH-28-L/P-G5-16/1150		27.8	89.8	86.9	81.8	-	-
	35	FDH-35-L/P-G5-16/1450		34.7	91.5	89.0	82.6	-	-
	39	FDH-39-L/P-G5-16/850		38	91.0	88.4	82.6	-	-
	49	FDH-49-L/P-G5-16/1450		49.3	91.6	89.2	84.6	-	-
	54	FDH-54-L/P-G5-16/1150		53.8	92.0	89.7	85.4	-	-
	80	FDH-80-L/P-G5-16/1150		80	93.0	90.9	87.0	-	-
	95	FDH-95-L/P-G5-16/1150		95	92.7	90.5	84.1	-	-
	120	FDH-120-L/P-G5-16/1450		120	92.5	90.2	84.5	-	-
T5-C	22	FSCH-22-L/P-2GX13-16/225		22.3	88.1	84.8	78.8	-	-
	40	FSCH-40-L/P-2GX13-16/300		39.9	91.4	88.9	83.3	-	-
	55	FSCH-55-L/P-2GX13-16/300		55	92.4	90.2	84.6	-	-
	60	FSCH-60-L/P-2GX13-16/375		60	93.0	90.9	85.7	-	-
$\overline{\text { TC-LE }}$	40	FSDH-40-L/P-2G11		40	91.4	88.9	83.3	-	-
	55	FSDH-55-L/P-2G 11		55	92.4	90.2	84.6	-	-
	80	FSDH-80-L/P-2G1 1		80	93.0	90.9	87.0	-	-
TC-TE	32	FSMH-32-L/P-GX24q=3		32	91.4	88.9	82.1	-	-
	42	FSMH-42-L/P-GX24q=4		43	93.5	91.5	86.0	-	-
	57	$\begin{aligned} & \text { FSM6H-57-L/P-GX24q=5 } \\ & \text { FSM8H-57-L/P-GX24q=5 } \end{aligned}$		56	91.4	88.9	83.6	-	-
	70	$\begin{aligned} & \text { FSM6H-70-L/P-GX24q=6 } \\ & \text { FSM8H-70-L/P-GX24q=6 } \end{aligned}$		70	93.0	90.9	85.4	-	-
	60	FSM6H-60-L/P-2G8=1		63	92.3	90.0	84.0	-	-
	62	FSM8H-62-L/P-2G8=2		62	92.2	89.9	83.8	-	-
	82	FSM8H-82-L/P-2G8=2		82	92.4	90.1	83.7	-	-
	85	FSM6H-85-L/P-2G8=1		87	92.8	90.6	84.5	-	-
	120	$\begin{aligned} & \text { FSM6H-120-L/P-2G8=1 } \\ & \text { FSM8H-120-L/P-2G8=1 } \end{aligned}$		122	92.6	90.4	84.7	-	-
TC-DD	55	FSSH-55-L/P-GR10q		55	92.4	90.2	84.6	-	-

At the very latest, the following energy efficiency formula for ballasts will be introduced to coincide with the 3rd stage:
If \quad Plamp $\leq 5 \mathrm{~W}$
$\mathrm{EBbFL}=0.71$
If $5 \mathrm{~W}<P_{\text {Lamp }}<100 \mathrm{~W} \quad E B b F L=P_{\text {Lamp }} /\left(2^{*}\right.$ sqrt $\left.\left(P_{\text {Lamp }} / 36\right)+38 / 36 * P_{\text {Lamp }}+1\right)$
If $\quad P_{\text {Lamp }} \geq 100 \mathrm{~W}$
$E B b_{F L}=0.91$

The following limiting values must be observed

η Ballast	Energy efficiency classes
$\geq E B b_{F L}$	A2 and A1BAT
$\geq 1-0.75^{*}\left(1-E B b_{F L}\right)$	A2 BAT

The graph illustrates the difference between Classes A2, A1 BAT and A2 BAT
(BAT = best available technology).

SYSTEMOPTIMISING COMPENSATION

PARALLEL CAPACITORS

Capacitors are designed to compensate inductive reactive current of discharge lamps in $50 / 60 \mathrm{~Hz}$ networks when operated with electromagnetic ballasts. As required by utility companies, capacitors serve to compensate the reactive current generated by the respective ballast. A power factor of $\lambda \geq 0.9$ is achieved.

In addition, capacitors can also be used to compensate or generate phase displacements. Careful selection of the raw materials as well as special thermal treatment of the capacitor coil guarantee a long servicelife and stable capacitance.

4 Parallel Capacitors

Parallel capacitors
Technical details for parallel capacitors 278-287
General technical details 394-401Glossary402-404

Parallel Connected
 Capacitors with
 Break-action
 Mechanism

Capacitors type B

Casing: aluminium
Filling material: based on vegetable oil
Fastening: male nipple
with nut and washer included
Discharge resistance
Overpressure protection
On request further capacities or connectors

A Push-in twin terminals $0.5-1 \mathrm{~mm}^{2}$

B Double spade connector 6.3×0.8 acc. to IEC 61210

Parallel Connected Capacitors with Break-action Mechanism

Capacitors type B

Ref. No.	Capacity μF	Temperature range ${ }^{\circ} \mathrm{C}$	Drawing	$\begin{aligned} & \varnothing(D) \\ & \mathrm{mm} \end{aligned}$	$\begin{aligned} & \text { Length (L) } \\ & \mathrm{mm} \\ & \hline \end{aligned}$	Male nipple/ length (mm)	Weight g	$\begin{aligned} & \text { Unit } \\ & \text { pcs. } \\ & \hline \end{aligned}$
$250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$								
536378	2.0	-40 to 100	A	25	63	M8x 10	85	100
536379	4.0	-40 to 100	A	25	63	M 8×10	85	100
536380	6.0	-40 to 100	A	25	63	M8×10	85	100
536381	8.0	-40 to 100	A	25	78	M 8×10	90	100
536382	10.0	-40 to 100	A	30	78	M 8×10	95	100
536383	12.0	-40 to 100	A	30	78	M 8×10	95	100
536384	13.0	-40 to 100	A	30	78	M 8×10	95	100
536385	16.0	-40 to 100	A	35	78	M 8×10	100	81
536386	18.0	-40 to 100	A	35	78	M8×10	100	81
536387	20.0	-40 to 100	A	35	78	M 8×10	100	81
536388	25.0	-40 to 100	A	40	78	M8×10	110	64
536389	30.0	-40 to 100	A	35	103	M 8×10	115	81
536390	32.0	-40 to 100	A	35	103	M 8×10	115	81
536391	35.0	-40 to 100	A	40	103	M 8×10	130	64
536392	40.0	-40 to 100	A	40	103	M 8×10	130	64
536393	45.0	-40 to 100	A	40	103	M 8×10	130	64
536394	50.0	-40 to 100	A	45	103	M 8×10	160	49
536395	55.0	-40 to 100	A	45	103	M 8×10	160	49
536396	60.0	-40 to 100	A	45	103	M8×10	200	49
380-450 V, 50/60 Hz								
536397	13.0	-40 to 85	A	35	103	M8×10	115	81
536398	18.0	-40 to 85	A	40	103	M8×10	130	64
536399	28.0	-40 to 85	A	45	103	M 8×10	130	49
536400	32.0	-40 to 85	A	45	103	M 8×10	130	49
536401	37.0	-40 to 85	A	50	103	M 12×12	220	36
536402	50.0	-40 to 85	A	55	103	M 12×12	240	36
536403	55.0	-40 to 85	B	50	128	M 12×12	250	36
536404	60.0	-40 to 85	B	55	128	M 12×12	250	36
536405	85.0	-40 to 85	B	60	138	M 12×12	300	36

Parallel Connected

Capacitors 250 V, 50/60 Hz

Capacitors type A

Casing: plastics, white or aluminium
Fastening: male nipple
with nut and washer included
Discharge resistance
Optional: thermal cut-out,
European wide patent
On request with alternative capacities, connection terminals, mounting options, casing materials or with a thermal fuse as well as versions with IDC terminal for the automatic luminaire wiring

Ref. No.	Capacity $\mu \mathrm{F}$	Temperature range ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \varnothing(D) \\ & \mathrm{mm} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Length (L) } \\ & \mathrm{mm} \end{aligned}$	Male nipple/ length (mm)	Push-in twin terminals	Weight g	$\begin{aligned} & \text { Unit } \\ & \text { pcs. } \end{aligned}$
Plastic casing								
500296	2.0	-40 to 85	25	57	M 8×10	$0.5-1 \mathrm{~mm}^{2}$	22	530
500299	2.5	-40 to 85	25	57	M 8×10	$0.5-1 \mathrm{~mm}^{2}$	22	530
500300	3.0	-40 to 85	25	57	M 8×10	$0.5-1 \mathrm{~mm}^{2}$	22	530
500301	3.5	-40 to 85	25	57	M 8×10	$0.5-1 \mathrm{~mm}^{2}$	22	530
500302	4.0	-40 to 85	25	70	M 8×10	0.5-1 mm ${ }^{2}$	29	450
500303	4.5	-40 to 85	25	70	M8×10	$0.5-1 \mathrm{~mm}^{2}$	29	450
500304	5.0	-40 to 85	25	70	M8×10	0.5-1 mm ${ }^{2}$	29	450
500305	6.0	-40 to 85	25	70	M 8×10	$0.5-1 \mathrm{~mm}^{2}$	29	450
506495	7.0	-40 to 85	30	70	M 8×10	$0.5-1 \mathrm{~mm}^{2}$	35	320
502783	8.0	-40 to 85	30	70	M 8×10	$0.5-1 \mathrm{~mm}^{2}$	35	320
504351	9.0	-40 to 85	30	70	M 8×10	$0.5-1 \mathrm{~mm}^{2}$	35	320
508667	10.0	-40 to 85	30	70	M 8×10	$0.5-1 \mathrm{~mm}^{2}$	39	320
506366	12.0	-40 to 85	30	94	M 8×10	$0.5-1 \mathrm{~mm}^{2}$	43	260
508468	15.0	-40 to 85	30	94	M8×10	$0.5-1 \mathrm{~mm}^{2}$	43	260
508668	16.0	-40 to 85	30	94	M 8×10	$0.5-1 \mathrm{~mm}^{2}$	48	260
500315	18.0	-40 to 85	35	94	M 8×10	$0.5-1.5 \mathrm{~mm}^{2}$	55	190
500316	20.0	-40 to 85	35	94	M 8×10	$0.5-1.5 \mathrm{~mm}^{2}$	62	190
500317	25.0	-40 to 85	40	94	M8×10	$0.5-1.5 \mathrm{~mm}^{2}$	66	80
500318	30.0	-40 to 85	40	94	M 8×10	$0.5-1.5 \mathrm{~mm}^{2}$	72	100

Aluminium casing

$\mathbf{5 0 0 3 1 9}$	32.0	-40 to 85	35	135	$M 8 \times 10$	$0.5-1.5 \mathrm{~mm}^{2}$	70	50
$\mathbf{5 0 0 3 2 0}$	35.0	-40 to 85	40	135	$M 8 \times 10$	$0.5-1.5 \mathrm{~mm}^{2}$	135	36
$\mathbf{5 0 0 3 2 1}$	40.0	-40 to 85	40	135	$M 8 \times 10$	$0.5-1.5 \mathrm{~mm}^{2}$	139	36
$\mathbf{5 3 6 4 0 6}$	45.0	-40 to 85	40	135	$M 8 \times 10$	$0.5-1.5 \mathrm{~mm}^{2}$	139	36
$\mathbf{5 0 0 3 2 2}$	50.0	-40 to 85	45	135	$M 8 \times 10$	$0.5-1.5 \mathrm{~mm}^{2}$	154	32
$\mathbf{5 0 0 3 2 3}$	55.0	-40 to 85	45	135	$M 8 \times 10$	$0.5-1.5 \mathrm{~mm}^{2}$	159	32

Parallel Connected Capacitors with Leads 250 V, 50/60 Hz

Capacitors type A

Casing: plastics, white
Fastening: male nipple
with nut and washer included
Discharge resistance
Fixing centres: 20 mm
Optional: thermal cut-out,
European wide patent
On request with alternative capacities, connection terminals, mounting options, casing materials or with a thermal fuse as well as versions with IDC terminal for the automatic luminaire wiring

Ref. No.	Capacity $\mu \mathrm{F}$	Temperature range ${ }^{\circ} \mathrm{C}$	$\varnothing(\mathrm{D})$ mm	Length (L) mm	Male nipple/ length (mm)	Lead length mm	Weight g	Unit pcs.	
Plastic casing									
$\mathbf{5 5 2 7 7 4}$	2.0	-25 to 85	25	57	$M 8 \times 10$	150	22	400	
$\mathbf{5 2 6 1 6 9}$	4.0	-25 to 85	28	54	$M 8 \times 10$	250	32	350	
$\mathbf{5 2 6 1 7 0}$	6.0	-40 to 85	25	70	$M 8 \times 10$	250	32	320	
$\mathbf{5 2 6 1 7 1}$	8.0	-40 to 85	35	57	$M 8 \times 10$	250	35	220	
$\mathbf{5 2 9 6 6 5}$	10.0	-40 to 85	30	70	$M 8 \times 10$	200	40	280	
$\mathbf{5 3 6 7 4 2}$	12.0	-25 to 85	36	67	$M 8 \times 10$	150	47	120	
$\mathbf{5 2 9 6 6 6}$	16.0	-25 to 85	36	92	$M 8 \times 10$	200	52	120	
$\mathbf{5 3 6 7 4 1}$	20.0	-40 to 85	35	95	$M 8 \times 10$	150	63	160	
$\mathbf{5 0 8 4 8 4}$	25.0	-25 to 85	40	70	$M 8 \times 10$	250	72	80	
$\mathbf{5 3 6 7 4 3}$	30.0	-25 to 85	40	92	$M 8 \times 10$	150	82	80	
$\mathbf{5 2 8 5 5 4}$	35.0	-25 to 85	45	94.5	$M 8 \times 10$	250	85	60	
$\mathbf{5 3 6 8 1 3}$	40.0	-25 to 85	45	94.5	$M 8 \times 10$	400	85	60	
$\mathbf{5 2 8 5 5 5}$	45.0	-25 to 85	50	94.5	$M 8 \times 10$	250	90	50	

Technical Details

4 Capacitors for Fluorescent and Discharge Lamps

Idle current compensation 279
Parallel compensation 280
MPP capacitor technology 280-282
Assembly instructions - Capacitors 283-284
Capacitor tables 285-289
General technical details 394-401
Glossary 402-404

Technical Details - Capacitors for Fluorescent and Discharge Lamps

Compensation of idle current

When using magnetic ballasts a phase shift occurs between the mains voltage and the current drawn. This phase shift is expressed by the power factor λ, which generally ranges between a value of 0.3 and 0.7 with inductive circuits.

As a result of this phase shift, idle current, which does not boost the efficiency of the lighting unit, is also taken up from the power supply network in addition to real power. Power utility companies therefore require an increase of the power factor to values of over 0.85 for systems exceeding a certain rating (usually upwards of 250 W per external conductor).

Compensation capacitors are used to counteract idle current (by increasing the power factor) and can be connected either in parallel or in series.

Thanks to a power factor of approx. 0.95 , electronic ballasts do not need to be operated with compensation capacitors.

Compensation using series capacitors

Series compensation employs a so-called dual circuit (two fluorescent lamp circuits connected in parallel), whereby the capacitor, which is connected in a branch of the circuit, over compensates the inductive idle current to such an extent that it covers the idle current of both ballasts. This type of circuit is only used with fluorescent lamps. As series capacitors are dimensioned for nominal-voltage and ballast tolerances, the lamp in the capacitor branch of the dual circuit operates with a higher current and thus also with a higher rating. Apart from differences in lamp brightness, the power loss in the circuit branch with the capacitor will also be greater.

An advantage of the dual circuit is that it prevents the radiated light from flickering

The higher current in the so-called capacitive lamp circuit causes an up to 14% increase in lamp rating and a reduction of the lamp service life by as much as 20%. This goes hand in hand with substantial technical, ecological and economic disadvantages.

Series capacitors have to meet very high technical requirements to suit various aspects like temperature, nominal voltage, tolerances of the capacitance values, etc.

As defined by EC directive 2000/55/EC (European Standard EN 50294 governing the measurement of total power consumption), a series capacitor is considered to be a part of the ballast. If the system rating of the capacitive circuit containing the lamps and ballasts is then determined in line with the above definition, rating increases of up to 14% will become apparent in comparison to operation without a series capacitor. Experience has shown that this increased power consumption often means devices fall in the directive's "banned" category. It is therefore strongly advised that due consideration be given to the elevated power consumption values common to using series capacitors for compensation purposes.

Parallel compensation

During parallel compensation, each lamp circuit is assigned to a capacitor connected in parallel to the mains. Only one capacitor providing sufficient capacitance is needed for luminaires with several lamps. Parallel compensation does not affect current flow through a discharge lamp. The requirements placed on parallel capacitors are clearly lower than those for series capacitors.

However, parallel compensation can be subject to limitations when using audio-frequency ripple control pulses if the system operates with a connected rating of over 5 kVA and ripple control frequencies of over 300 Hz are used. The respective power utility company should be consulted for advice in such cases.

Parallel compensation is used in fluorescent lamp and high-pressure discharge lamp circuits.

As parallel compensation offers substantial advantages, this has become the accepted method in the last few years.

Metallised polypropylene film capacitors

Metallised polypropylene film capacitors are designed to compensate the inductive idle current drawn by discharge lamps (fluorescent lamps, high-pressure mercury vapour lamps, high-pressure sodium vapour lamps and metal halide lamps with a ceramic discharge tube) in $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ grids. All Vossloh-Schwabe compensation capacitors for luminaires feature a metallised polypropylene film dielectric. Compensation capacitors help to increase the power factor to values of over $\lambda 0.85$ as required by power utility companies.

Construction of metallised polypropylene film capacitors

VS MPP capacitors contain a low-loss metallised polypropylene film dielectric, which is produced by depositing a thin layer of zinc and aluminium or pure aluminium vapour onto one side of the polypropylene film. The contacts at either end of the capacitor coil are created by spraying on a layer of metal and thus guarantee a high current-carrying capacity as well as a low-inductive connection between the terminals and the coils.

All capacitors with a nominal voltage upwards of 280 V are filled with oil or resin after the coils have been inserted and then hermetically sealed. This protects the coils from environmental influences and reduces partial discharge, which contributes to a long service life and stable capacitance. The effects of partial discharge only play a minor role for capacitors with a nominal voltage of under 280 V so that these devices do not need to be filled.

Hermetically sealed, filled capacitors with an overpressure contact breaker should always be used in critical ambient conditions (high humidity, aggressive atmospheres, high temperatures), if the workload and power supply conditions are unknown as well as in situations that demand increased attention to safety.

VS MPP capacitors feature a self-healing dielectric. In the event of a dielectric breakdown in the coil (short circuit), the metal coating vaporises around the breakdown site owing to the high temperature of the transient arc that is produced. Owing to the excess pressure generated during such a breakdown, the metal vapour is pushed outwards away from the centre of the site within the space of just a few microseconds. This creates a coating-free corona around the breakdown site that completely isolates it and means the capacitor remains fully functional during a dielectric breakdown.

The self-healing properties of a capacitor can decrease with time and with constant overloading. This bears the risk of a non-healing breakdown with a permanent short circuit. Therefore self-healing must not be confused with failsafe.

Compensation capacitors are divided into two type families (A and B) in accordance with IEC 61048 A2.

- Type A capacitors defined:
"Self-healing parallel capacitors; without an (overpressure) contact breaker in the event of failure". They are referred to as unsecured capacitors.
- Type B capacitors defined:
"Self-healing capacitors for series connection in lighting circuits or self-healing parallel capacitors; with an (overpressure) contact breaker in the event of failure".
These are referred to as hermetically sealed, secured capacitors.

In accordance with the standard, the discharge resistor of both capacitor families must be capable of reducing capacitor voltage to a value of under 50 V in the space of 60 seconds after disconnection from the mains.

Capacitors without a contact breaker, unsecured, Type A capacitors in accordance with IEC 61048 A2

IEC 61048 A2-compliant Type A capacitors are self-healing and require no short-circuit protection for normal operation.

Type A capacitors are not fitted with a specific failsafe mechanism as prescribed by the standards for Type B capacitors. Nevertheless, the requirements laid down in the standard for Type A capacitors, especially with regard to temperature and service life tests, are designed to ensure a sufficient degree of device safety and availability provided the device was correctly installed and operated under calculable and known ambient operating conditions.

Even so, in very rare cases these capacitors can still develop erratic behaviour due to overloading or at the end of the device's service life.

For that reason, Type A capacitors should only be integrated into luminaires for operation in ambient conditions that are uncritical with regard to flammable materials. Luminaires should feature protection against secondary damage inside and outside the luminaire in the event of a defect.

Temperature-protected capacitors are a further development of Type A capacitors and are fitted with a thermal fuse that is triggered by overheating as a result of electrical or thermal overloading. They are tested in accordance with IEC 61048 A2 and comply with Type A requirements. Excess temperatures cause the two wire ends of the element inside the fuse to melt into bead shapes that are fully isolated from each other by special insulation.

In 99% of all the rare cases of critical capacitor failure, this failure is preceded by a gradual increase in the loss factor, which leads to an increase in the winding temperature and thus triggers the thermal fuse.

Vossloh-Schwabe recommends that preference be given to Type A capacitors with a thermal fuse as a matter of course for reasons of safety.

Type A capacitors predominantly feature a plastic casing.

Capacitors with a contact breaker, secured Type B capacitors in accordance with IEC 61048 A2

Self-healing capacitors do not require short-circuit protection for normal operation as they automatically regenerate after a dielectric breakdown. However, as a result of frequent self-healing caused by overloading (voltage, current, temperature) or towards the end of the capacitor's service life, overpressure can build up inside the capacitor (due to the decomposition products of the vaporised polypropylene).

In order to prevent the capacitor casing from exploding in such cases, hermetically sealed capacitors in accordance with IEC 61048 A2 (Type B capacitors) are fitted with an overpressure contact breaker. If excess pressure builds up within these capacitors, e.g. due to undue thermal loading or excessive voltages or at the end of the capacitor's service life, a concertina section opens out that causes the casing to expand lengthways. As a result, the wire contacts rupture at a predetermined breaking point, which irreversibly interrupts the current (contact breaker)

This type of overpressure-protected capacitor with a contact breaker is also referred to as a flame- and explosion-proof capacitor with a break-action mechanism.

Contact breaker

Assembly Instructions for Capacitors

For mounting and installing compensation capacitors

Mandatory regulations

DIN VDE 0100	Erection of low voltage installations
EN 60598	Luminaires - part 1: General requirements and tests
EN 55015	Maximum values and testing methods for radio disturbance of electrical lighting facilities and similar electrical equipment
EN 61000-3-2	Electromagnetic Compatibility (EMC) - part 3: maximum values - main section part 2: maximum values for mains harmonics (ballast input current up to and including 16 A per conductor)
EN 61048	Operating devices for lamps - capacitors for fluorescent lamp circuits and other discharge lamp circuits; general and safety requirements
EN 61049	Operating devices for lamps - capacitors for fluorescent lamp circuits and other discharge lamp circuits; performance requirements

other discharge lamp circuits; performance requirements

Mechanical mounting

Fastening Base screw (permissible torque):

- M8x10-5 Nm (aluminium casing)
- M8x10-2.2 Nm (plastic casing)

Mounting location
Any
Capacitors fitted with overpressure protection require clearance of at least 10 mm above the contacts so ensure the casing can expand unhindered if the contact breaker is triggered.

Heat transfer | Capacitors should be mounted with the greatest possible clearance to heat sources or |
| :--- |
| lamps. During operation, the temperature measured at the t_{c} point must not exceed |
| the specified maximum value. |

t_{c} point \quad| The tc point is defined as an arbitrary point on the surface of the capacitor, which is not |
| :--- |
| specifically marked. |

UV Radiation \quad| Capacitors should not be installed in an unprotected manner directly next to any sources |
| :--- |
| of light, heat radiation or convection (ballasts, lamps, heating elements, etc.) as both high |
| temperatures and constant exposure to UV radiation can lead to premature ageing. In |
| combination with high temperatures, UV radiation or other substances and influencing |
| factors, chemicals such as ozone and chlorine can lead to accelerated ageing and material |
| embrittlement. |

Thermal load All capacitor casings are made of flame-retardant materials. However, the potting material, oils and the winding material are flammable and consideration must be taken of this fact during installation. The thermal load of an MKP capacitor is approx. $40 \mathrm{MJ} / \mathrm{kg}$.

Technical Details - Capacitors for Fluorescent and Discharge Lamps

Safety functions

Type A capacitors are not fitted with any special protective functions in case of defect.
Temperature-protected capacitors are a further development of Type A capacitors and feature a thermal fuse that is triggered by excess temperatures and disconnects the capacitor from the mains.

Type B capacitors are fitted with an overpressure contact breaker in case of defects at the end of the capacitor's service life.

Connection Parallel capacitors for fluorescent lamps:

- Casing diameter 25-30 mm: push-in terminals for 0.5-1 mm^{2} conductors and IDC terminals for H05V-U 0.5 conductors
- Casing diameter > 30 mm : push-in terminals for $0.5-1 \mathrm{~mm}^{2}$ conductors

Parallel capacitors for high-pressure lamps:

- Casing diameter 25-30 mm: push-in terminals for 0.5-1 mm² conductors and IDC terminals for H05V-U 0.5 conductors
- Casing diameter $>30 \mathrm{~mm}$: push-in terminals for $0.5-1.5 \mathrm{~mm}^{2}$ conductors

Reliability and service life

Provided the max. specified voltage and current loads, temperature, humidity and mains harmonics values are observed,

- approx. 50,000 hours for overpressure-protected parallel capacitors
- approx. 30,000 hours for parallel capacitors without overpressure protection in a plastic or aluminium casing
A 3-10\% decrease in capacitance must be expected in the course of the capacitor's service life Failure rate: 1% per 1,000 operating hours when maximum voltage, current and temperature values are not exceeded.

Electrical installation

Nominal voltage	$250 \mathrm{~V}, 50 / 60 \mathrm{~Hz} ; 280 \mathrm{~V}, 50 / 60 \mathrm{~Hz} ; 450 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
	(dependent on type)

Capacitance tolerance
$\pm 10 \%$ ($\pm 5 \%$ dependent on type)

Temperature range
$-25 /-40^{\circ} \mathrm{C}$ to $+85 /+100^{\circ} \mathrm{C}$ (dependent on type, details see product page)

Optional thermal fuse

Relative humidity Class F for Type B capacitors: 75% annual mean, 95% peak value on 30 days Class G for Type A capacitors: 65% annual mean, 85% peak value on 30 days

Condensation Impermissible

Technical Details - Capacitors for Fluorescent and Discharge Lamps

Capacitors for fluorescent lamp circuits

Lamp		Parallel compensation capacitor ($\mu \mathrm{F} \pm 10 \%$ at 250 V$)$		Series compensation capacitor ($\mu \mathrm{F} \pm 4 \%$)		
$\begin{aligned} & \text { Output } \\ & \text { W } \\ & \hline \end{aligned}$	Type	$\left.\right\|_{\mu \mathrm{F}} ^{220-240 \mathrm{~V} / 50 \mathrm{~Hz}}$	$\begin{aligned} & 220-230 \mathrm{~V} / 60 \mathrm{~Hz} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 220 \mathrm{~V} / 50 \mathrm{~Hz} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} / 50 \mathrm{~Hz} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 220 \mathrm{~V} / 60 \mathrm{~Hz} \\ & \mu \mathrm{~F} \end{aligned}$
4	T	2**	2**	-	-	-
6	T	$2^{* *}$	2**	-	-	-
8	T	2**	2**	-	-	-
10	T	2	2	-	-	-
13	T	2	2	-	-	-
14	T	4.5	4.5	-	-	-
15	T	3.5 or 4 *	3 or 4*	-	-	-
16	T	2	2	-	-	-
18	T	4.5 or 4 *	4**	2.9/440 V	2.8/480 V	2.4/440 V
20	T	4.5 or 4^{*}	4**	2.9/440 V	2.8/480 V	$2.4 / 440 \mathrm{~V}$
23	T	3.5	3	-	-	-
25	T	3.5	3	-	2.3/450 V	-
30	T	4.5	4	$3 / 420 \mathrm{~V}$	2.9/450 V	-
36	T	4.5	4	$3.6 / 420 \mathrm{~V}$	$3.4 / 450 \mathrm{~V}$	$3 / 420 \mathrm{~V}$
$36-1 \mathrm{~m}$	T	6.5	-	-	-	-
38	T	4.5	4	-	-	-
40	T	4.5	4	$3.6 / 420 \mathrm{~V}$	3.4/450 V	$3 / 420 \mathrm{~V}$
42	T	6.5	-	-	-	-
58	T	7	6	$5.7 / 450 \mathrm{~V}$	5.3/450 V	4.8/420 V
65	T	7	6	$5.7 / 450 \mathrm{~V}$	5.3/450 V	$4.8 / 420 \mathrm{~V}$
70	T	6	-	-	-	-
75	T	6	-	-	-	-
80	T	9	8	-	7.2/420 V	-
85	T	8	6.5	-	8.4/420 V	-
100	T	10	9	-	-	-
115	T	18	16	-	-	-
140	T	14	14	-	-	-
160	T	14	14	-	-	-
16	T-U	2	2	-	-	-
18/20	T-U	4.5 or 4^{*}	4**	2.9/440 V	2.8/480 V	2.4/440 V
36/40	T-U	4.5	4	$3.6 / 420 \mathrm{~V}$	3.4/450 V	$3 / 420 \mathrm{~V}$
58/65	T-U	7	6	-	-	-
22	T-R	5	4.5	-	$3.2 / 440 \mathrm{~V}$	-
32	T-R	5	4.5	-	$3.4 / 450 \mathrm{~V}$	-
40	T-R	4.5	4	$3.6 / 420 \mathrm{~V}$	$3.4 / 450 \mathrm{~V}$	$3 / 420 \mathrm{~V}$
5/7/9/11	TC-S	2**	2**	-	-	-
10	TC-D/TC-T	2	2	-	-	-
13	TC-D/TC-T	2	2	-	-	-
18	TC-D/TC-T	2	2	-	-	-
26	TC-D/TC-T	3.5	3	-	-	-
10	TC-DD	2	2	-	-	-
16	TC-DD	2	2	-	-	-
21	TC-DD	3	3	-	-	-
28	TC-DD	3.5	3	-	-	-
38	TC-DD	4.5	4	-	-	-
18	TC-L/TC-F	4.5 or 4*	4**	-	-	-
24	TC-L/TC-F	4.5	4	-	-	-
34	TC-L/TC-F	4.5	4	-	-	-
36	TC-L/TC-F	4.5	4	-	-	-

*) Two lamps connected to a ballast in series **) Applies to one lamp connected to a ballast or two lamps connected in series

Technical Details - Capacitors for Fluorescent and Discharge Lamps

Capacitors for

Lamp		Compensation capacitor ($\mathrm{HF} \pm 10 \%$)			
Output	Type	220/230/240/252 V	220 V	$380 / 400 / 420 \mathrm{~V}$,	$380 \mathrm{~V} / 60 \mathrm{~Hz}$
W		$50 \mathrm{~Hz}(\mu \mathrm{~F})$	$60 \mathrm{~Hz}(\mu \mathrm{~F})$	$50 \mathrm{~Hz}(\mu \mathrm{~F})$	$60 \mathrm{~Hz}(\mu \mathrm{~F})$

high-pressure mercury vapour lamp circuits 50 HM							7	6		
80	HM	8	7							
125	HM	10	10							
250	HM	18	15							
400	HM	25	25							
700	HM	40	35							
1000	HM	60	50							

high-pressure sodium vapour lamp circuits

35	HS	6	5		
50	HS	8	8		
70	HS	12	10		
100	HS	12	10		
150	HS	20	16		
250	HS	32	25		20
400	HS	45	40		25
600	HS	65	55	25	
750	HS	70	60	25	
1000	HS	100	85		

metal halide lamp circuits

35	HI	6	5		
70	HI	12	10		
100	HI	12	10		
150	HI	20	16		
250	HI	32	25		
400	HI	$35 / 45$	$35 / 45$		
1000	HI	85	75		37
2000	HI	125	125		60
2000	HI			37	60
2000	HI			60	100
2000	HI		60		
2000	HI			100	

Capacitors for low-pressure discharge lamp circuits

Lamp Output W 35		Type		
55	LS	$230 \mathrm{~V} / 50 \mathrm{~Hz}$		
$\mu \mathrm{~F}$			\quad	90
:---				
90				

ELECTRONIC AND ELECTROMAGNETIC TRANSFORMERS

FOR LOW-VOLTAGE HALOGEN INCANDESCENT LAMPS

The operating voltage of low-voltage halogen lamps is normally 12 V 16 and 24 V are also used for special applications). As a result, transformers are required in order to connect such lamps to the normal mains supply within buildings, whereby international requirements governing building installations specify that safety transformers or converters (electronic transformers) be exclusively used for such purposes nowadays. These devices are designed in such a way as to prevent both personal injury and the outbreak of fire should the lighting system malfunction.

Electronic converters

The following chapter provides an overview of the VS range of electronic converters that feature a whole range of advantages: light and compact, superior efficiency (approx. 95\%), short-circuit protection, integrated overheating and overload protection, soft start for longer lamp life, broad part-load range and dimmability.

Electromagnetic safety transformers

The following chapter also provides an overview of Vossloh- Schwabe's range of electromagnetic transformers. The range is split into protection class II transformers and protection class I built-in transformers whose ultra-flat design make them particularly user-friendly. Lamp brightness can be regulated using conventional phase dimmers for low-voltage halogen lamps.
Independent electronic converters 290-293
Electronic built-in converters 294
Potentiometer and dimmers 295
Electromagnetic safety transformers 296-298
Technical details for incandescent lamps 360-373
General technical details 394-401Glossary402-404

Independent Electronic

Converters - LiteLine

Electronic safety converters
for low-voltage halogen incandescent lamps 12 V
Casing: heat-resistant polyamide
Mains frequency: $50-60 \mathrm{~Hz}$
Protection against "no load" operation
Protection against short-circuit:
electronic switch-off with automatic restart
Electronically controlled overload
and temperature protection
Suitable for installation in furniture
and on combustible surfaces
Power factor: > 0.95
Efficiency: $\geq 94 \%$
Dimming: optional with phase-cutting leadingedge or phase-cutting trailing-edge dimmer
Screw terminals: $2.5 \mathrm{~mm}^{2}$

$$
\text { (EST 60/12.635 primary: } 4 \mathrm{~mm}^{2} \text {) }
$$

Quantity of screw terminals:

With integrated cord grip
1×2-poles primary
1×2-poles secondary
Protection class II
SELV-equivalent
Degree of protection: IP20
RFl-suppressed

C

Type	Ref. No.	Capacity range (W)	$\begin{aligned} & \text { Voltage (V) } \\ & \text { prim. } \pm 10 \% \text {) } \end{aligned}$		Nominal current A	Ambient temperature $t_{a}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$	Drawing	Weight g
Dimensions: 22x36x 103.5 mm									
EST 60/12.635	186173	10-60	220-240	10.2-12	0.258-0.260	-20 to 45	max. 85	A	70
Dimensions: 28x37x 128 mm									
EST 70/12.380	186072	20-70	230-240	11.3-11.7	0.30-0.31	-20 to 45	max. 70	B	85
EST 105/12.381	186077	20-105	230-240	11.2-11.7	0.435-0.445	-20 to 40	max. 85	B	95
Dimensions: 33×37×185 mm									
EST 150/12.622	186098	50-150	230-240	11.2-11.6	0.595-0.605	-20 to 45	max. 85	C	175

Independent,
 Super-thin Electronic Converters - FlatLine

Electronic safety converters
for low-voltage halogen incandescent lamps 12 V
Casing: heat-resistant polyamide
Mains frequency: $50-60 \mathrm{~Hz}$
Protection against "no load" operation
Protection against short-circuit:
electronic switch-off with automatic restart
Electronically controlled overload
and temperature protection
Suitable for installation in furniture
and on combustible surfaces
Power factor: 0.98
Efficiency: 95\%
Dimming: with phase-cutting trailing-edge dimmer
Screw terminals: $2.5 \mathrm{~mm}^{2}$
Quantity of screw terminals:
1×2-poles primary
1×2-poles secondary
With integrated cord grip

Protection class II

SELV
Degree of protection: IP20
RFI-suppressed

B

Type	Ref. No.	Capacity range W	Voltage (V) prim. ($\pm 10 \%$)	sec .	Nominal current (A)	Ambient temperature ta $1{ }^{\circ} \mathrm{C}$	Casing temperature $\mathrm{tc}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Drawing	Weight g
Dimensions: 16×42x182 mm									
EST 60/12.388	179792	10-60	230	11.5	0.25	-20 to 50	max. 70	A	100
Dimensions: 18x42x182 mm									
EST 120/12.389	179793	20-120	230	11.5	0.50	-20 to 40	max. 70	B	125

Independent Electronic
 Converters - TopLine

Electronic safety converters for
low-voltage halogen incandescent lamps 12 V
Casing: heat-resistant polyamide
Mains frequency: $50-60 \mathrm{~Hz}$
Protection against "no load" operation
Protection against short-circuit:
electronic switch-off with automatic restart
Electronically controlled overload
and temperature protection
Suitable for installation in furniture
and on combustible surfaces
Power factor: ≥ 0.98
Efficiency: $\geq 94 \%$
Dimming: optional with phase-cutting leadingedge or phase-cutting trailing-edge dimmer
Screw terminals: $2.5 \mathrm{~mm}^{2}$

$$
\text { (EST 200/12.649: } 4 \mathrm{~mm}^{2} \text {) }
$$

Quantity of screw terminals:
2×2-poles primary
3×2-poles secondary
With integrated cord grip

B

Type	Ref. No.	Capacity range (W)	Voltage (V) prim. ($\pm 10 \%$)		Nominal current A	Ambient temperature $\mathrm{ta}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature $\mathrm{t}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	Drawing	Weight g
Dimensions: 31.5×42x175 mm									
EST 70/12.643	186117	20-70	230-240	11.3-11.8	0.305-0.310	-20 to 55	max. 75	A	145
EST 105/12.644	186118	20-105	230-240	11.3-11.8	0.430-0.440	-20 to 55	max. 75	A	165
Dimensions: 41×42x215 mm									
EST 150/12.645	186119	50-150	230-240	11.3-11.9	0.615-0.630	-20 to 55	max. 75	B	230
EST 200/12.649	186068	35-200	230/240	11.3/11.7	0.81/0.86	-20 to 45	max. 70	B	280

Independent Electronic
 Converters - DiscLine

Electronic safety converters
for low-voltage halogen incandescent lamps 12 V
Casing: heat-resistant polycarbonate
Mains frequency: $50-60 \mathrm{~Hz}$
Protection against "no load" operation
Protection against short-circuit:
electronic switch-off with automatic restart
Thermal cut-out with automatic reset
Suitable for installation in furniture
and on combustible surfaces
Power factor: 0.98
Efficiency: 95\%
Dimming: with phase-cutting trailing-edge dimmer
Primary lead: $2 \times 0.75 \mathrm{~mm}^{2}$,
PVC-insulation, length: $100^{+30} \mathrm{~mm}$

Secondary lead: $0.75 \mathrm{~mm}^{2}$,
PVC-insulation, length: 150 mm
Secondary lead length: max. 2 m

Protection class II

SELV
Degree of protection: IP20
RFI-suppressed

Type	Ref. No.	Capacity range W	Voltage (V) prim. ($\pm 10 \%$)		Nominal current A	Ambient temperature $\mathrm{ta}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right.$	Casing temperature tc $/{ }^{\circ} \mathrm{C}$	Drawing	
Dimensions: $\varnothing \mathbf{5 3 \times 2 2 . 2 ~ m m}$									
EST 70/12.601	186005	20-70	230	11.5	0.30	-20 to 35	max. 75	A	70
Dimensions: $\boldsymbol{\varnothing} \mathbf{7 0 \times 2 2 . 2 ~ m m}$									
EST 105/12.602	186007	35-105	230	11.5	0.43	-20 to 35	max. 70	B	100

Electronic Built-in

Converters - CapLine

Electronic built-in safety converters
for low-voltage halogen incandescent lamps 12 V
Casing: heat-resistant polyamide,
encapsulated with polyester resin

$\varnothing 60 \mathrm{~mm}$, height 65 mm
Dimensions: $30 \times 50.5 \times 61.5 \mathrm{~mm}$
Mains frequency: $50-60 \mathrm{~Hz}$
Protection against "no load" operation
Primary and secondary leads:
stranded conductors $1 \mathrm{~mm}^{2}$, Si-insulation,
\varnothing external: 2 mm , length: 170 mm
Protection against short-circuit:
electronic switch-off with automatic restart
Thermal cut-out with automatic reset
Suitable for installation in furniture
and on combustible surfaces
Power factor: 0.98
Efficiency: 94\%
Dimming: with phase-cutting trailing-edge dimmer
SELV
Degree of protection: IP54
RFI-suppressed

Type	Ref. No.	Capacity range (W	Voltage (V) prim. ($\pm 10 \%$)	sec.	Nominal current (A)	Ambient temperature t_{a} ${ }^{\circ} \mathrm{C}$	Casing temperature tc ${ }^{\circ} \mathrm{C}$	Weight g
EST 75/12G. 302	162400	20-75	230	11.5	0.32	-20 to 60	max. 85	200

Dimmers for Electronic Converters

Phase-cutting trailing-edge dimmer

Dimmer without cover plate
Dimensions: $67 \times 67 \times 51 \mathrm{~mm}$
Push-button change-over switch with stud 4 mm ,
for installation in flushtype boxes with $\varnothing 55 \mathrm{~mm}$
Output: 10-350 W
Weight: 60 g
Unit: 25 pcs.
Ref. No.: 172773

Phase-cutting leading-edge dimmer

Dimmer without cover plate
Dimensions: $67 \times 67 \times 51 \mathrm{~mm}$
Push-button change-over switch with stud 4 mm , for installation in flushtype boxes with $\varnothing 55 \mathrm{~mm}$
Output: 15-500 W
Weight: 60 g
Unit: 25 pcs.
Ref. No.: 172774

Cover plate with rotary knob

Dimensions: $80 \times 80 \times 9 \mathrm{~mm}$
Colour: white
Weight: 30 g
Unit: 10 pcs.
Ref. No.: 172775

Super-thin
 Electromagnetic

 Built-in Transformers
20-105 VA

Shape: 28×41 mm

Electromagnetic safety transformers
for low-voltage halogen incandescent lamps 12 V
Vacuum-impregnated with polyester resin
Screw terminals: 0.5-2.5 mm²
Protection class I
For these transformers without thermal cut-out, a slow-acting fuse should be installed in the wiring on site

A

B

Safety transformers											Primary fuse AT
Type	Ref. No.	Capacity range W	$50,60 \mathrm{~Hz}$	$\begin{aligned} & \hline \mathrm{zz} \\ & \hline \mathrm{Vsec} . \\ & \hline \end{aligned}$	Ambient temperature $\mathrm{t}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	Drawing	$\begin{aligned} & a \\ & m m \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	
220 V/50, 60 Hz											
STr 50/12.207	500843	35-50	220	11.5	40/B	A	175	165	83	0.73	0.250
$\mathbf{2 3 0 ~ V / 5 0 , 6 0 ~ H z ~}$											
STr 20/12.306	161781	15-20	230	11.5	60/B	A	155	140	63	0.55	0.125
STr 50/12.301	161757	35-50	230	11.5	50/B	A	195	180	92	0.80	0.250
STr 50/12.342	507181	35-50	230	11.5	40/B	A	175	165	83	0.73	0.250
STr 60/12.338	179604	40-60	230	11.5	50/F	A	195	180	92	0.80	0.315
STr 105/12.311	170002	60-105	230	11.5	30/F	B	240	230	160	1.33	0.500
$\mathbf{2 4 0 ~ V / 5 0 , 6 0 ~ H z ~}$											
STr 50/12.401	169830	35-50	240	11.5	45/B	A	195	180	92	0.80	0.250
STr 50/12.422	502592	35-50	240	11.5	40/B	A	175	165	83	0.73	0.250
STr 105/12.406	169125	60-105	240	11.5	50/H	B	240	230	160	1.33	0.500
$127 \mathrm{~V} / 60 \mathrm{~Hz}$											
STr 50/12.109	525791	35-50	127	11.5	40/F	A	155	140	63	0.55	0.500

Super-thin Electromagnetic Built-in Transformers with Thermal Cut-out 20-105 VA

Shape: $\mathbf{2 8 \times 4 1} \mathbf{~ m m}$

Electromagnetic safety transformers
for low-voltage halogen incandescent lamps 12 V
Vacuum-impregnated with polyester resin
Screw terminals: 0.5-2.5 mm²
Protection class 1
Temperature switch with self-holding protection
against overheating,
no primary fuse necessary

A

B

Type	Ref. No.	Capacity range W	$\begin{aligned} & \begin{array}{l} 50,60 \mathrm{~Hz} \\ \text { V prim. } \end{array} \quad \text { V sec. } \\ & \hline \end{aligned}$		Ambient temperature $\mathrm{t}_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	Drawing	mm	b mm	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg
$230 \mathrm{~V} / 50,60 \mathrm{~Hz}$										
STr 20/12.306	161860	15-20	230	11.5	60/B	A	155	140	63	0.55
STr 50/12.337	179444	35-50	230	11.5	50/F	A	175	165	83	0.73
STr 50/12.301	170091	35-50	230	11.5	50/B	A	195	180	92	0.80
STr 60/12.338	179608	40-60	230	11.5	50/F	A	195	180	92	0.80
STr 105/12.311	169747	60-105	230	11.5	45/F	B	240	230	160	1.33
$\mathbf{2 4 0 ~ V / 5 0 , 6 0 ~ H z ~}$										
STr 50/12.401	169748	35-50	240	11.5	45/B	A	195	180	92	0.80
STr 105/12.406	161935	60-105	240	11.5	50/H	B	240	230	160	1.33
$127 \mathrm{~V} / 60 \mathrm{~Hz}$										
STr 50/12.109	537403	35-50	127	11.5	40/F	A	155	140	63	0.55

Compact

Electromagnetic

Transformers

70-300 VA

Shape: $85 \times 85 \mathrm{~mm}$ (200 VA)
Shape: $99 \times 85 \mathrm{~mm}(300 \mathrm{VA})$

Built-in electromagnetic safety transformers
for low-voltage halogen incandescent lamps 12 V
Fully encapsulated transformer in a plastic casing
Mains frequency: $50-60 \mathrm{~Hz}$
Built-in primary fuse and temperature switch
Connections
primary: lead
secondary: screw terminals up to $6 \mathrm{~mm}^{2}$
Degree of protection: IP24

Protection class II

Suitable for installation in furniture
and on combustible surfaces

$230 \mathrm{~V} / \mathbf{5 0}, 60 \mathrm{~Hz}$

STr $200 / 12.40$	$\mathbf{5 5 4 3 2 5}$	$70-200$	230	12	40	85	70	2.9
STr $300 / 12.41$	$\mathbf{5 5 4 3 2 6}$	$150-300$	230	12	40	99	84	3.9

LOW- AND MAINS VOLTAGE LAMPHOLDERS

LAMPHOLDERS FOR HALOGEN INCANDESCENT LAMPS

As the tungsten-halogen cycle and the high lamp current can cause very high temperatures when operating low-voltage halogen lamps, close attention must be paid to the luminaire's thermal conditions and components must be made of high-grade materials.

VS lampholders for low-voltage halogen lamps

The following chapter contains Vossloh-Schwabe's comprehensive range of connection elements, lampholders and accessories for safe and reliable installation in accordance with the latest regulations and developments.

VS lampholders for mains voltage halogen lamps

The following chapter contains Vossloh-Schwabe's comprehensive range of lampholders for single-ended halogen lamps (GU/GZ10 and G9 bases), lampholders for bayonet lamps (B15d and B22d bases) as well as lampholders for double-ended tubular lamps (R7s base).
Lampholders for low-voltage halogen incandescent lamps 302-311
G4, GZ4, G5.3, GX5.3, G6.35, GY6.35 lampholders, accessories 302-303
G4 lampholders, GZ4 lamp connectors 304-306
Lampholders with separate mounting spring for GU4 lamps 306-307
GX5.3 lamp connectors 307-308
GU5.3 lampholders 308
Lampholders with separate mounting spring for GU5.3 lamps 309-310
G6.35, GY6. 35 lampholders, GZ6. 35 lamp connectors 310
G53 lamp connectors 311
B15d, BA15d lampholders 311
Lampholders for mains voltage halogen incandescent lamps 311-321
B15d, BA15d lampholders 311
G9 lampholders, accessories 312-314
GU 10, GZ 10 lampholders, accessories 314-316
R7s thermoplastic lampholders 316
R7s ceramic lampholders 317-319
R7s metal lampholders 319
Connection boxes 320
Connectors 321
Technical details for incandescent lamps 360-373
General technical details 394-401
Glossary 402-404

G4, GZ4, G5.3, GX5.3, G6.35, GY6.35 Lampholders, Accessories

For low-voltage halogen incandescent lamps

The lampholders listed in this chapter permit the use of lamps with different bases. It is important to ensure that under no circumstances a lamp
with a smaller pin diameter is used
if a lamp with a larger pin diameter
has already been used.

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: LCP, natural, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4$ - 1.8 mm
Fixing holes for screws M3
Weight: 2.4 g , unit: 1000 pcs.
Type: 33300

Ref. No.: 109547

Cover caps

For push-fit onto lampholders type 333
External thread 20.8×2
Material: LCP, natural
Moulded thread: M 10×1
Weight: 3.8 g , unit: 1000 pcs.
Type: 97255
Ref. No.: 109548

Screw rings
For components with external thread 20.8×2
Weight: $1.7 / 1.4$ g, unit: 1000 pcs.
Type: 97257
Ref. No.: 109550 PPS, black
Ref. No.: $\mathbf{5 0 7 4 9 0}$ LCP, natural

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: LCP, natural, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core \varnothing 1.4-1.8 mm
Fixing holes for screws M3
Weight: 2.6 g , unit: 1000 pcs.
Type: 33400

Ref. No.: 109674

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: steatite, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M4
Weight: 3.4 g , unit: 1000 pcs.
Type: 32210
Ref. No.: 543530

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: ceramic, cover plate: mica
T350
Nominal rating: 10/24
Contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Weight: 6.8 g , unit: 500 pcs.
Type: 32400

Ref. No.: 100939

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: ceramic, cover plate: mica
T300
Nominal rating: 10/24
Multipoint contacts: CuNiZn
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Weight: 7.1 g , unit: 1000 pcs.
Type: 32700

Ref. No.: 101258

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24
Multipoint contacts: CuNiZn
Leads: Cu nickel-plated, stranded conductors $0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing plate: zinc-coated polished steel
Fixing holes for screws M3
Weight: 8.8 g , unit: 1000 pcs.
Type: 32720

Ref. No.: 101274

G/GZ4, G/GX5.3, G/GY6.35 lampholder
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24
Multipoint contacts: CuNiZn
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing bracket: zinc-coated polished steel
Fixing holes for screws M3
Weight: 9.3 g , unit: 1000 pcs.
Type: 32730
Ref. No.: 101275

G4 Lampholders, GZ4 Lamp Connectors

For low-voltage halogen incandescent lamps

G4 lampholder, GZ4 lamp connector
Casing: PPS, black, T240
Nominal rating: 4/24, multipoint contacts: steel Leads: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,

$$
\text { Si-insulation, length: } 140 \text { mm }
$$

Option for lateral wiring
Lampholder height: 16 mm
Fixing holes for screws M3
Weight: 5.7 g , unit: 1000 pcs.
Type: 30400
Ref. No.: 530024

G4 lampholder, GZ4 lamp connector
Casing: PPS, black, T240
Nominal rating: 4/24, multipoint contacts: steel
Leads: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,
Si-insulation, length: 140 mm
Lampholder height: 12.8 mm
Fixing holes for screws M3
Weight: 5.5 g , unit: 1000 pcs.
Type: 30450
Ref. No.: 530025

G4 lampholder, GZ4 lamp connector
Casing: PPS, black, T240
Nominal rating: 4/24, multipoint contacts: steel
Leads: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,
Si-insulation, length: 140 mm
Option for lateral wiring
Lampholder height: 16 mm
For push-fit onto the lamp
Weight: 5.3 g , unit: 1000 pcs.
Type: 30460

Ref. No.: 530026

G4 lampholder, GZ4 lamp connector
Casing: PPS, black, T240
Nominal rating: 4/24, multipoint contacts: steel
Leads: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,
Si-insulation, length: 140 mm
Option for lateral and base wiring
Lampholder height: 12.8 mm
For push-fit onto the lamp
Weight: 5.1 g , unit: 1000 pcs.
Type: 30465
Ref. No.: 530027

G4 lampholders
For push-fit into lampholder support 535267
T240
Nominal rating: 2/50
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Weight: $1.5 / 1.6 \mathrm{~g}$, unit: 1000 pcs.
Type: 30800
Ref. No.: 535146 material: LCP
Ref. No.: 535263 material: PPS

Lampholder support for G4 lampholders type 30800
Material: polyamide
Base split pins for wall thickness 0.6 mm
Weight: 0.8 g , unit: 500 pcs.
Type: 95300

Ref. No.: 535267

G4 lampholders
Casing: PPS, black, T200
Nominal rating: 2/24
Contacts: Ni
Push-in terminals for stranded conductors
with ferrule on bare end of core max. $\varnothing 1.8 \mathrm{~mm}$
Weight: 4.4/5 g, unit: 1000 pcs.
Type: 32800 holes for screws M3

Ref. No.: 106248

Type: 32820 threaded bushes M3

Ref. No.: 106249

G4 lampholder
Casing: PPS, black, T200
Nominal rating: 2/24
Multipoint contacts: CuNiZn
Leads: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$, Si-insulation brown/blue, length: 140 mm
Push-in fixing
Weight: 4.4 g , unit: 1000 pcs.
Type: 30485
Ref. No.: 535988

G4 clip-in tube lampholder
With earth contact
Casing: PPS, black, T200
Nominal rating: 2/24
Multipoint contacts: CuNiZn
Lead: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,
Si-insulation blue, length: 140 mm
Push-in fixing
Weight: 2.7 g , unit: 1000 pcs.
Type: 30471
Ref. No.: 108449

G4 clip-in tube lampholder
With integrated cable holder for Teflon conductor
Casing: PPS, black, T200
Nominal rating: 2/24
Multipoint contacts: CuNiZn
Leads: Cu tinned, stranded conductors $0.61 \mathrm{~mm}^{2}$,
FEP-insulation brown/blue, length: 140 mm
Push-in fixing
Weight: 8.1 g , unit: 1000 pcs
Type: 30470

Ref. No.: 520865

G4 lampholder
Casing: PPS, black, T240
Nominal rating: 4/24
Multipoint contacts: steel
Leads: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,
Si-insulation, length: 140 mm
For push-fit onto the lamp
Weight: 4.7 g , unit: 1000 pcs.
Type: 34000
Ref. No.: 507105

路

Lampholders with Separate Mounting Spring for GU4 Lamps

For low-voltage halogen incandescent lamps

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: LCP, natural, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
For cover cap (see p. 304)
Weight: 2.4 g , unit: 1000 pcs.
Type: 33300

Ref. No.: 109547

G/GZ4, G/GX5.3, G/GY6.35 lampholder
Casing: steatite, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M4
Weight: 3.4 g , unit: 1000 pcs.
Type: 32210

Ref. No.: 543530

GU4 mounting spring for lamp
Material: stainless steel
For push-fit onto lampholders type 333 and 32210
Weight: 0.8 g, unit: 1000 pcs.
Type: 94095
Ref. No.: 109553

G/GZ4-, G/GX5.3, G/GY6.35 lampholder
Casing: ceramic, cover plate: mica
T350
Nominal rating: 10/24
Contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Weight: 6.8 g , unit: 500 pcs .
Type: 32400

Ref. No.: 100939

GU4 mounting spring for lamp
Material: stainless steel
The mounting spring has to be fastened
to the lampholder 100939.
The luminaire manufacturer is responsible
for the attachment.
Weight: 1.6 g , unit: 1000 pcs.
Type: 94071
Ref. No.: 108678

GX5.3 Lamp Connectors

For low-voltage halogen incandescent lamps

GX5.3 lamp connector
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24
Multipoint contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$1 \mathrm{~mm}^{2}$, PTFE-insulation, length: 145 mm
Fixing holes for screws M3
Weight: 13.3 g , unit: 1000 pcs.

Type: 32020
Ref. No.: 400548

GX5.3 lamp connector
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24
Multipoint contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 135 mm
Weight: 12 g , unit: 500 pcs.
Type: 32100
Ref. No.: 100877

GX5.3 lamp connectors

Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24
Multipoint contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Weight: $7.8 / 8.5 \mathrm{~g}$, unit: 500 pcs.
Type: 32600 holes for screws M3
Ref. No.: 101162
Type: 32620 threaded bushes M3
Ref. No.: 101207

GU5.3 Lampholders

For low-voltage halogen incandescent lamps

GU5.3 lampholder
Casing: ceramic, cover plate: mica
T350, nominal rating: 10/24
Contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws ST2.9
Mounting spring for lamp: stainless steel
Weight: 9.1 g , unit: 1000 pcs.
Type: 32480

Ref. No.: 106457

GU5.3 lampholders
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24, multipoint contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Mounting spring for lamp: stainless steel
Weight: $11 / 12 \mathrm{~g}$, unit: 500 pcs.
Type: 32680 holes for screws M3
Ref. No.: 101248
Type: 32690 threaded bushes M3
Ref. No.: 101253

Lampholders with Separate Mounting Spring for GU5.3 Lamps

For low-voltage halogen incandescent lamps

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: LCP, natural, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
For cover cap (see p. 304)
Weight: 2.4 g , unit: 1000 pcs.
Type: 33300
Ref. No.: 109547
G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: steatite, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M4

Weight: 3.4 g , unit: 1000 pcs.
Type: 32210
Ref. No. 543530

GU5.3 mounting spring for lamp
Material: stainless steel
For push-fit onto lampholders type 333 and 32210
Weight: 1.1 g , unit: 1000 pcs.
Type: 94096
Ref. No.: 109554

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: ceramic, cover plate: mica
T350
Nominal rating: 10/24
Contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Weight: 6.8 g , unit: 500 pcs.
Type: 32400
Ref. No.: 100939

GU5.3 mounting spring for lamp
Material: stainless steel
The mounting spring has to be fastened
to the lampholder 100939.
The luminaire manufacturer is responsible
for the attachment.
Weight: 2 g , unit: 1000 pcs.
Type: 94060
Ref. No.: 106256

G6.35, GY6.35 Lampholders, GZ6.35 Lamp Connectors

For low-voltage halogen incandescent lamps

G/GY6. 35 lampholder, GZ6. 35 lamp connector
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24
Multipoint contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Lamp fixing holes: diagonal
Weight: 11 g, unit: 500 pcs
Type: 30300
Ref. No.: 100662
G/GY6. 35 lampholder, GZ6. 35 lamp connector
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24
Multipoint contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Lamp fixing holes: axial
Weight: 12 g , unit: 500 pcs.
Type: 30350
Ref. No.: 108674

G53 Lamp Connectors

For low-voltage halogen incandescent lamps

G53 lamp connector
Casing: PPS, black
Nominal rating: 10/24
Contacts: CuNiZn
Lead: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,
Si-insulation, length: 140 mm
Fixing hole for screw M4
Lead exit: lateral
Weight: 4.4 g , unit: 1000 pcs.
Type: 33100
Ref. No.: 107694

B 15d, BA 15d Lampholders

For low-voltage and mains voltage halogen incandescent lamps

One-piece contact pins with screw terminals
to reduce voltage drop.
When using lampholders without cap it has to be ensured protection from electric shock as well
as sufficient creepage distances and clearances
from live parts on the back of lampholders.

B15d, BA15d lampholders
Casing with fixing flange: zinc-coated polished steel Insert: ceramic, T230
Nominal rating: 8/250
Fixing holes for screws M3
Weight: 15/16 g, unit: 500 pcs.
Type: 78100
Ref. No.: 102923
Type: 78101 with earth terminal
Ref. No.: 102925

B15d, BA15d lampholder

Casing: zinc-coated polished steel
Insert: ceramic, T230, nominal rating: 8/250
With earth terminal
Cover cap: PBT GF, max. $180^{\circ} \mathrm{C}$
External thread 28×2 IEC 60399
For E 14 metal screw rings
Weight: $17 / 11.5 \mathrm{~g}$, unit: 500 pcs .
Type: 78201

Ref. No.: 106513 insert

Ref. No.: 106583 cap M 10×1

G9 Lampholders, Accessories

For mains voltage halogen incandescent lamps

For luminaires of protection class II

G9 lampholde

Casing: ceramic, cover plate: LCP, natural T300, nominal rating: 2/250
Push-in twin terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Weight: 7.5 g , unit: 1000 pcs
Type: 33800
Ref. No.: 509357

G9 lampholder
Casing: ceramic, T300, nominal rating: 2/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, double PTFE-insulation,
length: 180 mm
Weight: 12.8 g , unit: 1000 pcs.
Type: 33906
Ref. No.: 532610

Metal bracket with nipple
For G9 lampholders type 338/339
Material: zinc-coated steel
Female nipple: $\mathrm{M} 10 \times 1$
Weight: 7.8 g , unit: 1000 pcs.
Type: 94455
Ref. No.: 520880

Metal brackets

For G9 lampholders type 338/339
Material: zinc-coated steel
Fixing holes for screws M3
Weight: $1.5 / 3.5 \mathrm{~g}$, unit: 1000 pcs.

Cover cap for G9 lampholders type 338/339
Material: LCP
External thread 20.8×2
Moulded thread: $\mathrm{M} 10 \times 1$
Weight: 3.2 g , unit: 1000 pcs.
Type: 97760

Ref. No.: 525583

G9 lampholder with external thread 20.8×2
Casing: steatite, T300
Nominal rating: 2/250
For luminaires of protection class II
Push-in twin terminals for stranded conductors with ferrule on bare end of core $\varnothing 1.5-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 14.5 g , unit: 500 pcs .
Type: 33890

Ref. No.: 535610

G9 lampholders with external thread 20.8×2
Casing: LCP, nominal rating: 2/250
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M2.5
Bayonet fixing for cover caps
Weight: 8.6/8.2/6 g, unit: 1000 pcs.
Type: 33700/33710
Ref. No.: 506398

Ref. No.: 508306 insert: LCP, natural, T270
Screw rings
For components with external thread 20.8×2
Weight: $1.7 / 1.4$ g, unit: 1000 pcs.
Type: 97257
Ref. No.: 109550
PPS, black
Ref. No.: 507490 LCP, natural

Metal screw rings

For components with external thread 20.8×2
Material: zinc-coated polished steel
Weight: $1.6 / 2 \mathrm{~g}$, unit: 1000 pcs.
Type: $93034 \varnothing 27 \mathrm{~mm}$, height: 7 mm

Ref. No.: 509110

Type: $93035 \varnothing 27$ mm, height: 11 mm
Ref. No.: 509118

G9 lampholder
Casing: ceramic, cover plate: LCP, natural T270, nominal rating: 2/250
Push-in twin terminals for stranded conductors with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 14.4 g , unit: 1000 pcs.
Type: 33500
Ref. No.: 502004

Cover caps for G9 lampholder 502004
Material: LCP, natural
External thread 28×2 IEC 60399
Fixing holes for screws M3
Weight: $8.7 / 4.6 \mathrm{~g}$, unit: 1000 pcs .
Type: 83310 female nipple: $\mathrm{M} 10 \times 1$

Ref. No.: 505951

Type: 97268 moulded thread: $\mathrm{M} 10 \times 1$
Ref. No.: 501942

Screw ring
For components with external thread 28×2
Material: PPS, black
$\varnothing 34 \mathrm{~mm}$, height: 7.5 mm
Weight: 1.9 g , unit: 1000 pcs.
Type: 05202
Ref. No.: 502503

GU 10, GZ 10 Lampholders, Accessories

For mains voltage halogen incandescent lamps

GU10, GZ 10 lampholders
Casing: LCP, natural, T270, nominal rating: 2/250
Push-in twin terminals for stranded conductors with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3

Weight: 7 g , unit: 1000 pcs.
Type: 31000/31010
Ref. No.: 108979 GU10, GZ10 lampholder
Ref. No.: 109007 GU 10 lampholder

GU10, GZ 10 lampholders
For luminaires of protection class II
Casing: LCP, natural, T270, nominal rating: 2/250
Push-in twin terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 8 g , unit: 1000 pcs.
Type: 31020/31030
Ref. No.: 502111 GU10, GZ10 lampholder
Ref. No.: 502112 GU 10 lampholder

Cover cap for GU10, GZ 10 lampholders type 310
Material: PA GF, black
Moulded thread: M10x1
Fixing holes for screws M3
Weight: 3.4 g , unit: 1000 pcs.
Type: 97244
Ref. No.: 109411

Cover cap for lampholders 502111/502112
External thread 32×2
Material: LCP, natural
Moulded thread: M 10x1
Weight: 6 g , unit: 1000 pcs.
Type: 97320
Ref. No.: 502064

Screw ring
For components with external thread 32×2
$\varnothing 38.9 \mathrm{~mm}$, height: 7.5 mm
Material: PPS, black
Weight: 2.3 g , unit: 1000 pcs.
Type: 97282
Ref. No.: 502416

GU10, GZ 10 lampholders
Casing: steatite, cover plate: PPS
T240, nominal rating: 2/250
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.5-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: $13.6 / 14 \mathrm{~g}$, unit: 500 pcs.
Type: 31755/31705
Ref. No.: 535034 GU10, GZ10 lampholder
Ref. No.: 535032 GU 10 lampholder

Cover caps for lampholders type 315/317
Material: PBT GF
Front fixing holes for self-tapping
screws acc. to ISO 1481/7049-ST2.9-C/F
Cord grip: twist and block (for single-core leads)
Rear lead exit: max. $\varnothing 2.5 \mathrm{~mm}$
Weight: 6.9 g , unit: 500 pcs.
Type: 97765
Ref. No.: 536164 black
Ref. No.: 543615 grey

GU/GZ10 Lampholder set
For luminaires of protection class II
Casing lampholder: steatite, cover plate: PPS
T240, nominal value: $2 / 250$
Cover cap with cord grip: PBT GF
Leads: Cu, stranded conductors
$0.5 \mathrm{~mm}^{2}$, double FEP-insulation, length: 150 mm
Weight: 25 g , unit: 500 pcs.
Type: 31760
new Ref. No. 554662

R7s Thermoplastic Lampholders

For mains voltage halogen incandescent lamps

R7s lampholders
Casing: LCP, black, T270
Contact pin: Ni, nominal rating: 2/250
Lead: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 300 mm
Fixing holes for screws M4
Weight: 15.5 g , unit: 25 pcs.
Type: 31690 lead exit right
Ref. No.: 504296
Type: 31691 lead exit left
Ref. No.: 504297

R7s Ceramic Lampholders

For mains voltage halogen incandescent lamps

The luminaire design must ensure protection from electric shock as well as sufficient creepage distances and clearances from live parts on the back of lampholder.

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
With fixing screw M4
Weight: 25.4 g , unit: 400 pcs.
Type: 32300

Ref. No.: 100912

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M3/M4
Central hole for screw M4
Weight: 59.3 g, unit: 200 pcs.
Type: 32390 contact distance: 74.9 mm

Ref. No.: 107213

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M3/M4
Central hole for screw M4
Weight: 61 g , unit: 200 pcs.
Type: 32391 contact distance: 74.9 mm

Ref. No.: 107214

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M3/M4
Central hole for screw M4
Weight: 61.3 g, unit: 200 pcs.
Type: 32395 contact distance: 74.9 mm
Ref. No.: 107215

If the central hole on the bracket is used for fixing there must be a support within the luminaire to ensure that the bracket cannot be deformed.

10

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu , silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central hole for screw M4
Weight: 64.9 g , unit: 200 pcs.
Type: 32310 contact distance: 114.2 mm

Ref. No.: 107195

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu , silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central threaded bush M4
Weight: 66.5 g , unit: 200 pcs.
Type: 32320 contact distance: 114.2 mm
Ref. No.: 107194

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central hole for screw M4
Weight: 65.4 g, unit: 200 pcs.
Type: 32340 contact distance: 114.2 mm

Ref. No.: 107193

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 66.7 g, unit: 200 pcs.
Type: 32360 contact distance: 114.2 mm

Ref. No.: 107192

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 71.3 g, unit: 200 pcs.
Type: 32380 contact distance: 114.2 mm
Ref. No.: 109497

Protection cap for R7s lampholders
For push-fit onto lampholders type 323
Protection against electrical shock
on the rear side of the lampholder
Lampholder with assembled protection cap on request
Material: LCP, natural
Weight: 0.7 g , unit: 1000 pcs.
Type: 97528
Ref. No.: 507592

R7s Metal Lampholders

For mains voltage halogen incandescent lamps

R7s lampholder
Casing: Al, T300, contact pin: Ni
Nominal rating: 10/250
Lead: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 300 mm
Fixing flange
Fixing holes for screws M4
Weight: 21 g , unit: 50 pcs.
Type: 30023

Ref. No.: 100616

R7s lampholder
Casing: Al, T300, contact pin: Cu, silver bulb
Nominal rating: 10/250
Lead: Cu nickel-plated, stranded conductors
$1 \mathrm{~mm}^{2}$, PTFE-insulation, length: 300 mm
Fixing flange
Fixing holes for screws M3
Weight: 15.7 g , unit: 1000 pcs
Type: 30523
Ref. No.: 100710

R7s lampholder

Casing: Al, T300, contact pin: Cu, silver bulb
Nominal rating: 10/250
Lead: Cu nickel-plated, stranded conductors
$1 \mathrm{~mm}^{2}$, PTFE-insulation, length: 350 mm
Fixing bracket
Fixing holes for screws M4
Weight: 24.8 g , unit: 500 pcs .
Type: 30550

Ref. No.: 100720

Connection Boxes

For connecting downlights in false ceilings according to standards
The luminaire manufaturer is responsible for the right choice of accessories.

Connection box

Material: PC, black
Split pins for wall thickness $0.5-1.5 \mathrm{~mm}$
With integrated 2-pole terminal block and
contact bushings: $2.5 \mathrm{~mm}^{2}$
With cord grip
Weight: 18 g , unit: 500 pcs.
Type: 85007
Ref. No.: 108940

Connection boxes
Material: PA, black
With integrated 2-pole terminal block for leads
with cross-section: 0.5-2.5 mm²
Cord grip on primary side for leads H03VV-F/H05VV-F ($\varnothing 5-7 \mathrm{~mm}$) and single-core \varnothing 3-7 mm
Cord grip on secondary side for
single-core Teflon leads up to $\varnothing 3 \mathrm{~mm}$ and single-core PVC leads up to $\varnothing 2.2 \mathrm{~mm}$
Weight: 21.8/20.1 g, unit: 500 pcs.
Type: $85011 / 85012$ plastic bracket
with locking screw
Ref. No. 543048
Ref. No.: 543049230 V
Type: 85013/85014 for fixing screw
Ref. No.: 54305312 V
Ref. No.: 543054230 V

Connection boxes
With plastic bracket with locking screw
Material: PA, black
With integrated 3-pole terminal block for leads with cross-section: $0.75-4 \mathrm{~mm}^{2}$
Cord grip on primary side for leads $\varnothing 2.5$ - 11 mm
Cord grip on secondary side for
single-core Teflon leads up to $\varnothing 1.8 \mathrm{~mm}$ and single-core PVC leads up to $\varnothing 2.2 \mathrm{~mm}$
Weight: 28.7 g , unit: 500 pcs.
Type: 85015/85016
Ref. No.: 54305812 V
Ref. No.: 543059230 V

Application examples for connection box

Connectors

Modular system for various assembly options
Connectors can be delivered pre-assembled
with lampholder and lead assemblies

Male and female plug
Nominal rating: 7/600
For cable: 0.3-0.9 mm²
For crimping on the end of lead
Material: brass, tinned
Weight: 0.1 g , unit: 5000 pcs.
Type: 93088 male plug

Ref. No.: 505251

Type: 93089 female plug
Ref. No.: 506807

Male and female casing
For male and female plug
For push-fit assembly
Material: PA, natural
Weight: $0.8 / 1 \mathrm{~g}$, unit: 2500 pcs.
Type: 97355 male casing
Ref. No.: 509295 UL94V-O
Ref. No.: 508562 UL94V-2
Type: 97356 female casing
Ref. No.: 509296 UL94V-O
Ref. No.: 508563 UL94V-2

LAMPHOLDERS MADE OF THERMOPLAS TICS, METAL AND PORCELAIN

LAMPHOLDERS FOR GENERALSERVICE INCANDESCENT AND RETROFIT LAMPS

The general-service light bulb owes its name to its bulbous shape, which has remained almost unchanged to this day. The tungsten filament contained within the bulb's glass shell, in which there used to be a vacuum but which is nowadays more usually filled with an inert gas, begins to glow as electricity is passed through it. Despite the considerable technical progress that has been made, the typical disadvantages associated with light bulbs still remain. For instance, incandescent lamps mainly radiate heat with no more than 5-10\% light output and have a service life of approx. 1000 operating hours.

As a result of energy-efficiency regulations in the various regions of the world, the use of all-purpose incandescent lamps has been limited or even banned. Nonetheless, thanks to the many different shapes and surfaces of lamp bulbs, all-purpose incandescent lamps still have a firm place in decorative residential lighting applications and are often an important feature of luminaire designs. Retrofit lamps that comply with energy-efficiency regulations are increasingly being used as a replacement for all-purpose incandescent lamps and use the same lampholder systems found with E12/E14, E26/E27, E39/E4O, B15d and B22d bases.

VS lampholders for general-service incandescent and

 retrofit lampsDepending on the operating conditions, lampholders can be made of thermoplastics, metal or porcelain. Metal lampholders are most often used for high-grade decorative luminaires. In accordance with protection class I, metal lampholders must be included in the measures taken to earth the luminaire.

Due to their heat resistance, Edison lampholders made of porcelain are frequently used for higher-output lamps. Classic lampholder materials like metal and porcelain are increasingly being displaced by modern thermoplastics.
E 14 lampholders 324-333
E 14 thermoplastic lampholders, one-piece and cover caps 324-328E 14 table lamp set
E14 thermoplastic lampholders, three-piece 329-331329E 14 metal lampholders, three-piece
332
E 14 thermoplastic rocker switch lampholders 333
E 14 lampholder for emergency lighting 333
E27 lampholders 334-350
E27 thermoplastic lampholders, one-piece and cover caps 334-338
E27 table lamp set 339
E27 renovation kit lampholders 339
E27 thermoplastic lampholders, three-piece 340-342
E27 porcelain lampholders 343-344
E27 metal lampholders, three-piece 345
E27 thermoplastic pull-switch lampholders 346-347
E27 metal pull-switch lampholders 347-348
E27 thermoplastic rocker switch lampholders 348-349
E27 thermoplastic rotary switch lampholders 349
E27 festoon lampholders 350
B22d lampholders, accessories 351-352
Accessories for E14, E27 and B22d lampholders 352-358
E40 porcelain lampholders 358-359
Technical details for incandescent lamps 360-373
General technical details 394-401
Glossary 402-404

E 14 Thermoplastic Lampholders, One-piece

For incandescent lamps with base E 14

E 14 lampholders with temperature marking
T180 on request.
Brass-finished versions are available on request.

E 14 lampholders, for cover caps
Plain casing
Casing: PET GF, T210, nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Weight: $11.3 / 11.4$ g, unit: 1000 pcs.
Type: 64001
Ref. No.: 109384 white
Ref. No.: 109383 black

E 14 lampholders, for cover caps
External thread 28×2 IEC 60399
Casing: PET GF, T210, nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Weight: $12.5 / 12.2 \mathrm{~g}$, unit: 1000 pcs.
Type: 64101
Ref. No.: 109387
Ref. No.: 109386 black

E 14 lampholders, for cover caps
External thread 28×2 IEC 60399, with flange
Casing: PET GF, T210, nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Weight: 12.7 g , unit: 1000 pcs.
Type: 64201
Ref. No.: 503924
white
Ref. No.: 503923 black

E14 lampholders, for cover caps
Profiled shape, short external thread 28×2 IEC 60399
Casing: PET GF, T210, Nominal rating: $2 / 250$
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Weight: $8.5 / 8.4 \mathrm{~g}$, unit: 1000 pcs .
Type: 64370
Ref. No.: 546456 white
Ref. No.: 546454 black

E 14 lampholders
Profiled shape, short external thread 28×2 IEC 60399
Casing: PET GF, T210, nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
For clipping-in
Weight: $6.6 / 6.8 \mathrm{~g}$, unit: 1000 pcs .
Type: 64360

Ref. No.: 506247 white

Ref. No.: 506249 black

E 14 lampholders
Profiled shape, nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Lateral push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$
for wall thickness 0.6-1.3 mm
Tilt of lamp axis: 6°
For cover cap 503579 (see p. 325)
Weight: $9.1 / 9.2 \mathrm{~g}$, unit: 1000 pcs.
Type: 64307
Ref. No.: 108983 PBT GF, white, T180
Ref. No.: $\mathbf{5 0 9 2 6 3}$ PET GF, natural, T210

E 14 lampholder
Profiled shape
Casing: PET GF, white, T210
Nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
For insertion, clipping-in or bayonet fixing
for plastic cut-out: $\varnothing 27.5 \mathrm{~mm}$
with wall thickness: 2.5 mm
Weight: 7.1 g , unit: 1000 pcs.
Type: 64308
Ref. No.: 533820

Cover Caps

For E14 thermoplastic lampholders, one-piece

Brass-finished versions are available on request.

Cover cap for lampholders type 64307
For luminaires of protection class II
Material: PP, white
Weight: 2.4 g , unit: 1000 pcs.
Type: 97322
Ref. No.: 503579

Cover caps
Material: PA GF
Female nipple: $\mathrm{M} 10 \times 1$
Weight: 7.6/8.8 g, unit: 1000 pcs.
Type: 85075
Ref. No.: 109110 white
Ref. No.: 109112 black

Cover caps

Material: PA GF
Moulded thread: $\mathrm{M} 10 \times 1$
Rotation stop: external
Weight: 2.7 g , unit: 1000 pcs.
Type: 97636
Ref. No.: 109676 white
Ref. No.: 109677 black

$\begin{array}{ll}\text { Ref. No.: } 400818 & \text { white } \\ \text { Ref. No.: } 400817 & \text { black }\end{array}$

Cover caps

Height: 19 mm
Material: PA GF
Moulded thread: M10x1
Rotation stop: external
Weight: 3.2/3.1 g, unit: 1000 pcs.
Type: 97705
Ref. No.: 520733
white
Ref. No.: 520734 black

Cover caps
Height: 19 mm
Material: PA GF
Moulded thread: M10x1
Rotation stop: external
With locking screw
Weight: $3.6 / 3.5 \mathrm{~g}$, unit: 1000 pcs.
Type: 85074
Ref. No.: 520735 white
Ref. No.: 520736 black

Cover caps
Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: internal and external
Weight: 4.3 g , unit: 1000 pcs.
Type: 97666
Ref. No.: 109119 white
Ref. No.: 109120 black

Cover caps
Material: PA GF
Profiled hole: $\varnothing 10.5 \times 8.6 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 4.4/4.3 g, unit: 1000 pcs.
Type: 97635
Ref. No.: 109122
Ref. No.: 109123 black

Cover cap
Material: PA GF
Profiled hole: $\varnothing 10.4 \mathrm{~mm}$
Rotation stop: internal and external
Weight: 4 g, unit: 1000 pcs.
Type: 97697
Ref. No.: 109126 black

Cover caps
Height: 19 mm
Material: PA GF
Profiled hole: $\varnothing 10.4 \mathrm{~mm}$
Rotation stop: internal and external
Weight: 2.7 g , unit: 1000 pcs.
Type: 97708
Ref. No.: 520759 white
Ref. No.: 520760 black

Cover caps

With peg
With integrated cord grip
For leads H03VVH2-F 2×0.75
Material: PA GF
Weight: 4.2/4.3 g, unit: 1000 pcs.
Type: 97000
Ref. No.: 503457 white
Ref. No.: 503458 black

Cover cap
With male nipple: M 10×1
With rotation stop
With integrated cord grip
For leads HO3VVH2-F 2×0.75
Material: PA GF, white
Weight: 4.1 g , unit: 1000 pcs.
Type: 97037
Ref. No.: 508067

Cover cap
External thread 28×2 IEC 60399
With integrated cord grip
For leads HO3VVH2-F 2×0.75
Material: PA GF, natural
Weight: 5.5 g , unit: 1000 pcs.
Type: 97427

Ref. No.: 509340

Cover cap
Lateral push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$
For luminaires of protection class II
Material: PA GF, white
Weight: 4.3 g , unit: 1000 pcs.
Type: 97745
Ref. No.: 546006

Cover cap
With central positioning stud
Material: PA GF
Fixing holes for countersunk screws $\varnothing 3 \mathrm{~mm}$
Weight: 3 g , unit: 1000 pcs.
Type: 91522
Ref. No.: 535357

Table Lamp Set

For E14 lampholders, one-piece

For E14 lampholders type 64001 (s. p. 324)
For glass with hole: $\varnothing 40-45 \mathrm{~mm}$
Material: PA

Ref. No.: 534087

Screw ring for fixing insert
External thread 38×2.5
Weight: 3.4 g , unit: 500 pcs.
Type: 97701
Ref. No.: 534088 natural

Cover cap for E14 lampholders
Suitable for fixing insert 534087
With cord grip for lead H03VVH2-F
Weight: 3.4 g , unit: 1000 pcs.
Type: 97692
Ref. No.: 534089
white

E 14 Thermoplastic Lampholders, Three-piece

For incandescent lamps with base E14

Nominal rating: 2/250
Temperature marking: T190
Brass-finished versions are available on request.

Plain casings
Material: PET GF
Weight: 9/8.5 g, unit: 1000 pcs.
Type: 81093
Ref. No.: 103415 white
Ref. No.: 103414 black

Threaded casings 28×2 IEC 60399
Material: PET GF
Weight: 9.8/9.6 g, unit: 1000 pcs.
Type: 81109
Ref. No.: 103431 white
Ref. No.: 103430 black

Threaded casings 28×2 IEC 60399
With flange
Material: PET GF
Weight: $10.6 / 10.4 \mathrm{~g}$, unit: 1000 pcs.
Type: 81120
Ref. No.: 103443
white
Ref. No.: 103442 black

Caps
Material: PA GF
Female nipple: M10x1
Height: 13.7 mm
Weight: 6.9/7.2 g, unit: 1000 pcs.
Type: 81002
Ref. No.: 109102 white
Ref. No.: 109103 black

Caps

Material: PA GF
Female nipple: $\mathrm{M} 10 \times 1$
Height: 18.7 mm
Weight: $7 / 7.3 \mathrm{~g}$, unit: 1000 pcs.
Type: 81024
Ref. No.: 109805
white
Ref. No.: 109145 black

Caps

Material: PA GF
Moulded thread: M 10x1
Rotation stop: external
Height: 13.7 mm
Weight: $3.3 / 3.7 \mathrm{~g}$, unit: 1000 pcs .
Type: 96159
Ref. No.: 109095 white
Ref. No.: 109084 black

Caps

Material: PA GF
Moulded thread: M10xl
Rotation stop: external
Height: 18.7 mm
Weight: $3.6 / 3.9 \mathrm{~g}$, unit: 1000 pcs .
Type: 96211

Ref. No.: 109149 white

Ref. No.: 109150 black

Caps

Material: PA GF
Moulded thread: M10x1
Rotation stop: external
With locking screw
Height: 13.7 mm
Weight: $3.7 / 4 \mathrm{~g}$, unit: 1000 pcs.
Type: 81130

Ref. No.: 109041
 white

Ref. No.: 109054 black

Caps

Material: PA GF
Moulded thread: M 10x1
Rotation stop: external
With locking screw
Height: 18.7 mm
Weight: $3.9 / 4.3 \mathrm{~g}$, unit: 1000 pcs .
Type: 81132
Ref. No.: 109152 white
Ref. No.: 109153 black

Caps

Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: internal
Height: 13.7 mm
Weight: 3.3 g , unit: 1000 pcs.
Type: 96004
Ref. No.: 508352 white
Ref. No.: 508353 black

E14 Metal Lampholders, Three-piece

For incandescent lamps with base E 14

Nominal rating: 2/250
Temperature marking: T190/T240
Type: 513 plain casing
Type: 514 threaded casing 28×2

Insert

Material: porcelain, white
Casing lock
Screw terminals: 0.5-2.5 mm²
Weight: 10.3 g , unit: 500 pcs .
Type: 83142

Plain casings
Material: zinc-coated polished steel
Weight: 14.3/14.2/18.3/18.2 g
Unit: 500 pcs.
Type: 81019 insulating threaded ring: duroplastic, T190
Ref. No.: 103359 chrome-finish
Ref. No.: 103360 brass-finish

Type: 81018 insulating threaded ring: steatite, T240

Ref. No.: 507049
 chrome-finish

Ref. No.: 507050
brass-finish

Threaded casings 28×2 IEC 60399
Material: zinc-coated polished steel
Weight: 14.4/14.4/18.9/18.9 g
Unit: 500 pcs.
Type: 81022 insulating threaded ring: duroplastic, T190
Ref. No.: 103365 chrome-finish
Ref. No.: 103366 brass-finish
Type: 81017 insulating threaded ring: steatite, T240
Ref. No.: 507052 chrome-finish
Ref. No.: $\mathbf{5 0 7 0 5 3}$ brass-finish

Caps

Material: zinc-coated polished steel
Female nipple: $M 10 \times 1$
Weight: 7.2/7.1/7.9/7.8 g
Unit: 500 pcs.
Type: 80006

Ref. No.: 102946
Ref. No.: 102947
Type: 80003 with earth terminal
Ref. No.: 102938
Ref. No.: 102939
chrome-finish
brass-finish

E 14 Thermoplastic Rocker Switch Lampholders

For incandescent lamps with base E 14

Nominal rating: 2/250
Temperature marking: T160
Suitable casings see page 330:
Type: 81093 plain casing
Type: 81109 threaded casing 28×2
Type: 81120 threaded casing 28×2, with flange

E 14 Lampholder for Emergency Lighting

For incandescent lamps with base E 14

E14 lampholder, nominal rating: 2/250
For emergency lighting acc. to
DIN VDE 0711 part 2-22/EN 60598-2-22
Casing: FS 181 SG, white
Screw terminals: max. $10 \mathrm{~mm}^{2}$
With cord grip for leads max. $\varnothing 7.5 \mathrm{~mm}$,
after turn of cord grip for leads max. $\varnothing 12 \mathrm{~mm}$
"Green dot" sticker enclosed
Weight: 49 g, unit: 200 pcs.
Type: 52001
Ref. No.: 101910

10

E27 Thermoplastic Lampholders, One-piece

For incandescent lamps with base E27

E27 lampholders with temperature marking
T180 on request.
Brass-finished versions are available on request.

E27 lampholders, for cover caps
Plain casing
Casing: PET GF, T210
Nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Weight: 17.4 g , unit: 500 pcs.
Type: 64401
Ref. No.: 108936 white
Ref. No.: 500810 black

E27 lampholders, for cover caps
External thread 40×2.5 IEC 60399
Casing: PET GF, T210
Nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Weight: $19.1 / 18.8 \mathrm{~g}$, unit: 500 pcs .
Type: 64501
Ref. No.: 108965
white
Ref. No.: 109429 black

E27 lampholders, for cover caps
External thread 40×2.5 IEC 60399, with flange
Casing: PET GF, T210
Nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Weight: 21.4 g , unit: 500 pcs.
Type: 64601

Ref. No.: 501358

white
Ref. No.: 501356 black

E27 lampholders, for cover caps
Profiled shape, external thread 40×2.5 IEC 60399
Casing: PET GF, T210, nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $14.8 / 14.9 \mathrm{~g}$, unit: 500 pcs .
Type: 64719

Ref. No.: 504303

white
Ref. No.: 504302
black

E27 lampholders, for cover caps
Profiled shape, external thread 40×2.5 IEC 60399
Casing: PET GF, T210, nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $11.4 / 11.3 \mathrm{~g}$, unit: 500 pcs .
Type: 64775
Ref. No.: 506255 white
Ref. No.: 506257 black

E27 lampholders
Profiled shape, plain, nominal rating: 4/250
Screw terminals: 0.5-2.5 mm²
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $11.7 / 11.5 / 13 \mathrm{~g}$, unit: 500 pcs.
Type: 64785
Ref. No.: 506263 PET GF, white, T210
Ref. No.: $\mathbf{5 0 6 2 6 5}$ PET GF, black, T210
Ref. No.: 506267 LCP, natural, T270

E27 lampholders

For cover caps type 97545/80023 (see p. 337)
Profiled shape, plain, nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $11.5 / 14.9 \mathrm{~g}$, unit: 500 pcs.
Type: 64770
Ref. No.: 108953 PET GF, natural, T210
Ref. No.: 109838 LCP, natural, T270

E27 lampholder

For luminaires of protection class II
Profiled shape, plain
Casing: PET GF, white, T210
Nominal rating: 4/250
Screw terminals: 0.5-2.5 mm²
Lateral fixing hole for screw M4
Tilt of lamp axis: 3°
Weight: 15.2 g , unit: 500 pcs .
Type: 64781

Ref. No.: 503041

E27 lampholders
Profiled shape, plain
Casing: PET GF, T210
Nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Lateral fixing hole for screw M4
Tilt of lamp axis: 3°
Weight: 13.3 g , unit: 500 pcs.
Type: 64740
Ref. No.: 108747
white
Ref. No.: 529599 natural

E27 lampholder

Profiled shape, external thread 40×2.5 IEC 60399
Casing: PET GF, natural, T210, nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Lateral push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$
Fixing clips for wall thickness 0.4 - 1 mm
Tilt of lamp axis: 12°
For cover cap 504615 (see below)
Weight: 14.7 g , unit: 500 pcs.
Type: 64741

Ref. No.: 108758

Cover Caps

For E27 thermoplastic lampholders, one-piece and for B22d thermoplastic lampholders

Cover cap for lampholder 108758 (see above)
For luminaires of protection class II
Material: PA GF, white
Weight: 2.7 g , unit: 500 pcs.
Type: 97321

Ref. No.: 504615

Protection caps for E27 lampholders with
bracket with earth connection 400772 (s. p. 355)
For lampholder type 64770/64785 (s. p. 335)
For luminaires of protection class II
Material: PA GF, natural
Weight: 4.8 g , unit: 500 pcs.
Type: 97497

Ref. No.: 526886

Type: 97498 fixing hole: $\varnothing 10 \mathrm{~mm}$
Ref. No.: 529464

Cover caps
Material: PA GF
Female nipple: $\mathrm{M} 10 \times 1$
Weight: 9.6/9.9 g, unit: 500 pcs.
Type: 85070
Ref. No.: 109077 white
Ref. No.: 109092 black

Cover caps

Material: PA GF
Moulded thread: M 10x1
Cross groove for rotation stop: external
Weight: 4.4/4.6 g, unit: 500 pcs.
Type: 97665
Ref. No.: 109679 white
Ref. No.: 109680 black

Cover caps
Material: PA GF
Moulded thread: $\mathrm{M} 10 \times 1$
Cross groove for rotation stop: external
With lateral hole
Weight: 4/4.6 g, unit: 500 pcs.
Type: 97664
Ref. No.: 109795 white
Ref. No.: 109794 black

Cover caps

Material: PA GF
Moulded thread: M 10x1
Cross groove for rotation stop: external
With locking screw
Weight: $4.7 / 4.9$ g, unit: 500 pcs.
Type: 85077
Ref. No.: 400819 white
Ref. No.: 400820 black

Cover caps

For E27 lampholders type 64770
Material: PA GF, black
Moulded thread: M 10x1
Cross groove for rotation stop: external
Weight: $3.1 / 3.4 \mathrm{~g}$, unit: 500 pcs.
Type: 97545

Ref. No.: 532390

Type: 80023 with locking screw
Ref. No.: 532391

Cover caps
Material: PA GF
Profiled hole: $\varnothing 10.4$ mm
Rotation stop: internal and external
Weight: $5.7 / 5.9 \mathrm{~g}$, unit: 500 pcs .
Type: 97698
Ref. No.: 109560 white
Ref. No.: 109184 black

Cover caps
Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: external
Fixing holes for screws M4
Weight: $5.4 / 5.5 \mathrm{~g}$, unit: 500 pcs.
Type: 97511
Ref. No.: 109045
Ref. No.: 109062 black

Cover caps

Conical shape
Material: PA GF
Moulded thread: M 10×1
Cross groove for rotation stop: external
Weight: 8.9/8.8 g, unit: 500 pcs.
Type: 97260
Ref. No.: 109555 white
Ref. No.: 109556 black

Cover caps

Conical shape
Material: PA GF
With integrated cord grip
For leads H03VV-F 2 XO .5 or
H03VV-F 2X0.75
Weight: $10.6 / 10.5 \mathrm{~g}$, unit: 500 pcs .
Type: 83282
Ref. No.: 109159
white
Ref. No.: 109462 black

Cover cap for lampholder 102624 (see p. 344)
With cord grip for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Cord grip for luminaires of protection class II
Material: PA GF, black
Weight: 12.5/2.2 g, unit: 500 pcs.
Type: 96206 cover cap

Ref. No.: 107178

Type: 96242 cord grip
Ref. No.: 107177

Cover caps
Material: PA GF
With integrated cord grip
For leads H03VV-F 2 XO .5 or
H03VV-F 2X0.75
Weight: 6.6/5.8 g, unit: 500 pcs.
Type: 83283
Ref. No.: 504769
white
Ref. No.: 507075 black

Table Lamp Set

For E27 lampholders, one-piece

For E27 lampholders type 64401 (s. p. 334)
For glass with hole: $\varnothing 40-45 \mathrm{~mm}$
Material: PA

Fixing insert for cover cap 534090
For glass with hole: $\varnothing 40-45 \mathrm{~mm}$, wall thickness: 3-10 mm
Weight: 6.9 g , unit: 500 pcs.
Type: 97658
Ref. No.: 534087 natural

Screw ring for fixing insert
External thread 38×2.5
Weight: 3.4 g , unit: 500 pcs .
Type: 97701
Ref. No.: 534088 natural

Cover cap for E27 lampholders
Suitable for fixing insert 534087
With cord grip for lead H03VVH2-F
Weight: 5.4 g , unit: 500 pcs.
Type: 97700
Ref. No.: 534090

E27 Renovation Kit Lampholders

For incandescent lamps with base E27

E27 renovation kit lampholders with suspension
Profiled shaped lampholder 64770-T180
Cover cap with cord grip 532394
Nominal rating: 4/250
Lead: Cu, stranded conductors $0.75 \mathrm{~mm}^{2}$, double PVC-insulation, length: 150 mm
Weight: $25.8 / 26.2$ g, unit: 150 pcs.
Type: 64770
Ref. No.: 532399 black, with screw terminal
Ref. No.: 533991 black, with push-in terminal

10

E27 Thermoplastic Lampholders, Three-piece

For incandescent lamps with base E27
Nominal rating: 4/250
Temperature marking: T190
Brass-finished versions are available on request.

Inserts

Material: PET GF, black
Casing lock
Weight: $5.7 / 6.1 \mathrm{~g}$, unit: 500 pcs.
Type: 83285 push-in terminals: $0.5-1.5 \mathrm{~mm}^{2}$

Ref. No.: 103643

Type: 83013 push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$

Ref. No.: 546004

Type: 83011 screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Ref. No.: 103520

Plain casings
Material: PET GF
Weight: $14.5 / 14.3 \mathrm{~g}$, unit: 500 pcs .
Type: 83000

Ref. No.: 103468 white

Ref. No.: 103467 black

Threaded casings 40×2.5 IEC 60399
Material: PET GF
Weight: $17 / 16.1 \mathrm{~g}$, unit: 500 pcs .
Type: 83002
Ref. No.: 103484 white
Ref. No.: 103483 black

Threaded casings 40×2.5 IEC 60399
With flange
Material: PET GF
Weight: $16.7 / 17 \mathrm{~g}$, unit: 500 pcs.
Type: 83173
Ref. No.: 103570
white
Ref. No.: 103569 black

Caps

Material: PA GF
Profiled hole: $\varnothing 10.5 \times 8.6 \mathrm{~mm}$
Fixing holes for screws M4
Height: 13.8 mm
Weight: $5.6 / 6 \mathrm{~g}$, unit: 500 pcs .
Type: 96148
Ref. No.: 109188 white
Ref. No.: 109187 black

Caps

Material: PA GF
Female nipple: $\mathrm{M} 10 \times 1$
Height: 17 mm
Weight: $9.8 / 10.1 \mathrm{~g}$, unit: 500 pcs.
Type: 83007
Ref. No.: 109052
white
Ref. No.: 109039 black

Caps with earth terminal
Material: PA GF
Female nipple: $\mathrm{M} 10 \times 1$
Height: 17 mm
Weight: $10.7 / 11 \mathrm{~g}$, unit: 500 pcs.
Type: 83035
Ref. No.: 109098 white
Ref. No.: 109099 black

Caps

Material: PA GF
Moulded thread: M 10x1
Rotation stop: external
Height: 17 mm
Weight: $6.7 / 7 \mathrm{~g}$, unit: 500 pcs .
Type: 96147

Ref. No.: 109195 white

Ref. No.: 109196 black

Caps

Material: PA GF
Moulded thread: M 10x1
Rotation stop: external
With locking screw
Height: 17 mm
Weight: 7.1/7.3 g, unit: 500 pcs.
Type: 83293
Ref. No.: 109087 white
Ref. No.: 109074 black

Caps

Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: internal and external
Height: 17 mm
Weight: $5.9 / 6.6 \mathrm{~g}$, unit: 500 pcs.
Type: 96154

Ref. No.: 109190 white

Ref. No.: 109191 black

Caps
 Material: PA GF

Profiled hole: $\varnothing 10.3 \mathrm{~mm}$
Rotation stop: internal and external
Height: 17 mm
Weight: $5.9 / 6.6 \mathrm{~g}$, unit: 500 pcs.
Type: 96124
Ref. No.: 109559 white
Ref. No.: 109512 black

Caps

Conical shape
Material: PA GF
Female nipple: $\mathrm{M} 10 \times 1$
Height: 19.2 mm
Weight: 14.2/15.2 g, unit: 500 pcs.
Type: 83274
Ref. No.: 109081 white
Ref. No.: 109093 black

Caps

Conical shape
Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: internal
Height: 19.2 mm
Weight: $10.4 / 10.6 \mathrm{~g}$, unit: 500 pcs .
Type: 96172
Ref. No.: 109060 white
Ref. No.: 109044 black

E27 Porcelain Lampholders

For incandescent lamps with base E27

E27 lampholders, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 60.6 g, unit: 250 pcs.
Type: 62050
Ref. No.: 102599
Type: 62010 with lamp safety catch (with spring)

Ref. No.: 102577

Type: 62009 with lamp safery catch (with crushing)
Ref. No.: 544605

E27 lampholder, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing pillars for screws M3
Weight: 66.3 g , unit: 250 pcs.
Type: 62015
Ref. No.: 102582
E27 lampholder, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 60.5 g , unit: 200 pcs.
Type: 62070
Ref. No.: 543304

E27 lampholder, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
With lateral fixing flange,
filt angle: 15°
Spring loaded central contact
Fixing hole for screw M4
Weight: 67.6 g , unit: 200 pcs.
Type: 62415
Ref. No.: 543414

E27 lampholder, one-piece, for cover caps (see p. 336-338)
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 66.5 g , unit: 250 pcs.
Type: 62310

Ref. No.: 102624

E27 lampholder

For cover caps type 80010, 97735 and 97742
(see below)
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing holes for screw M4
Weight: 66.5 g , unit: 250 pcs.
Type: 62370

Ref. No.: 543303

Cover caps for lampholder 543303
Material: PA GF
Weight: $12.5 / 12.5 / 10 / 10 \mathrm{~g}$, unit: 500 pcs.
Type: 97735 moulded thread: $\mathrm{M} 10 \times 1$,
without locking screw
Ref. No.: 536445 black
Ref. No.: 536446 white
Type: 97742 moulded thread: M 10x1, with lateral hole, without locking screw
Ref. No.: 535247 black

Type: 80010 female nipple: G3/8A
Ref. No.: 535694 white

Ref. No.: 535694 white

E27 lampholder, three-piece
Material: porcelain, white, T240, nominal rating: $4 / 250$, screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Weight: 116/125/116/125/121.7/130.7 g
Unit: 25 pcs.
Type: 62061 female nipple: $\mathrm{M} 10 \times 1$
Ref. No.: 535684
Ref. No.: 535685 with earth screw
Type: 62062 female nipple: M 13×1

Ref. No.: 536451

Ref. No.: 536452
with earth screw
Type: 62063 female nipple: G3/8A
Ref. No.: 534832
Ref. No.: 534833
with earth screw

E27 Metal Lampholders, Three-piece

For incandescent lamps with base E27

Nominal rating: 4/250
Type: 670 plain casing
Type: 671 threaded casing 40×2.5
Temperature marking: T240

Inserts

Material: porcelain, white
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact, casing lock
Weight: 22.8/23.3 g, unit: 500 pcs.
Type: 83221
Ref. No.: 103595
Type: 83223 with earth terminal
Ref. No.: 103597

Plain casings
Material: zinc-coated polished steel
Weight: 23.5/22.9/27.1/27.1g
Unit: 500 pcs.
Type: 83218 insulating threaded ring: PPS
Ref. No.: 103582 chrome-finish
Ref. No.: 103583 brass-finish
Type: 83226 insulating threaded ring: steatite
Ref. No.: 504640 chrome-finish
Ref. No.: $\mathbf{5 0 4 6 4 1}$ brass-finish

Threaded casings 40×2.5 IEC 60399
Material: zinc-coated polished steel
Weight: 24/23.1/27.3/27.6 g
Unit: 500 pcs.
Type: 83219 insulating threaded ring: PPS
Ref. No.: 103590 chrome-finish
Ref. No.: 103591 brass-finish

Type: 83227 insulating threaded ring: steatite
Ref. No.: 504643 chrome-finish
Ref. No.: 504644 brass-finish

Caps

Material: zinc-coated polished steel
Female nipple: $\mathrm{M} 10 \times 1$
Weight: $10.6 / 10.8 / 11.4 / 11.3 \mathrm{~g}$
Unit: 500 pcs.
Type: 80342

Ref. No.: 103020
 Ref. No.: 103021
 chrome-finish

Type: 80343 with earth termina
Ref. No.: 103026
Ref. No.: 103027
chrome-finish
brass-finish

E27 Thermoplastic Pull-switch Lampholders

For incandescent lamps with base E27

Nominal rating: 2/250
Type: 65300 plain casing, with pull cord
Type: 65308 plain casing, with draw chain

Insert with pull cord
Material: PET GF, black
Screw terminals: 0.5-2.5 mm²
Length of cord: 250 mm
Weight: 12.3 g , unit: 500 pcs .
Type: 83146
Ref. No.: 507802
End button for pull cord, material: PS, white
Weight: 0.8 g , unit: 500 pcs.
Type: 96010
Ref. No.: 105144

Insert for brass chain
Material: PET GF, black
Screw terminals: 0.5-2.5 mm²
Weight: 11.7 g , unit: 500 pcs .
Type: 83147
Ref. No.: 507803
Draw chain with end button
Material: brass, length of chain: 85 mm
Weight: 3.9 g , unit: 500 pcs.
Type: 94304
Ref. No.: 104928
Plain casings
Material: PET GF
Weight: 11.7 g , unit: 500 pcs.
Type: 96033
Ref. No.: 105179
white
Ref. No.: 109280 black

Type: 65400 threaded casing 40×2.5,
with pull cord
Type: 65408 threaded casing 40×2.5, with draw chain

Caps

Material: PET GF
Female nipple: $\mathrm{M} 10 \times 1$
Weight: $19.8 / 19.4 \mathrm{~g}$, unit: 500 pcs.
Type: 83258
Ref. No.: 109282 white
Ref. No.: 109283 black

Flange rings
For pull-switch lampholders type 654
Material: PA GF
$\varnothing 60 \mathrm{~mm}$, height: 6.5 mm
Weight: 3/3.1 g, unit: 500 pcs.
Type: 08400
Ref. No.: 501351
white
Ref. No.: 501352 black

Casings

Material: brass, passivated
Insulating threaded ring: PPS
Weight: 21.5/22.7 g, unit: 500 pcs.
Type: 83218 plain casing
Ref. No.: 103587
Type: 83219 threaded casing 40×2.5

Ref. No.: 103594

Cap with earth terminal
Material: brass, passivated
Female nipple: M10xl
With insulating insert
Weight: 20 g , unit: 500 pcs.
Type: 80014
Ref. No.: 102956

E27 Thermoplastic Rocker Switch

Lampholders

For incandescent lamps with base E27

Nominal rating: 2/250
Temperature marking: T180
Suitable casings see page 340:
Type: 83000 plain casing
Type: 83002 threaded casing 40×2.5
Type: 83173 threaded casing 40×2.5, with flange

Inserts with switch
Material: PET GF, white
Screw terminals: 0.5-2.5 mm²
Weight: $11 / 11.1 \mathrm{~g}$, unit: 500 pcs.
Type: 83015
$\begin{array}{ll}\text { Ref. No.: } 107331 \text { switch, white } \\ \text { Ref. No.: } 107096 & \text { switch, black }\end{array}$

Caps

Material: PA GF
Female nipple: $\mathrm{M} 10 \times 1$
Weight: $14.2 / 14.7 \mathrm{~g}$, unit: 500 pcs.
Type: 83260
Ref. No.: 109198
Ref. No.: 109199
white
Ref. No.: 109199 black

Caps

Material: PA GF
Profiled hole: $\varnothing 10.4$ mm
Rotation stop: internal and external
Weight: $8.2 / 10.4 \mathrm{~g}$, unit: 500 pcs.
Type: 96229
Ref. No.: 109200
white
Ref. No.: 109201 black

E27 Thermoplastic Rotary Switch Lampholders

For incandescent lamps with base E27

Nominal rating: 2/250
Temperature marking: T180
Suitable casings see page 340:
Type: 83000 plain casing
Type: 83002 threaded casing 40×2.5
Type: 83173 threaded casing 40×2.5, with flange

Insert with rotary switch
Material: PET GF, white
Screw terminals: 0.5-2.5 mm²
Weight: 19.2 g , unit: 500 pcs .
Type: 83001

Ref. No.: 506943

Caps for E27 rołary switch lampholder
Material: PA GF
Female nipple: $\mathrm{M} 10 \times 1$
Weight: $14.7 / 15.1 \mathrm{~g}$, unit: 500 pcs.
Type: 83005
Ref. No.: 507177
white
Ref. No.: 507178 black

E27 Festoon Lampholders

For lighting chains of protection class II

Degree of protection: IP44
Type: 64710/11
The lampholders may only be operated with the
lamp pointing downwards and with a gasket

E27 festoon lampholder
For lamps max. 40 W
Material: PBT GF, black
Nominal rating: 4/250
Blade contacts
for festoon lead H05RN H2-F 2X1.5
To be used only with protection cap
Weight: 13.8 g , unit: 500 pcs.
Type: 83297

Ref. No.: 109158

Protection cap
For E27 festoon lampholders
Material: PA GF, black
With ready-fitted stainless screws
Weight: 6.3 g , unit: 500 pcs.
Type: 83300 with non-removable screws
Ref. No.: 109243

Protection cap
For E27 festoon lampholders
Material: PA GF, black
With ready-fitted stainless screws
Fixing holes for screws M4
Weight: 7.2 g , unit: 500 pcs.
Type: 83301 with non-removable screws

Ref. No.: 502515

Gasket

For E27 festoon lampholders
Material: silicone
Weight: 4 g , unit: 500 pcs.
Type: 98006
Ref. No.: 106817

B22d Lampholders, Accessories

For mains voltage halogen incandescent lamps

B22d lampholders

For cover caps (see p. 336-338)
Nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Fixing holes for self-tapping screws acc. to ISO 1481/7049-ST3.9-C/F
Weight: $12.7 / 12.3 \mathrm{~g}$, unit: 500 pcs.
Type: 64800
Ref. No.: 108748 PET GF, T180, white
Ref. No.: $\mathbf{5 4 4 6 2 1}$ PET GF, T210, white

Plain casing
For B22d lampholders type 64800
For cover caps (see p. 336-338)
Threaded casing on request
Material: PA GF, white
Weight: 14.5 g , unit: 500 pcs.
Type: 96021
Ref. No.: 504749

B22d lampholder

With protection flange
For cover caps type 80010, 97735
and 97742 (see below)
Casing: porcelain, white, T240
Nominal rating: 2/250
Screw terminals: 0.5-2.5 mm²
Fixing holes for screws M3
Weight: 84.7 g , unit: 150 pcs.
Type: 64900

Ref. No.: 535673

B22d lampholder
Casing: porcelain, white, T240
Nominal rating: 2/250
Screw terminals: 0.5-2.5 mm²
Lateral fixing bracket
Tilt angle: 15°
Fixing hole for screws M4
Weight: 70 g , unit: 150 pcs.
Type: 64940
Ref. No.: 535674

Cover caps for lampholder 535673
Material: PA GF
Weight: $12.5 / 12.5 / 10 / 10 \mathrm{~g}$, unit: 500 pcs.
Type: 97735 moulded thread: $\mathrm{M} 10 \times 1$,
without locking screw
Ref. No.: 536445 black
Ref. No.: 536446 white
Type: 97742 moulded thread: M10x1,
with lateral hole, without locking screw
Ref. No.: 535247 black
Type: 80010 female nipple: G3/8A

Ref. No.: 535694 white

Accessories

For E14, E27 lampholders, one-piece and three-piece and B22d lampholders

The luminaire manufacturer is responsible for
the right choice of accessories.
Brass-finished versions are available on request.
Plastic screw rings
For E14 lampholders
with external thread 28×2 IEC 60399
Weight: 3.6/3.2/1.8/1.6 g, unit: 1000 pcs.
Type: $03210 \varnothing 43 \mathrm{~mm}$, height: 15 mm
Ref. No.: 100125 PET GF, white
Ref. No.: 109162 PA GF, black
Type: $05202 \varnothing 34 \mathrm{~mm}$, height: 7.5 mm
Ref. No.: 107154 PET GF, white
Ref. No.: 109166 PA GF, black

Metal screw ring
For E14 lampholders
with external thread 28×2 IEC 60399
Material: zinc-coated polished steel, chrome-finish
$\varnothing 40 \mathrm{~mm}$, height: 12 mm
Weight: 4.3 g , unit: 500 pcs.
Type: 06700
Ref. No.: 100194

Metal screw ring with flange
For E14 lampholders
with external thread 28×2 IEC 60399
Material: zinc-coated polished steel, chrome-finish
Imprinted: max. 40 W
With leaf springs
For glass with hole: \varnothing 34-42 mm
Weight: 11 g , unit: 500 pcs.
Type: 17400
Ref. No.: 100417

Metal screw ring with flange
For E14 lampholders
with external thread 28×2 IEC 60399
Material: zinc-coated polished steel, chrome-finish
With basket springs
For glass with hole: $\varnothing 38-41 \mathrm{~mm}$
Weight: 12.3 g , unit: 500 pcs.
Type: 17803
Ref. No.: 108847

Front gasket
For E14 lampholders type 64305, 64306, 64308,
64313, 64316, 64360, 64380 and 64381
As lamp safety catch and for protection against moisture acc. to IEC 60079-15
Material: elastomer
Weight: 1.1 g, unit: 2000 pcs.
Type: 98013

Ref. No.: 534689

Plastic screw rings
For E27 and B22d lampholders
Weight: 4.9/4.4/3.3/3 g, unit: 500 pcs.
Type: $08610 \varnothing 55 \mathrm{~mm}$, height: 15 mm
Ref. No.: 100270 PET GF, white
Ref. No.: 109285 PA GF, black
Type: $08701 \varnothing 47.8 \mathrm{~mm}$, height: 9 mm
Ref. No.: 100273 PET GF, white
Ref. No.: 109291 PA GF, black

Metal screw ring
For E27 and B22d lampholders
Material: zinc-coated polished steel, chrome-finish $\varnothing 56.5 \mathrm{~mm}$, height: 13 mm
Weight: 7 g , unit: 500 pcs.
Type: 07400
Ref. No.: 100217

Brackets for E14 lampholders
For fastening with nipples 109249, 109247
Material: zinc-coated polished steel
Fixing holes for screws M3
Weight: 5.5/5.3/5.3 g, unit: 1000 pcs.
Type: 94068 internal bracket 90°

Ref. No.: 106767

Type: 94066 external bracket 90°

Ref. No.: 400671

Type: 94069 internal bracket 110°

Ref. No.: 106768

Bracket 90° for E14 lampholders
For fastening with nipples 109249, 109247
Material: zinc-coated polished steel
Fixing holes for screws M3
Weight: 6.2/8.5/8.5 g, unit: 1000 pcs.
Type: 94074 external bracket $18.5 \times 33 \mathrm{~mm}$
Ref. No.: 106802 holes diagonal
Type: 94067 external bracket $24 \times 41.5 \mathrm{~mm}$
Ref. No.: 106766 holes vertical
Type: 94079 internal bracket $24 \times 41.5 \mathrm{~mm}$
Ref. No.: 506211 holes vertical

U-shaped clips
For E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
For wall thickness: 0.5-2 mm
Weight: $3.7 / 4.3 \mathrm{~g}$, unit: 2500 pcs.
Type: 94435
Ref. No.: 109621
Type: 80433 with earth terminal

Ref. No.: 103087

Base clips

For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
For wall thickness: 0.8-1.5 mm
Weight: $3.3 / 4 \mathrm{~g}$, unit: 2500 pcs.
Type: 94436

Ref. No.: 109622

Type: 80474 with earth terminal
(without drawing)

Ref. No.: 400699

Brackets: $90^{\circ}, 12.5 \times 47.1 \mathrm{~mm}$
For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
Fixing hole for screw M5
Weight: 5.6/4.8 g, unit: 500 pcs.
Type: 80475 with earth terminal

Ref. No.: 400779

Type: 94444
Ref. No.: 401536

Brackets: $100^{\circ}, 22.9 \times 36.6 \mathrm{~mm}$
For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
Fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Tapped hole M4
Weight: 5.5/4.6 g, unit: 1000 pcs.
Type: 80476 with earth terminal
Ref. No.: 400772
Type: 94438

Ref. No.: 401549

Fixing bracket

For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
With slots for screws M4
Weight: 4.6 g , unit: 1000 pcs.
Type: 94450
Ref. No.: 106829

Fixing bracket: $90^{\circ}, 21 \times 40 \mathrm{~mm}$
For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
Fixing holes for screws M3
Weight: 5.2 g , unit: 1000 pcs.
Type: 94448
Ref. No.: 537628

Fixing bracket: 8°
For E27 thermoplastic lampholders
type 64719 (see p. 334) and for B22d
thermoplastic lampholders type 648 (see p. 351)
For clicking-on onto the lampholder
Material: PA, white
Oblong hole for screw M4
Weight: 1.9 g , unit: 500 pcs.
Type: 97194
Ref. No.: 108956

Fixing brackets: $8^{\circ}, 14.5 \times 39 \mathrm{~mm}$
For E27 thermoplastic lampholders, one-piece
Material: PET GF, white
With cable holder
Oblong hole for screw M4
Weight: $3 / 3.6 \mathrm{~g}$, unit: 1000 pcs.
Type: 97750 fixing holes: $\varnothing 4 \mathrm{~mm}$

Ref. No.: 109725

Type: 97752 fixing holes for self-tapping
screws acc. to ISO 1481/7049-ST3.9-C/F
Ref. No.: 109728

5

Fixing brackets: $8^{\circ}, 14.4 \times 39 \mathrm{~mm}$
For E27 thermoplastic lampholders, one-piece
Material: PET GF, white
Oblong hole for screw M4
Weight: 1.9/4.3 g, unit: 1000 pcs.
Type: 97159 fixing holes: $\varnothing 4 \mathrm{~mm}$

Ref. No.: 108304

Type: 97755 fixing holes for self-tapping screws acc. to ISO 1481/7049-ST3.9-C/F
Ref. No.: 400732

Fixing bracket: $8^{\circ}, 20 \times 44.4 \mathrm{~mm}$
For E27 thermoplastic lampholders, one-piece
Material: PET GF, white
Fixing holes: $\varnothing 4 \mathrm{~mm}$
With cable holder
Oblong hole for screw M4
Weight: 3.7 g , unit: 1000 pcs.
Type: 97754
Ref. No.: 401970

Nipples

For E 14 cover caps with moulded thread: $\mathrm{M} 10 \times 1$
Cross groove for rotation stop: external
For E27 caps (see p. 341-342), for fastening
of brackets 106766 and 106802 (see p. 354)
Material: PA, white
Male nipple: M 10×1, with hexagon flange
Weight: 0.5 g , unit: 1000 pcs.
Type: 09700/09703/09708
Ref. No.: $\mathbf{5 3 8 0 8 9}$ length: 15 mm
Ref. No.: 109249 length: 10 mm
Ref. No.: 109247 length: 7 mm
Locking nut for thread M10×1
Material: PA GF
Weight: 0.9 g , unit: 1000 pcs.
Type: 97267
Ref. No.: 507797 white
Ref. No.: 507798 black

Cord grip with insulating socket
For E14 and E27 lampholders
Material: PA, natural
For luminaires of protection class II
For leads H03VVH2-F 2×0.75
Weight: 0.6 g , unit: 1000 pcs.
Type: 97632
Ref. No.: 534097

Cable grips
For leads: HO3VV-F
Material: PA
Male nipple: M 10×1, length: 10 mm
With locking screw
Weight: 0.6 g , unit: 1000 pcs.
Type: 09701
Ref. No.: 543640 white
Ref. No.: 543641 black

Cable grips
For leads H03VV-F and H03VVH2-F 2 XO .5
or 2×0.75
Material: PA
Male nipple: M 10×1, length: 11 mm
With locking screw
Weight: $1.6 / 1.5 \mathrm{~g}$, unit: 1000 pcs.
Type: 09701
Ref. No.: 109248 white
Ref. No.: 109253 black

Cord grip
For E 14 lampholders, three-piece,
with cap height: 19 mm
For leads HO3VVH2-F
Material: PA, transparent
Weight: 0.6 g, unit: 1000 pcs.
Type: 09501
Ref. No.: 106948

Cord grip
For E27 lampholders, three-piece (without switch)
For leads HO3VVH2-F
Weight: 0.9 g , unit: 1000 pcs.
Type: 09502
Ref. No.: 106949 PA, transparent
Insulating socket
Material: PA, transparent
Weight: 0.5 g , unit: 1000 pcs.
Type: 09705

Ref. No.: 109592

Cord grips
For leads H03VV-F 2 XO 0.5 or
H03VV-F 2×0.75
Material: PA
Weight: 0.9/0.8/1.7/1.6 g, unit: 1000 pcs.
Type: 09606 cord grips
Ref. No.: 506026 white
Ref. No.: 506027 black
Type: 96160 screw caps
Ref. No.: 109318 white
Ref. No.: 109317 black

Cord grips

For leads H03VV-F 2 XO 0.5 or
H03VV-F 2X0.75
Material: PA, male nipple: $\mathrm{M} 10 \times 1$
Weight: 1/0.9/1.7/1.6 g, unit: 1000 pcs
Type: 09607 cord grips
Ref. No.: 506024 white
Ref. No.: 506020 black
Type: 96160 screw caps
Ref. No.: 109318 white
Ref. No.: 109317 black

Insulating socket for E 14 lampholders
Material: PA, transparent
Weight: 1 g , unit: 1000 pcs.
Type: 09704
Ref. No.: 109600

E40 Porcelain Lampholders

For incandescent lamps with base E40

Nominal rating: 18/500/5 kV
Screw terminals: $1.5-4 \mathrm{~mm}^{2}$
Spring loaded central contact

E40 lampholders

Material: porcelain, white, T270
Oblong holes for screws M5
Weight: 224/229.3/224/229.3 g
Unit: 48 pcs.
Type: 12800/12801
Ref. No.: 108208
Ref. No.: 107780
With steel thread
Ref. No.: 532602
Ref. No.: 532603

E40 lampholders
Material: porcelain, white, T270
Fixing bracket with slots for screws M5
Weight: 252.3/243/252.3/243 g
Unit: 48 pcs.
Type: 12810/12811
Ref. No.: 108374
Ref. No.: 108375
with lamp safety catch
With steel thread
Ref. No.: 532604
Ref. No.: 532605
with lamp safety catch

Lampholders for General-service Incandescent and Retrofit Lamps

E40 lampholders
Material: porcelain, white, T270
Fixing bracket with tapped holes
for screws M5
With lamp safety catch
Weight: 252.8 g, unit: 48 pcs.
Type: 12812
Ref. No.: 108373
With steel thread
Ref. No.: 532606

Technical Details

5 Components for Incandescent and Retrofit Lamps

Transformers and converters for low-voltage halogen lamps 361
Dimmability of VS transformers and VS converters 362
Electronic converters 362-367
Assembly instructions - Electronic converters 363-367
Electromagnetic transformers 368-372
Assembly instructions - Electromagnetic transformers 369-371
Conductors for low-voltage halogen installations 371-372
Lampholders for incandescent lamps 372-373
General technical details 394-401
Glossary 402-404

Transformers and converters for low-voltage halogen lamps

Operating low-voltage halogen lamps depends on operating devices that transform the usual mains voltage of 230 V to under 24 V . Safety transformers, of either electromagnetic or electronic (converter) design, have been in almost exclusive use for several years now. The type plate of electromagnetic transformers bears the symbol for safety transformers in accordance with VDE 0570, corresponding to EN 61558. Electronic converters are marked with the sign for Safety Extra-Low Voltage (SELV), which indicates that the product is an isolating converter whose secondary output is safe to touch even during no-load operation.

All Vossloh-Schwabe transformers are safety transformers, i.e. isolation transformers for supplying SELV (safety ex-tra-low voltage) and PELV (protection extra-low voltage) circuits. With such systems, the voltage must not exceed a value of 50 VAC or 120 VDC (smoothed) between the conductors or a conductor and the earth conductor of a circuit that is separated from the mains by a safety transformer. The specified values apply for protected (non-touchable) voltages; 25 V AC and 60 V DC (smoothed) apply for exposed (touchable) voltages.

Depending on their design features to protect against touchable live parts, transformers and converters fall into one of two protection classes. Operating devices of protection class I are base-insulated and have a protective earth conductor connection terminal that must be connected to the protective earth conductor for safety reasons. Isolating transformers and converters of protection class II are equipped with double or reinforced insulation that protects against dangerous casing currents; these operating devices are solely available as independent operating devices (also see page 399; Protection Classes of Luminaires and Operating Devices).

Electronic converters can also be fitted with a functional earth terminal that must be connected to a functional earth to ensure compliance with EMC requirements. In addition, some electronic converters are designed in such a way that neither a protective earth conductor nor a functional earth needs to be connected

Operating devices can also be differentiated according to the way they are used. Built-in transformers have to be installed in a permanent casing, e.g. a luminaire. In contrast, so-called independent transformers and converters can be operated independently of a luminaire. These are often found in ceiling installations; in order to prevent possible noise development, isolation transformers must be mounted in such a way as to avoid vibration transmission.

Transformers or converters bearing the MM mark can be mounted on surfaces of unknown flammability, which can be the case when mounting these devices on wooden furniture elements. Such devices comply with the temperature requirements of VDE 0710 , part 14 , of $<95^{\circ} \mathrm{C}$ during normal and $<115^{\circ} \mathrm{C}$ during abnormal operation.

Converters are labelled with a tc point. The stipulated temperature (e.g. $75^{\circ} \mathrm{C}$) must not be exceeded when installed so that the service life of the converter is not shortened. The temperature quoted in the triangle (e.g. 110) denotes that the surface of the converter must never (even in the event of a defect) exceed this temperature.

Protection symbols

Safety transformer

SELV

Safety Extra Low Voltage

Protection class II

Independent operating device
N/W
Furniture installation
Normal operation $<95^{\circ} \mathrm{C}$
Abnormal operation $<115^{\circ} \mathrm{C}$

If the maximum value of $130^{\circ} \mathrm{C}$ is not exceeded, the luminaire does not have to be tested in accordance with $\sqrt{ }$ conditions.
$t_{C}=75^{\circ} \mathrm{C}$
Measuring point for maximum permissible casing temperature

Temperature-protected converter (in this case $<110^{\circ} \mathrm{C}$)

Dimmability of VS transformers and VS converters

Electromagnetic VS transformers can be controlled using phase-cutting leading-edge dimmers. These dimmers "cut" the sinusoidal mains voltage in the negative and positive half wave at an angle in the ascending portion of this sinusoidal half wave. The higher the angle is set at the dimmer controls, the lower the effective value of the voltage and hence the lamp's output

Electronic VS converters can be controlled using phase-cutting trailing-edge dimmers. In this case, a semiconductor ensures the predefined descending portion of the sinusoidal half wave is clipped, i.e. the voltage is reduced in reverse mode. Again, higher the angle is set at the dimmer controls, the lower the effective value of the voltage and hence the lamp's output.

Converters of the LiteLine (EST 70/12.380, EST 105/12.381, EST 150/12.622 and EST 60/12.635) and TopLine (EST 70/12.643, EST 105/12.644, EST 150/12.645 and EST 200/12.649) families can be operated using conventional phase-cutting trailing-edge and phase-cutting leading-edge dimmers.

Furthermore, TwinLine converters feature a separate potentiometer connection for direct regulation of lamp voltage and thus of its brightness.

VS DALI converters (Digital Addressable Lighting Interface) can be controlled via the DALI interface; dimmer operation (whether phase-cutting leading- or trailing-edge) is not possible.

Electronic Converters

The safe operation of electronic converters is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point - t_{c} max. - on all converter casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this tc point. This point is determined by testing the converter during normal, IEC-standardised operation at the specified max. ambient temperature (t_{a}), which is also indicated on the type plate. As both the design-related ambient temperature and the converter's inheren heat generation, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the converter's tc point under real installation conditions.

Temperature-protected converters feature a further protection symbol, namely a triangle containing the maximum temperature. This symbol certifies that the stipulated surface temperature of the device casing will not be exceed during any operating state or in the event of a defect.

Vossloh-Schwabe electronic converters are tested in accordance with EN 61347. Function tests are carried out in accordance with EN 61047. VS converters can be operated without causing any inadmissible system reactions as all devices comply with EN 61000-3-2 on the limitation of mains harmonics. They also meet the EMC requirements of EN 61547. These devices are thus also protected against mains surges (as defined in the standard) that can be caused by, for instance, inductive ballasts during combined operation of fluorescent and low-voltage halogen lamps.

In addition, all devices comply with the RFI requirements of EN 55015. As the highly effective integrated filter can only limit the unit's own interference, the secondary conductor should be kept to under 2 metres in length so as to avoid RFI interference in the lighting system.

Dimmable using phase-cutting leading-edge or trailing-edge dimmers

Dimmable using phase-cutting leading-edge dimmers

L

Dimmable using phase-cutting trailing-edge dimmers

Working principle of a phaseculting leading-edge dimmer
$\alpha=$ Ignition angle
$\lambda=$ Operating angle
U = Voltage
| = Current

Working principle of a phasecutting trailing-edge dimmer

Assembly Instruction for Electronic Converters

For mounting and installing electronic converters for low-voltage halogen lamps

Mandatory regulations

DIN VDE 0100 Erection of low voltage installations
EN 60598-1 Luminaires - part 1: general requirements and tests

EN 61000-3-2 Electromagnetic compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics
(device input current up to and including 16 A per conductor)

EN 55015 Maximum values and methods of measurement for RFI suppression
in electrical lighting installations and similar electrical appliances

EN 61547 Installations for general lighting purposes - EMC immunity requirements
EN 61347-1 Operating devices for lamps - part 1: general and safety requirements

EN 61347-2-2 Operating devices for lamps - part 2-2: special requirements for DC- or AC-powered electronic converters for incandescent lamps

EN 61047 DC- or AC-powered electronic converters for incandescent lamps performance requirements

Designations for VS converters

Designations for electronic converters are first listed by the name of the product family, which in each case reflects the visible product properties. The type designation should be read as follows:

EST	60	$/ 12$.388
Electronic safety transformer	Max. wattage	Lamp voltage	Serial number

Mechanical mounting

Mounting position Any
Clearance Min. of 0.1 m from walls, ceilings, insulation; min. of 0.1 m from other electronic converters; min . of 0.25 m from sources of heat (lamp)

Surface Solid; device must not be allowed to sink into insulation materials

Mounting location
In dry rooms or in luminaires, cases, casings or similar in the instance
of built-in converters

Fastening Independent converters: using screws, $\varnothing 4 \mathrm{~mm}$
Built-in converters: fix M8 nut on the threaded stud

Heat transfer If the electronic converter is destined for installation in a luminaire, sufficient heat transfer must be ensured between the converter and the luminaire casing. During operation, the tc point must not exceed the specified value.

Technical Details - Components for Incandescent and Retrofit Lamps

Technical specifications

Type

Properties of electronic converters

Overheating Protection against overheating is provided by a temperature switch or an electronic controller (see table above).

Short-circuit The converter will be electronically disconnected in the event of a short-circuit at the output; once the short-circuit has been eliminated, the converter will switch on again automatically.

Overload Minor overloads (<50\%) will trigger the temperature switch against overheating; major overloads (> 50\%) will trigger the same reaction as for short-circuit.

Should any of the above-mentioned safety functions be triggered, disconnect the converter from the power supply, then find and eliminate the cause of the problem.

Protection against transient mains peaks
Values compliant with EN 61547 (immunity)

Electrical installation

Conductors
Primary conductor cross-section: min. $0.75 \mathrm{~mm}^{2}$ Secondary conductor cross-section: min. 0,75 mm^{2} for 50 W output and $\mathrm{min} .1 \mathrm{~mm}^{2}$ for 100 W output

Stripping				
Converter	$\begin{aligned} & 60 / 12.388 \\ & 120 / 12.389 \end{aligned}$	60/12.635	$\begin{aligned} & 70 / 12.643 \\ & 105 / 12.644 \\ & 150 / 12.645 \\ & 200 / 12.649 \end{aligned}$	$\begin{aligned} & 70 / 12.380 \\ & 105 / 12.381 \\ & 150 / 12.622 \end{aligned}$
Type of lead	$\begin{aligned} & \text { H03-VVH2-F } 2 \text { X0. } 75 \\ & \text { H05-VVH2-F } 2 \times 0.75 \\ & \text { H03-VV-F } 2 \times 0.75 \\ & \text { H05-VV-F } 2 \times 0.75 \end{aligned}$	All usual types of lead up to $4 \mathrm{~mm}^{2}$	NYM 2X1.5; NYM 3X1.5 after breaking open the marked plastic parts in the cover over the terminal area of the transformer	$\begin{aligned} & \text { H03-VVH2-F } 2 \text { X0. } 75 \\ & \text { H05-VVH2-F } 2 \times 0.75 \\ & \text { H03-VV-F 2X0.75 } \\ & \text { H05-VV-F 2X0.75 } \end{aligned}$
Lead preparation		\square		

The cables/cords of converter models EST 70/12.601 and EST 105/12.602
must be protected against tension and compression during mounting

Connections Screw terminals: max. initial torque of 0.4 Nm must not be exceeded

Secondary length Min. 0.25 m (clearance to lamp), max. 2 m (RFI protection)
Secondary wiring Min. 0.1 m clearance from the mains (RFI protection)

Star wiring Twist single-wire or lead wires narrowly; silicone-insulated leads are recommended

Parallel connection
Secondary-side parallel connection is inadmissible

Feed-through of the mains voltage
See table on page 364
Distributed secondary leads are only permitted on non-metallic surfaces
(RFI suppression)

Selection of automatic cut-outs for VS converters

Dimensioning automatic cut-outs
High transient mains current pulses occur when a converter is switched on because the capacitor has to load. As the lamps ignite almost simultaneously, this also creates a high power drain. The high currents that occur when the system is switched on put a strain on the automatic conductor cut-outs, which must be selected and dimensioned to suit.

Release reaction Release reaction of automatic cut-outs in accordance with VDE 0641, Part 11; for B and C characteristics. The values provided in the table on page 364 are meant as guidelines only and may vary depending on the respective lighting system.

No. of converters The maximum number of VS converters (see table on page 364) applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m [2.5 $\left.\mathrm{m}^{2}\right]$ of conductor from the power supply to the distributor and a further 15 m to the luminaire).

Connection circuit

Lead length

Wiring

Technical Details - Components for Incandescent and Retrofit Lamps

Dimmability of electronic converters

Dimmed operation

VS converters can be operated with phase-cutting trailing-edge dimmers. Some converters can additionally be operated with phase-cutting leading-edge dimmers (see table on page 364). The dimmer is connected to the primary side between mains and converter. It is possible to connect several converters to one dimmer (whereby the dimmer's minimum and maximum load must be observed). The dimmer-converter system should be subjected to function and noise development tests prior to installation.

Electromagnetic compatibility (EMC)

Mains Harmonics
Maximum values are observed in accordance with EN 61000-3-2

Interference The requirements of EN 55015 must be met for luminaires with converters for operating low-voltage halogen lamps.
Vossloh-Schwabe converters are designed and manufactured to ensure these requirements are satisfied provided the installation instructions regarding the interference voltage at the connection terminals and electromagnetic interference fields up to 300 MHz are observed.

Additional information

Wiring To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic converters:

- Conductors between the EST and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference).
- Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another. The distance between HF conductors and mains conductors should be as large as possible, ideally $>5 \mathrm{~cm}$. (This prevents the induction of interference between the mains and lamp conductors).
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
- The mains conductor must not be laid too close to the EST (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another (to avoid inducing interference between mains and HF conductors).
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet)

Temperature Reference point temperature t_{c}
The safe operation of electronic converters is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point - t_{c} max. - on all converter casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this t_{c} point. This point is determined by testing the converter during normal, IEC-standardised operation at the specified ambient temperature $\left(t_{a}\right)$, which is also indicated on the type plate. As both the design-related ambient temperature and the converter's inherent heat, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the t_{c} point under real installation conditions.
Ambient temperature \dagger_{a}
The ambient temperature - as specified on every converter - denotes the permissible temperature range within the luminaire or at the place of installation

Technical Details - Components for Incandescent and Retrofit Lamps

Reliability
Service life of 50,000 hrs at reference point temperature t_{c}, whereby a switching cycle of 165 minutes on and 15 minutes off is assumed. Failure rate: $\leq 0.2 \% / 1,000 \mathrm{hrs}$
In order to achieve the average service life, the maximum temperature
($\mathbf{t}_{\mathbf{c}}$ max.) must not be exceeded at the t_{c} point.

Emergency lighting

VS electronic converters cannot be used for emergency lighting purposes as they are unsuitable for DC voltage operation.

Electromagnetic Transformers

Owing to the low internal impedance of electromagnetic transformers, high currents can occur in the event of a short-circuit on the secondary side, which can lead to the transformer being destroyed. For this reason, IEC 61558-1 differentiates between three types of transformer:

Transformers without short-circuit resistance

These transformers require external protection to prevent excessive temperatures being generated.

At Vossloh-Schwabe, these transformers are marked with the symbol "not short-circuit proof safety transformer" To protect against current overload during overload or short-circuit operation, Vossloh-Schwabe recommends installing a fuse on the primary side. As an aid to the user, the rating of this fuse is stated on the type plate in accordance with IEC 60127. The installed primary-side fuse should be easily accessible so that it can be readily replaced at any time.

Transformers with (limited) short-circuit resistance

These transformers feature a safety device that prevents excessive temperatures being generated.

Electromagnetic transformers with thermal cut-outs afford a limited degree of short-circuit resistance and do not need to be additionally fused. VS safety transformers of limited short-circuit resistance are designed to safely cut out in the event of overload or short-circuit, but not to restart automatically after cooling off. The transformer must first be disconnected from the mains (i.e. switched off and on) before it can be restarted. The thermal cut-outs are dimensioned to ensure that the maximum permissible winding temperature of $225^{\circ} \mathrm{C}$ (transformers of thermal class B) or $240^{\circ} \mathrm{C}(\mathrm{F})$ or $260^{\circ} \mathrm{C}(\mathrm{H})$ is not exceeded in the event of overload or short-circuit.

Transformers with (unlimited) short-circuit resistance

These transformers are designed to ensure that fixed maximum temperatures are not exceeded in the event of overload or short-circuit.

This type of safety transformer is not in common use within the lighting industry due to the relatively large dimensions it needs to meet the overload and short-circuit requirements.

All transformers will function perfectly and meet the requirements of the standard after the overload or short circuit has been eliminated.

In addition to the above, there are also so-called failsafe transformers that are rendered permanently inoperative in the event of improper use, but do not pose a threat to the user or the surroundings.
Vossloh-Schwabe does not provide this type of isolation transformer.

All Vossloh-Schwabe transformers are tested for compliance with the safety requirements of European standard EN 61558 regarding creepage and air clearance distances, the winding temperature and the maximum permissible ambient temperature (t_{a}).

EN 61558 specifies five insulation classes for electromagnetic transformers; respective testing temperatures and times are assigned to these classes. Due to the quality of the insulation materials used by Vossloh-Schwabe, VS transformers are only available in the three highest insulation classes $\mathrm{B}\left(120^{\circ} \mathrm{C}\right), \mathrm{F}\left(140^{\circ} \mathrm{C}\right)$ and $\mathrm{H}\left(165^{\circ} \mathrm{C}\right)$. In this case, the quoted temperature refers to the maximum permissible winding temperature during permanent operation.

As luminaire casings made of plastic or sheet metal will discharge heat to varying degrees and because transformer installation conditions can differ, a transformer's winding temperature must be tested within the luminaire. The measured values will show whether the maximum temperature corresponds to the transformer's insulation class.

On request, Vossloh-Schwabe can carry out such luminaire tests to assess built-in components.

Protection symbols

Non short-circuit proof safety transformer

Limited short-circuit proof safety transformer

Rated fuse value

$t_{a} 65$

Transformer's maximum permissible ambient temperature

Thermal cut-out (reset after disconnection from the mains)

Assembly Instruction for Electromagnetic Transformers

For mounting and installing electromagnetic transformers for low-voltage halogen lamps
 Mandatory regulations

DIN VDE 0100 Erection of low voltage installations
EN 60598-1 Luminaires - part 1: general requirements and tests
EN 61558-1 Safety of transformers, power supply units and similar - part 1:
general requirements and tests

EN 61558-2-6 Safety of transformers, power supply units and similar - part 2-6:
special requirements for safety transformers for general use

EN 61000-3-2 Electromagnetic compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics
(device input current up to and including 16 A per conductor)

EN 55015 Maximum values and testing methods for radio disturbance of electrical lighting facilities and similar electrical equipment

EN 61547 Installations for general lighting purposes - EMC immunity requirements

Technical specifications

Mains voltage range

\[\)| VS safety transformers can be operated at the specified mains voltage within |
| :--- |
| a tolerance range of $\pm 10 \%$ |

\]

Leak current $\quad \leq 0.1 \mathrm{~mA}$ per safety transformer
Power factor $\quad \lambda \geq 0.85$
Compensation \quad Not required

Technical Details - Components for Incandescent and Retrofit Lamps

Mechanical mounting

Mounting position
Any

Mounting location
Safety transformers are designed for installation in luminaires or comparable devices. Independent safety transformers do not need to be built into a casing.

Fastening
Preferably using screws, $\varnothing 4 \mathrm{~mm}$

Insulation classes and maximum temperatures
In accordance with EN 61558, safety transformers are assigned to insulation classes on the basis of the insulation materials used (also called insulation material classes for this reason) in the transformers. These insulation classes also prescribe respective maximum winding temperatures that must not be exceeded during normal operation or in the event of overload or short-circuit.

Compliance with the maximum winding temperatures is tested by measuring the resistance of the transformer's copper winding.

Insulation classes for safety transformers in accordance with EN 61558-1

	A	E	B	F	H
Max. winding temperature $(1.06 \mathrm{U}$ during normal operation	$100^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$120^{\circ} \mathrm{C}$	$140^{\circ} \mathrm{C}$	$165^{\circ} \mathrm{C}$
Max. winding temperature in the event of overload or short-circuit	$200^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$225^{\circ} \mathrm{C}$	$240^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$

Electromagnetic compatibility (EMC)

Interference Interference voltage measurements do not have to be taken for luminaires with magnetic safety transformers for operating low-voltage halogen lamps as these are systems with lamp voltages of under 100 Hz and it is assumed that such systems do not cause interference.

Interference immunity
Thanks to the robust design and choice of materials, magnetic safety transformers provide a high degree of interference immunity and are not impaired by admissible mains power interference.

Mains harmonics
Owing to the Ohmic resistance characteristics of low-voltage halogen lamps and the low degree of distortion caused by magnetic transformers, mains harmonics remain low.

Safety functions of VS transformers

Load	Transformer features	With self-locking temperature protection (TS)
	Unprotected (OS)	Protection is provided by the
Overheating	Is not recorded	buil-in thermal switch
Short-circuit	Protection must be provided by devices fitted in the luminaire (fuse or thermal switch)	
Overload		

Should one of the safety functions be triggered, the transformer must be disconnected from the mains, the cause of the fault found and then eliminated.

Dimmer operation

VS safety transformers can be controlled using progressively adjustable phase-cutting leading-edge dimmers for low-voltage halogen lamps.

Reliability and service life

VS safety transformers are designed for a long service life. Provided the specified maximum values for the winding temperature are complied with during operation, a service life of 10 years can be expected. Failure rate: $<0.025 \% / 1,000$ hrs

Electrical installation

Conductors Primary conductor cross-section: min. $0.75 \mathrm{~m}^{2}$, secondary conductor cross-section: min. $0.75 \mathrm{~m}^{2}$ for 50 W output and a min. of $1 \mathrm{~mm}^{2}$ for 100 W output

Connections Terminal screws: max. torque of 0.5 Nm must not be exceeded

Parallel connection
Parallel connection is admissible on the primary side, but is inadmissible on the secondary side

Conductors for low-voltage halogen installations

As the high temperatures associated with the operation of low-voltage halogen lamps place severe demands on lampholder conductors, a skilful combination of conductor and insulation is essential. Tin-plated copper conductors with silicone insulation are recommended for temperatures of up to $180^{\circ} \mathrm{C}$ at the cable's conductor; nickel-plated copper cables with polytetrafluoroethylene (PTFE) sheathing are recommended for temperatures of up to $250^{\circ} \mathrm{C}$. Welded connections ensure the most effective heat discharge. Control measurements should be carried out if other connection types are used, e.g. crimping or plug connectors. To prevent the risk of additional heat generation, the maximum permissible current load must be observed when dimensioning the conductor cross-section. When using electromagnetic transformers, the conductor resistance causes a relatively large voltage drop. This drop in voltage is always associated with a reduction of luminous flux. For instance, an 11% drop in voltage will lead to a 30% drop in luminous flux. For this reason, care should be taken to ensure secondary conductors are kept as short as possible and conductor cross-sections are adequately dimensioned when wiring luminaires. Nevertheless, transformers should not be mounted too near the light source $1>25 \mathrm{~cm}$ clearance if possible) to prevent the heat generated by the lamp from raising the ambient temperature above the critical level for a transformer.

As electronic converters operate at high frequencies, consideration must be taken of the skin effect, i.e. the displacement of the electrons from the middle of the conductor to its surface. As a result, the full cross-section of the conductor is no longer used, resistance increases and thus leads to a greater drop in voltage. In addition, AC resistance, which is caused by feed line inductance, can result in an even greater voltage drop. It is therefore recommended that lamp conductors be laid closely parallel or twisted together.

Voltage losses (V) with a two-metre secondary conductor

Working frequency	Load	Cross-section/Voltage drop		
	W	$0.75 \mathrm{~mm}^{2}$	$1 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$
50 Hz (electromagnetic transformers)	50	$0,38 \mathrm{~V}$	0.29 V	0.2 V
any wiring layout	100	0.74 V	0.56 V	0.39 V
40 kHz (electronic converters)	50	1.4 V	1.25 V	1.2 V
any wiring layout (loops)	100	3.3 V	3.1 V	3 V
40 kHz (electronic converters)	50	0.5 V	0.45 V	0.35 V
	100	1.2 V	1 V	0.85 V

Wiring

Conductor Contacts

Pin contact $\boldsymbol{\varnothing} 1$

Socket connector

Flat connector $\mathbf{6 . 3 \times 0 . 8}$

Cable with ferrules

Cable, notched
 at 6 mm

Cable, bared at 6 mm

Ultrasonically welded

cable end

Technical Details - Components for Incandescent and Retrofit Lamps

Conductors for installations with halogen lamps

All conductors must be selected to suit the luminaire conditions (see table) in terms of material, cross-section and insulation. Testing these conductors under worst case conditions is essential as the commonly occurring high temperatures considerably reduce the conductivity of the conductor and hence its current-carrying capacity.

Insulation	Conductor Material	Cross-section mm^{2}	Mains voltage V	Max. temperature ${ }^{\circ} \mathrm{C}$
SI	Cu tin-plated (Cu vz)	0.75	300	180
FEP	Cu tin-plated (Cu vz)	0.75	300	180
PTFE	Cu nickel-plated (Cu vn)	0.75	500	250
PTFE	Cu nickel-plated (Cu vn)	1	500	250
PTFE	Ni	1	500	250
PTFE	Ni	1.5	500	250

Lampholders

For low-voltage halogen lamps

With the exception of B15d bases, the low-voltage sector is dominated by pin bases, which are fitted with a variety of different pin distances and diameters. Apart from classic lampholders that ensure both the electrical contact and the correct positioning of the lamp, connection elements are also available. These components are solely responsible for establishing electrical contact and are used in cases where, for instance, the regulations demand that the lamp be attached to its reflector (e.g. cold-light reflector lamps with GZ4 and GX5.3 bases). Extremely high temperatures are also generated when operating low-voltage halogen lamps as a result of the tungsten-halogen cycle and high lamp currents. In addition, the respective luminaires are often of very compact design, which leads to heat accumulation and thus to high internal temperatures. The materials the lampholder is made of thus play a vital role for the luminaire's operating safety and the lamp's service life. In addition to tried-and-tested materials - ceramics for casings and mica for covers - ever more frequent use is being made of highly heat-resistant plastics like LCP (liquid crystal polymer for e.g. G4, GU4, GX5.3, GU5.3 and GY6.35 lampholders) and PPS (polyphenylene sulphide for G4 lampholders). Plastic lampholders provide clear advantages: narrow dimensional tolerances, no material fractures, low weight and clip-attachment options.

The type of contact also plays an important role. Conventional contacts are only attached to one side of the lamp pin. In contrast, additional contact points - known as multipoint contacts - lead to a reduction of current density at the point of transition from the lamp pins to the lampholder contact and with that to a decrease in temperature. These contacts provide the further advantage of ensuring superior heat dissipation from the lamp pins to the conductor. The temperature advantage of multipoint contacts in defined conditions (including welded-on conductors) can amount to as much as $100^{\circ} \mathrm{C}$. In extremely rare cases, due to the high internal pressure in the bulb, it is possible for the lamp to shatter. For reasons of fire prevention (high temperature of the glass bulb), the lamp's components must be prevented from falling out. Enclosed luminaires meet these requirements. Open luminaires, however, may only be operated using lamps with enclosed bulbs or low-pressure lamps. Lamps of this kind are suitably marked with pictograms on the lamp's packaging and in the lamp manufacturer's documentation. Lamps marked with pictogram No. 1 are suitable for use with open luminaires, whereas those marked with pictogram No. 2 may only be used in enclosed luminaires.

Lampholders for low-voltage halogen lamps are equipped with mounted cables or with plug-type connectors In addition to the various lampholders contained in the catalogue, further lampholder models with various cable lengths and of various qualities as well as lampholders with plug-connected cables can be made available on request.

VS lampholders for the UL market and UL approved leads are available for all common lamp types.

Further information can be found at www.unvlt.com.

Bases of the most widely used low-voltage halogen lamps

G4

GU4

G53

GX5.3

B15d

Lampholders for mains voltage halogen lamps

A major factor in lampholder design is the lamp temperature, which is determined by the tungstenhalogen cycle, high lamp current and high wattages. Lampholder casings can be made of ceramics, metal or the ever more popular highly heat-resistant thermoplastics like PET (polyethyleneterephthalate), PPS (polyphenylene sulphide) and LCP (liquid crystal polymer). The most suitable contact materials for these temperatures are nickel, copper-nickel alloys or copper materials with sufficiently thick nickel coatings. For tubular lamps (R7s base), the standard IEC 60061-2 7005-53 prescribes the respective contact pressure of lampholder contact materials.

Although halogen lamps offer twice the service life of general-purpose light bulbs, this can only be fully realised if luminaire manufacturers observe the recommended maximum temperatures at the lamp's pinch point. There is usually a welded-on molybdenum plate at the pinch point where the lamp base pins join the lamp filament. Lamp manufacturers ascertain the pinch temperature at this point, which is generally located within the lamp's quartz glass, using specially prepared measuring lamps. The pinch temperature is a critical thermal reference point which must not be exceeded within the luminaire.

VS lampholders for the UL market and UL approved leads are available for all common lamp types.

Further information can be found at www.unvlt.com.

GU10

GZ10

B15d

B22d

R7s

G9

E14/E 12

E27/E26

E40/E39

The bases of the most widely used mains voltage incandescent lamps
(ans

6-80 W

EMERGENCY

LIGHTING
MODULES

EMERGENCY LIGHTING

Emergency lighting systems spring to life any time normal artificial lighting systems fail. Emergency lighting is designed to ensure that work can continue without risk, that staff can safely leave any workplaces involving special hazards and that there is sufficient lighting to illuminate rescue paths/routes as well as to avoid panic situations.

As power cuts result in a risk to safety, legislation has been enacted in the form of the Health and Safety at Work Directive (Europe) and the Health and Safety at Work Acts of the individual European countries (e.g. Germany), all of which stipulate that emergency lighting must be provided. The requirements placed on emergency lighting installed in places of public assembly and public buildings are governed by supplementary directives and laws.

Vossloh-Schwabe's emergency lighting units are designed for use with T5, T8 and compact fluorescent lamps and can be operated with electromagnetic or electronic ballasts.

VS emergency lighting units are suitable for both continuous and standby circuits with a nominal operating period of 1 or 3 hours.
Emergency lighting modules with self-diagnosis function 376-377
Technical details for emergency lighting modules 378-385
General technical details 394-401Glossary402-404

Emergency Lighting Modules 6 to 80 W with Self-Diagnosis Function

EMXs - Emergency lighting modules
For one-, two-, three- or four-lamp operation with standard and dimmable electronic or magnetic ballasts
EB phase is switched off during emergency
operation
Short circuit protection
RoHS-compliant (excluding rechargeable batteries)
5-pin technology and therefore EMC-compliant
even during emergency operation
Suitable for protection class I
EN 61347-1, EN 61347-2-7
Suitable for systems in accordance with VDE 0108 or EN 50172
Not suitable for lamps with an integrated
starter
Cyclic charging of the NiMH battery is microprocessor controlled, which can extend battery life by up to 30\%
Dimensions (LxWxH): $210 \times 31.4 \times 21.5 \mathrm{~mm}$
Fixing hole distance: 205.5 mm
Nominal voltage: $230 \mathrm{~V} \pm 10 \%, 50-60 \mathrm{~Hz}$
Ambient temperature ta: 0 to $50^{\circ} \mathrm{C}$
Unit: 25 pcs.
These VS emergency lighting modules include an automatic self-diagnosis feature that performs a two-minute function test of the device, the lamp and the battery every seven days.
In addition, the operating period is tested every
12 months with subsequent battery reactivation.

Optical status display

- Red LED, flashing intermittently:
defective lamp. The status display will be reset approx. one minute after the fault has been rectified.
- White LED, not illuminated:
if connected to the power supply, the LED must turn green after a maximum of five minutes. If not, the device either has no voltage supply or the emergency lighting module is defective.
- Red LED, permanently flashing: battery capacity is too low or the battery supply line has been interrupted.
- Green LED: fully functional.

Emergency lighting module

LED

Rechargeable battery

Emergency Lighting Modules 6 to 80 W with Self-Diagnosis Function

EMXs - Emergency lighting modules

Type	Ref. No. Module	Ref. No. Battery	Nominal operating period hrs.	Rechargeable battery type	Dimensions LxD (\varnothing) of battery mm	Test function	Weight module g	Weight battery g
EMXs 180.000	188792	188823	1	4.8V 1.8Ah NiCd	1/190 23	automatic	160	200
EMXs 180.001	188793	188824	3	4.8V 4.5Ah NiCd	$1 / 240 \times 33$	automatic	160	490
EMXs 180.002	188794	188825	1	4.8V 1.8Ah NiMH	$1 / 200 \times 17$	automatic	160	140
EMXs 180.003	188795	188826	3	4.8V 4.5Ah NiMH	$2 / 450 \times 19$	automatic	160	320

Circuit diagrams see page 382-384

Holders for Rechargeable Batteries for

 Emergency Lighting ModulesMaterial: PC (188828: PBT)
Type: Rechargeable Battery Holder

Ref. No.	For rechargeable battery type	Dimensions (mm)					
		a	b	c	d	e	f
188827	4.8 V 1.8Ah NiCd	35.0	18.0	26.3	26.7	13.0	5.5
188828	4.8 V 4.5 Ah NiCd	39.0	32.2	36.2	37.3	12.4	6.0
188829	4.8 V 1.8 Ah NiMH	22.5	15.0	22.8	22.5	8.0	4.0
188829	4.8V 4.5Ah NiMH	22.5	15.0	22.8	22.5	8.0	4.0

It is recommended to use two holders per rechargeable battery to ensure optimum hold.

Table of suitable lamp types

Lamp type	Lamp nominal output W
T8	$15,18,32,36,58,70$
T5 HE	$14,21,28,35$
T5 HO	$24,39,49,54,80$
T5	$6,8,13$
T-R5 (T-R 16)	$22,40,55,60$
T-R (T29-R)	$22,32,40$
TC-L/TC-F	$18,24,36,40,55,80$
TC-DEL	$10,13,18,26$
TC-TEL	$13,18,26,32,42,57,70$
TC-SEL	$7,9,11$
TC-DD (2D)	$10,16,21,28,38,55$

Luminous flux factor of lamps during emergency operation

Lamp nominal output	Luminous flux factor* $\%$
6	43.0
8	32.0
18	13.0
28	9.0
32	7.0
35	7.0
36	7.0
49	4.7
54	4.3
55	4.7
58	5.2
70	4.3
80	3.7
* Theoretically defined reference values at $25^{\circ} \mathrm{C}$ ambient temperature	

Assembly instructions for emergency lighting modules
Electrical installation
Emergency lighting module display 381
Circuit diagrams 382-384
General technical details 394-401
Glossary 402-404

Emergency lighting modules are designed for operation with 6 to 80 W , 4-pin fluorescent lamps.
Luminaires with integrated emergency lighting modules can be operated using a continuous or standby circuit.

Technical specifications	EMXs emergency lighting modules
Permissible mains voltage	$230 \mathrm{~V} \pm 10 \%$
Permissible mains frequency	$50-60 \mathrm{~Hz}$
Power consumption with standby circuit	3 W
Nominal period of operation	1 to 3 hours, depending on the type of rechargeable battery
Batteries	NiCd^{*} or $\mathrm{NiMH} 50^{\circ} \mathrm{C}$
Ambient temperature	24 hrs
Charging time	1
Protection class	IP20
Degree of protection	CENELEC
Certification	EN 61347-2-7
Tested in accordance with	VDE 0108 / EN 50172
Suitable for systems compliant with	Metal (zinc-plated)
Casing	Permissible lead length between the emergency lighting module and the lamp must not exceed two metres.
Installation outside the luminaire	See the table on page 377, values apply to $25^{\circ} \mathrm{C}$ ambient temperature.
Luminous flux factors during emergency operation	
* Ignition in progress; the values of the colour rendering index and the luminous flux factor may deviate.	

Assembly Instructions for Emergency Lighting Modules

For mounting and installing of emergency lighting modules

If the emergency lighting module is integrated in the luminaire, the LED and battery have to be wired separately, i.e. not in parallel with the mains or lamp. Emergency lighting modules must be fixed in a suitable spot within the luminaire ($4-\mathrm{mm}$ bore holes for mounting). In the interest of maximising battery capacity and service life, care must be taken to ensure the battery is positioned at the coolest part of the luminaire. The ambient temperature of the battery must not exceed $50^{\circ} \mathrm{C}$. Emergency lighting modules must not be mounted on surfaces that ignite, melt or undergo some other thermal change at a temperature of $60^{\circ} \mathrm{C}$. Moreover, emergency lighting modules must not be operated in explosion-endangered enclosed spaces.

Electrical installation

The respective ordinances and standards valid at the place of operation must be observed for installation purposes. Emergency lighting modules and luminaires must only be installed by trained staff. Operating voltages exceed 50 V . Caution: potentially fatal hazard!

Prior to first operation of emergency luminaires, all covers must be attached. Furthermore, care must be taken to ensure that the supply voltage complies with the specifications on the type plate and the protective conductor is connected.

1. Fuse
2. Light switch
3. Room lighting
4. Emergency luminaires

Emergency luminaires must be connected to a direct phase to enable mains monitoring and ensure constant charge retention. This phase must be connected to the group fuse of the regular room luminaire. Emergency luminaires are generally delivered with uncharged batteries and must be connected to the mains for at least 48 hours to be fully functional or for approx. 10 minutes for mains operation in the case of a continuous circuit.

Additional information for optimising EMC

Information on the installation of electronic ballasts for optimising EMC
To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic ballasts:

- Conductors between the EB and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference). High-potential lamp conductors must be kept as short as possible, in particular with tubular lamps. Lamp conductors of this kind are labelled with an * in the wiring diagram on the type plate.
- Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another. The distance between HF and mains conductors should be as large as possible, ideally $>5 \mathrm{~cm}$. (This prevents the induction of interference between the mains and lamp conductors.)
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
- Devices must be properly earthed. EBs require secure contacts to the luminaire casing or must be earthed using a PE connection. This PE connection should be effected using an independent conductor to achieve better dissipation of the leak current. EMC improves at frequencies greater than 30 MHz .
- The mains conductor must not be laid too close to the EB or the lamp (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another to avoid inducing interference between mains and HF conductors.
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Maintenance

With regard to system maintenance and control, care must be taken to ensure compliance with any ordinances and standards governing emergency lighting at the place of installation. Prior to opening lamp covers, the following procedure must be observed:

1. Disconnect luminaires from the mains voltage.
2. Remove cover.
3. Disconnect battery from the emergency lighting module (disconnect the plug). VS recommends connecting control LEDs to be visible on the outside of emergency luminaires to enable simple and regular control of emergency luminaires and emergency lighting modules.

Changing batteries

Batteries need to be replaced if the operating period of luminaires falls short of 60 minutes in the case of 1 -hour operation and 180 minutes for 3 -hour operation, respectively. Emergency lighting modules have a status display for this purpose.
Spent batteries must be replaced with the manufacturer's original batteries only. Furthermore, the polarity of the batteries must be strictly observed. The battery supply lines of the emergency lighting module are marked as follows:
red $=\boldsymbol{+}$; black $=$ -

Technical Details - Emergency Lighting Modules for TC and T Lamps

Emergency lighting module display

Normal operation is indicated by a green LED. During emergency operation or for as long as the battery remains fully discharged, the LED is off (i.e. does not glow). The LED will flash red if the battery is missing or not properly connected.

Automatic test of emergency lighting modules

In the case of emergency luminaires with emergency lighting modules, the operational readiness of the device, the lamp and the battery is tested automatically every seven days. In addition, battery capacity is measured during a simulated loss of mains power every 12 months.

The first capacity test will be carried out seven days following initial installation or any repair work. The LED must be checked after the first self-test. A green LED indicates all is in working order, any other display indicates a problem.
The device features a two-colour LED display to indicate that the emergency luminaire is ready for use

Optical status display

Emergency luminaires merely require regular visual inspection of the status display (LED)

and the luminaire itself.	During initial operation, a lamp recognition test is first carried out. Prior to and during this test, the LED will be red and flash Red LED, flashing intermittently		
White LED, not illuminatently.		\quad	If connected to mains power, the LED must turn green after
:---			
a maximum of five minutes. If not, the device has no mains			
voltage or the emergency lighting module is defective.			

Notes Vossloh-Schwabe accepts no liability for any direct, indirect or incidental damage caused by putting a device to any improper use, i.e. any use not expressly permitted by VS. Similarly, Vossloh-Schwabe accepts no liability for third-party claims arising from putting a device to any improper use, i.e. any use not expressly permitted by VS. Emergency lighting modules must not be opened or modified in any way. The components of emergency lighting modules must be replaced with original parts only.
Should emergency lighting modules be damaged in a way that suggests it cannot be operated safely, the luminaires or emergency lighting modules, respectively, must not be operated. VS reserves the right to make changes to diagrams, weights, tables of dimensions or other such details included in the catalogue or instructions for use without prior notice if such changes prove to be necessary or are made as a result of technological progress. VS emergency lighting modules are patent protected.
Any act of producing counterfeit VS products will be prosecuted according to criminal and civil law.

Caution! Emergency lighting modules from VS must not be operated with amalgam lamps.

Circuit Diagrams

For VS emergency lighting modules

Notes for wiring:

- The distance between mains lead and lead 8 should be as large as possible
- Leads 2/4/6/8 must be kept short

Circuit diagrams - 1-lamp operation

1-lamp operation
without electronic or electromagnetic
ballast (continuous circuits)

1-lamp operation - Warm start
with electronic ballast ELXs

1-lamp operation - Instant start
with electronic ballast ELXe

Technical Details - Emergency Lighting Modules for TC and T Lamps

Circuit diagrams - 2-lamp operation

2-lamp operation
with electromagnetic ballast

2-lamp operation - Dimming / Warm start
with electronic ballast ELXd / ELXC

2-lamp operation - Dimming
with electronic ballast ELXd

Circuit diagrams - 3-lamp operation

3-lamp operation - Warm start
with electronic ballast ELXC

2-lamp operation - Warm start
with electronic ballast ELXC

2-lamp operation - Dimming
with electronic ballast ELXd

2-lamp operation - Instant start
with electronic ballast ELXe

3-lamp operation - Warm start
with electronic ballast ELXC

Circuit diagrams - 3-lamp operation

3-lamp operation - Dimming
with electronic ballast ELXd

Circuit diagrams - 4-lamp operation

4-lamp operation - Warm start
with electronic ballast ELXc

3-lamp operation - Instant start
with electronic ballast ELXe

4-lamp operation - Dimming
with electronic ballast ELXd

4-lamp operation - Instant start
with electronic ballast ELXe

LIGHTING TECHNOLOGY COMPONENTS FOR THE UL MARKET

At the beginning of 2010, the US American sales office, VosslohSchwabe Inc., was merged with Universal Lighting Technologies, Inc., a further Panasonic subsidiary.

Universal Lighting Technologies, Inc., produces some of the world's most advanced linear fluorescent, compact fluorescent, HID, eHID, and LED solutions for commercial lighting applications.

The following pages serve to give you some idea of the highly extensive product range of VS lampholders for the UL market.

A global leader in research and development since 1947, Universal proudly features recognized and trusted brands like Universal® and Triad ${ }^{\circledR}$, with a reputation for innovations that can significantly reduce energy costs with high efficiency solutions, installer-friendly options, and greater flexibility for fixture designs.

Advanced lighting technologies such as step-dimming, $0-10 \mathrm{~V}$ analog dimming, DALI dimming and energy management systems help meet specific application and user requirements.

The EVERLINE ${ }^{\circledR}$ brand of LED products leads the industry on performance, flexibility and quality. Whether developed individually or to be part of a system, EVERLINE makes it easy to configure a full featured, high efficiency LED system.

Further information can be found at www.unvlt.com.

Nashville, TN 37214
Phone: 615-316-5100
www.unvlt.com

Energy Management \& Controllable Lighting

Sign Ballasts

Linear Fluorescent Ballasts

Comapct Fluorescent Ballasts

Electronic \& Magnetic HID Ballasts

LED Systems

E39 Porcelain Lampholders

For discharge lamps with base E39 / Mogul base

Screw terminals: max. 16-12 AWG, solid conductor

E39 lampholders

Casing: porcelain, white
Nominal rating: $2000 \mathrm{~W} / 600 \mathrm{~V} / 6 \mathrm{kV}$ pulse rating
Cylindric shape
Screw shell: brass, nickel-plated
Central contact: brass, nickel-plated
Spring loaded central contact
Screw terminals: 18-14 AWG
Fixing distance: $35 \mathrm{~mm}(1.378 ")$
Thread measured in inches No. 8-32 UNC (ISO)
Weight: 190 g , unit: 50 pcs.
Type: 12870/12876

Ref. No.: 109014

Ref. No.: 109518

GU6.5 Lampholders

For single-ended discharge lamps

Additional lead lengths and types on request

GU6.5 lampholders

Casing: ceramic, cover plate: PPS
Nominal rating: $2 \mathrm{~A} / 250 \mathrm{~V} / 5 \mathrm{kV}$ pulse rating
Leads: Cu nickel-plated, stranded conductors 18 AWG,
PTFE-insulation, length: $305 \mathrm{~mm}\left(12{ }^{\prime \prime}\right)$
Weight: 20 g , unit: 100 pcs.
Type: 34515 fixing holes for screws M3 (\#4)

Ref. No.: 534218

Type: 34516 threaded bushes for screws M3 (\#4)
Ref. No.: 534219

GU6.5 lampholders
Casing: ceramic, cover plate: PPS
Nominal rating: $2 \mathrm{~A} / 250 \mathrm{~V} / 5 \mathrm{kV}$ pulse rating
Leads: Cu nickel-plated, stranded conductors 18 AWG,
PTFE-insulation, length: $305 \mathrm{~mm}\left(12{ }^{\prime \prime}\right)$
Weight: 20 g , unit: 100 pcs.
Type: 34525 dia. 22 mm
Ref. No.: 535783

GX 10 Lampholders

For single-ended discharge lamps

GX10 lampholder

Casing: steatite, cover plate: PPS
Nominal rating: 2/500/5 kV
Leads: Cu nickel-plated, stranded conductors
18AWG, PTFE insulation, length: $305 \mathrm{~mm}(12$ ")
Weight: 25 g , unit: 100 pcs.
Type: 31550
Ref. No.: 543153

G12 Lampholders

For single-ended discharge lamps

Additional lead lengths and types on request

G12 lampholders
Casing: ceramic, cover plate: PPS, black
Nominal rating: $660 \mathrm{~W} / 600 \mathrm{~V} / 5 \mathrm{kV}$ pulse rating
Contacts: Ni
Leads: 18 AWG, SF-2
Fixing holes for screws M4 (\#8)
Weight: 56/144 g, unit: 25 pcs.
Type: 31936

2G 11 Lampholders for Twin-tube 4-pin Lamps

For Single-ended Compact Fluorescent Twin-tube 4-pin Lamps

Nominal rating: 660W/600V
Degree of protection: IP20

Quick-connect twin terminals: 18AWG solid or stranded solder-dipped (lamp circuit) Quick-connect terminals: 18AWG solid or stranded solder-dipped (starter circuit)

All products in this chapter carry a T rating of T120 acc. to UL standards (shunted versions correspond to
Circle-l requirements).

10

G24 Lampholders for Quad-tube Lamps, GX24 Lampholders for Triple-tube Lamps

For Single-ended Compact Fluorescent Bi-pin and 4-pin Lamps

The drawings and photos contained in this chapter only show lampholders for lamps with base G24d-1.
All T ratings in this chapter refer to IEC standards

G24, GX24 snap-in lampholders
Casing: PBT GF, white, T140 (acc. to IEC)
Nominal rating: $660 \mathrm{~W} / 600 \mathrm{~V}$
Quick-connect twin terminals: 18AWG (lamp circuit)
For G24q, GX24q lampholders:
quick-connect terminals: 18AWG (starter circuit) Rear split pins for wall thickness
$0.8-1.7 \mathrm{~mm}\left(0.031-0.067^{\prime \prime}\right)$
Width of split pin: $4.5 \mathrm{~mm}\left(0.177^{\prime \prime}\right)$

When mounting lampholder remember triple-tube GX24d/GX24q lamps are wider than lampholder. When using central-mounting hole provisions must be made to prevent lampholder rotation.

All lampholders with quick-connect terminals (UL File No. E110363): 18AWG solid or stranded solderdipped

Type	Ref. No.	Base	Output (W)	Weight (g)	Unit (pcs.)
72101	528116	G24d-1/GX24d-1	8, 10,13/13	10.4	500
72102	528117	G24d-2/GX24d-2	18/18	10.4	500
72103	528118	G24d-3/GX24d-3	26/26	10.4	500
72111	528120	G24q-1/GX24q-1	10,13/13	12.3	500
72112	528121	G24q-2/GX24q-2	18/18	12.3	500
72113	528122	G24q-3/GX24q-3	26/26, 32	12.3	500
72119	528126	GX24q-3/-4*	26,32 / 42	12.3	500
72114	528123	GX24q-4	42	12.3	500
72115	528124	GX24q-5	57	12.9	500
72116	528125	GX24q-6	70	12.9	500
Shunted Version					
72111	528128	G24q-1/GX24q-1	10,13/13	12.3	500
72112	528129	G24q-2/GX24q-2	18/18	12.3	500
72113	528130	G24q-3/GX24q-3	26/26, 32	12.3	500
72119	528134	GX24q-3/-4*	26, 32 / 42	12.3	500
72114	528131	GX24q-4	42	12.3	500
72115	528132	GX24q-5	57	12.9	500
72116	528133	GX24q-6	70	12.9	500

[^72]
G 13 Push-through Lampholders for T8, T 12 Lamps

Lampholders for fluorescent lamps T8 and T 12 / Medium Bi-Pin

All products in this chapter carry a
T rating of T120 acc. to UL standards
(shunted versions correspond to
Circle-I requirements).

G5 Lampholders

Lampholders for fluorescent lamps with base G5

Nominal rating: $120 \mathrm{~W} / 600 \mathrm{~V}$
Push-in twin terminals: 18 AWG, solid or
stranded conductors, tinned
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$ (0.020"-0.059")

G5 push-through lampholders
Lamp axis: 20 mm (0.787")
Casing: PBT GF/PC, white, rotor: PBT GF, white
Weight: 4.1 g , unit: 1000 pcs.
Type: 09432/09433
Ref. No.: 545933
with stop
Ref. No.: 545935
without stop

All products in this chapter carry a
T rating of T120 acc. to UL standards
(shunted versions correspond to
Circle-I requirements).

G5 push-through lampholders
Lamp axis: $15 \mathrm{~mm}\left(0.591^{\prime \prime}\right.$)
Casing: PBT GF/PC, white, rotor: PBT GF, white
Weight: 3.5 g , unit: 1000 pcs.
Type: 09420/09421
Ref. No.: 505737
Ref. No.: 505739
with stop without stop

G5 push-through lampholders
Lamp axis: 25 mm (0.984")
Casing: PBT GF/PC, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Weight: 4.5 g , unit: 1000 pcs.
Type: 09434/09435
Ref. No.: 545937 with stop
Ref. No.: 545939 without stop

Components for the UL Market

Technical Details

8 General Technical Details

General technical details 395-401
Product development and product certification 395-396
CE mark 396-397
Climate and environmental protection 398
Protection classes of luminaires and operating devices 399
Operating devices with double or reinforced insulation for installation in protection class II luminaires 399
Protection classes of luminaires and operating devices 400
Selection of components, materials and dimensions 400-401
Impulse voltage categories for lampholders 401
Torque to be applied to screws 401
Glossary 402-404

General Technical Details

Product development and product certification

The increasingly converging world and the global markets that are being created are both placing new design demands on the sector and its technologies. Against this background, standardisation - both on a regional and international scale - is becoming more and more important in positioning new technologies and innovations on the market. Standardisation ensures the necessary degree of safety, reliability, exchangeability and costeffectiveness.

Vossloh-Schwabe products have been developed and produced on the basis of technical innovations, internationally and regionally applicable standards and valid environmental regulations for more than 90 years. In this respect, we already take account of integrated components and materials, production methods and technologies, comprehensive environmental aspects as well as a product's energy efficiency during the development phase. An important entrepreneurial goal in all these years has been and continues to be to create lighting components that satisfy the requirements of our customers with regard to safety, function, longevity and costeffectiveness.

In addition to observing valid, state-of-the-art standards, we also take consideration of the recommendations of industrial associations when developing new products.

Our cooperation in national and international committees ensures we receive early information about new or changed regulations and thus helps to guarantee future-orientated products.

In addition to undergoing internal production approval tests, mass-produced devices are also submitted to national and international testing institutes for certification. The applicable testing and assessment regulations of the testing institutes are subject to international variation. The marks of conformity shown here are therefore not valid for all the products featured in the catalogue. You will find an overview of the approval marks for the products presented in the catalogue from page 405 on. On request, we will gladly provide information about all of the existing approvals. You can also find test certificates in our online catalogue at

www.vossloh-schwabe.com.

As the international IEC (International Electrotechnical Commission) standards for lighting technology are also adopted by the European Institute for Standardisation CENELEC (Comité Européen de Normalisation Electrotechnique), the European standards (EN) therefore contain the same requirements. In rare cases, national deviations are permitted. The certification (third-party testing) of VS catalogue products in accordance with EN standards is documented by the ENEC mark.

The ENEC mark (European Norms of Electrical Certification) was created in Europe as a uniform certification mark for electrotechnical products. The ENEC Agreement currently governs the following product groups:

- luminaires
- luminaire components
- noise filters
- energy-saving lamps
- safety transformers
- tools
- consumer electronic
- IT equipment
- batteries
- domestic appliance
-

mobile tools

- switches for household appliances

There are plans to include further electrical equipment in the ENEC Agreement.

The certification of products is also expanded to include non-European manufacturers. However, certification testing for lighting equipment must be carried out by an ENEC testing institute in Europe.

At present, a total of 24 testing houses in 20 countries are signatories of the ENEC agreement (see table). Obtaining an ENEC mark for luminaire components like ballasts and ignitors also includes having the product assessed in accordance with the standards governing safety and function. Certification must be based on the EN standards listed in the Agreement. The mark documents that the product not only complies with the applicable standards, but also that ongoing production is monitored by inspectors from a testing institute and that the manufacturer operates an effective quality assurance system in accordance with the ISO 9000 standard suite (International Standards Organisation). ISO deals with the standardisation of non-electrotechnical products.

The ENEC mark is displayed with the identification number and often the logo of the testing institute, as follows:

Identification No.	Testing Institute	Identification No.	Testing Institute
01	AENOR - Spain	15	UL Int'I DEMKO - Denmark
02	SGS - Belgium	16	SGS Fimko - Finland
03	IMQ - Italy	17	NEMKO - Norway
04	CERTIF - Portugal	18	TRI MEEI - Hungary
05	DEKRA - Netherlands	19	ITCL - United Kingdom
08	LCIE - France	21	EZÚ - Czech Republic
09	ELOT - Greece	22	SIQ - Slovenia
10	VDE - Germany	23	TSE - Turkey
11	ÖVE - Austria	24	TRLPTÜV - Germany
12	BSI - United Kingdom	25	TÜV SÜD PS - Germany
13	Electrosuisse - Switzerland	28	SEP - BBJ - Poland
14	Intertek SEMKO - Sweden	30	PREDOM - OBR - Poland

Apart from a product's safety and performance certification, a further useful selection aid is to have a product's electromagnetic compatibility (EMC) tested by an independent test institute, particularly in the case of electronic ballasts. If the product passes the EMC test, an additional test mark is awarded, for instance the VDE EMC mark of the VDE test and certification institute in Offenbach. The EMC certifications for control gears are helpful for the EMC luminaire certification and could reduce time and cost for the luminaire certification.

CE mark

EC Directives form the basis for a common European domestic market without any trade restrictions. Any products that are destined for the European market have to meet the requirements of all directives that apply to the product in question. Compliance with the directives is documented by the CE mark on the product or in the technical documents.

This CE mark is therefore not a mark of compliance with standards (test certificate) of a testing institute, like the ENEC mark is, and can therefore not be issued by a testing institute. The CE mark must be printed on the product, the packaging or both and is not directed at the consumer, but at supervisory authorities.

The following table contains a list of key EC Directives governing lighting:

1194/2012/EG	Ecodesign requirements for directional lamps, light emitting diode lamps and related equipment
874/2012/EG	Energy labelling of electrical lamps and luminaires
347/2010/EG	Ecodesign requirements for fluorescent lamps without an integrated ballast, for high intensity discharge lamps, and for ballasts and luminaires able to operate such lamps
2010/30/EG	Indication by labelling and standard product information of the consumption of energy and other resources by energy-related products (this directive supersedes directive 98/11/EC)
859/2009/EG	Ecodesign requirements on ultraviolet radiation of non-directional household lamps
245/2009/EG	Definition of eco-design requirements regarding fluorescent lamps without an integrated ballast, high-pressure discharge lamps as well as ballasts and luminaires in their operation and the invalidation of Directive 2000/55/EC of the European Parliament and Council.
244/2009/EG	Definition of eco-design requirements regarding household lamps with non-directional light.
2009/125/EG	Setting of ecodesign requirements for energy-related products (ErP). This directive supersedes directive 2005/32/EC. The new directive was extended and now includes all energy-consuming products. Regulations 244 and 245 remain unaffected by this change.
1907/2006/EG	Specifications governing the registration, evaluation, authorisation and description of chemicals: REACH (Registration, Evaluation, Authorisation and Restriction of Chemical Substances) plus amending regulations; e.g. 348/2013/EC, latest amendment of the REACH regulation
2006/95/EG	Electrical equipment designed for use within certain voltage limits (Low Voltage Directive).
2006/32/EG	Energy end-use efficiency and energy services - ES Directive (Energy Service); national laws must take effect by 17.05.2008.
2006/25/EG	Directive on the minimum health and safety requirements regarding the exposure of workers arising from physical agents (arrificial optical radiation)
2005/32/EG	Eco-design requirements for energy-using products - EuP directive (Energy using Products).
2005/20/EG	Directive regarding packaging
2004/108/EG	Directive on the approximation of the laws of the Member States relating to electromagnetic compatibility; national laws had to take effect by 20.01.2007. Applicable to new products since 20.07.2007.
2004/40/EG	Directive on the minimum health and safety requirements regarding the exposure to the risks arising from physical agents (electromagnetic fields)
2004/12/EG	Directive on packaging
2003/66/EG	Directive on energy labelling of household electrical refrigerators, freezers and lamps
2002/96/EG	Old electrical and electronic devices; effective since 13.08.2005; does not fall under the CE mark directive
2002/91/EG	Total energy efficiency of buildings; effective since 04.01.2006; does not fall under the CE mark directive
2001/95/EG	Directive on general product safery
1998/11/EG	Energy rating of household lamps; effective since 14.06.1999
1994/62/EG	Directive on packaging
93/68/EWG	CE marking directive

Manufacturers are obliged to keep conformity declarations as well as test and production documentation ready for presentation.

The documents must be retained for a period of 10 years after the product was last marketed.
Vossloh-Schwabe operating devices all bear the CE mark; the respective conformity declaration and production documentation are available for inspection. As a consequence, all luminaires that are equipped with properly installed VS components and for which the assembly instructions were observed meet the legal requirements.

Climate and environmental protection

The European Union adopted a number of EU Directives that are designed to reduce the CO_{2} output. Essentially, these objectives can be grouped into three categories:

- requirements placed on new products,
- requirements placed on buildings and
- revision of existing installations.

The requirements placed on new products are governed by the ErP framework directive (Energyrelated \mathbf{P} roducts) together with the so-called implementation directives, which envisage the setting of special energy requirements for lamps (minimum $1 \mathrm{~m} / \mathrm{W}$ requirements), operating devices (minimum efficiency ratings) and luminaires (minimum energy efficiency requirements) for all lighting technologies. The directive on energy efficiency requirements regarding ballasts for fluorescent lamps is integrated into the implementation directives.

The requirements for buildings (EPBD: Energy Performance of $\mathbf{B u i l}$ lings) are specify targets for the maximum permissible primary output of lighting. In so doing, a calculation method is employed that will stipulate the permissible maximum electrical output values of the lighting system using a reference procedure.

With regard to the revision of existing installations the EU member states are called upon to set up national action plans (Energy Service Directive) that show which measures can be used to achieve the targeted CO_{2} reductions.

In addition to the climate protection requirements, a number of directives were also produced to cover waste reduction and recycling, specifically the WEEE (Waste of Electrical and Electronic Equipment) and RoHS (Restriction of the use of certain \mathbf{H} azardous \mathbf{S} ubstances) directives. These directives regulate the disposal and reduction of waste and the use of hazardous substances.

As a result of the REACH system (Registration, Evaluation, Authorisation and Restriction of Chemical Substances) only registered chemical substances can now be brought onto the market. The principle is: no data, no market.

As operating devices and lampholders are constituent parts of luminaires, these components are to be disposed of along with the luminaire; separate disposal is not provided for.

Protection classes of luminaires and operating devices

The electric shock protection that luminaires and control gears are fitted with provides dual protection, which prevents any danger in the event of a technical defect. With regard to safety, the simultaneous occurrence of two errors can be taken into account in certain circumstances, e.g. given a street luminaire with two lamp casings, one of which is used to house the ballast that operates the lamp. This also applies to low-voltage LED lighting systems.

Luminaires and operating devices of protection class I provide protection against electrical shock solely using the base insulation and the safe connection of all exposed conductive parts to an earth conductor. Thus, should the base insulation fail, no exposed conductive parts can become live.

Luminaires and operating devices of protection class II provide protection against electrical shock using both the base insulation and an additional or reinforced insulation. Protection class II products do not feature a connection to a protective earth conductor. The mounting conditions do not ensure any additional degree of protection, either.

In special cases with Protection Class II luminaires, it can be permissible to connect a protective conductor or a function protection conductor, as follows:

- for EMC reasons - in such cases, it can be necessary to connect a function protection conductor to remain within EMC limiting values. The component manufacturer's specifications regarding the individual operating devices must be observed during the construction of the luminaire. If an operating device is marked as containing a function protection conductor, the creepage and air clearance distances of the operating device connection must comply with the requirements of protection class II (reinforced or additional insulation);
- as an ignition aid for lamps - connecting a function protection conductor can be necessary as a capacitive ignition aid for lamps. In such cases the creepage and air clearance distances around the ignition aid within the luminaire and the function protection conductor connection terminal have to comply with the requirements of protection class II (reinforced or additional insulation). The ignition behaviour of a lamp should be agreed with the manufacturer in these cases;
- when wiring the protective conductor from the luminaire to another device. This is an installation point of the protective conductor and creepage and air clearances must comply with the respective requirements laid down in the luminaire standard as well as any requirements regarding reinforced or additional insulation.
Functional earth connections of control gear or Protection Class II luminaires must always feature double or reinforced insulation since no technical safety requirements exist for functional earths.

Operating devices with double or reinforced insulation for installation in protection class II luminaires

Protection class II specifications have to be met by the luminaire along with its installed operating device. Both protection class I and class II ballasts can be installed. The design of the luminaire must be adapted to suit. This means that if a protection class I ballast is installed in a protection class II luminaire, the design of the luminaire has to be correspondingly sophisticated to ensure the creepage and air clearance distances can be met. On the other hand, using a protection class II ballast, only available as an independent ballast nowadays, will in most cases result in a need for too much technical effort and thus in high costs. Against this background, the standards contain special requirements for ballasts destined for installation in protection class II luminaires.

These "double or reinforced insulation ballasts" and respective protection class II lampholders permit technically and cost-effective construction of protection class II luminaires.

Protection class III luminaires provide protection against electrical shock by using Safety Extra Low Voltage (SELV). Luminaires of protection class III are not permitted to generate higher voltages than the Safety Extra Low Voltage (SELV).

Connection terminal for the protective earth conductor Protection class I

Connection of the function protection conductor (will drop in future)

$\stackrel{\perp}{=}$

General symbol for an earth connection

Protection class II

Protection classes of luminaires and operating devices

IEC 60529 (EN 60529) defines protection classes for enclosures of casings. The IP Code (International Protection Code) describes the level of protection provided against accidental contact and penetration by foreign bodies as well as protection against water. The first number stands for protection against foreign bodies, the second stands for protection against water. These specifications are important with particular regard to built-in or mounted luminaires as the provisions governing protection against accidental contact provide the basis for the insulation system for components and conductors (also see luminaire standard EN 60598-1).

To comply with the IP requirements, the installation instructions supplied by the luminaire and/or operating device manufacturer(s) must be observed.

Number	1 st Number		2nd Number
	Protection against contact	Protection against foreign bodies	Protection against water
0	No protection	No protection	No protection
1	Protected against contact with the back of the hand	Protected against solid foreign bodies $\varnothing \geq 50 \mathrm{~mm}$	Protected against vertically dripping water
2	Protected against finger contact	Protected against solid foreign bodies $\varnothing \geq 12 \mathrm{~mm}$	Protected against diagonally dripping water (angle of 15° from above)
3	Protected against contact with tools	Protected against solid foreign bodies $\varnothing \geq 2.5 \mathrm{~mm}$	Protected against diagonal water spray up to an angle of 60° from above
4	Protected against contact with wire	Protected against solid foreign bodies $\varnothing \geq 1 \mathrm{~mm}$	Protected against water splashes from any direction
5	Protected against contact with wire	Protected against dust	Protected against jets of water
6	Protected against contact with wire	Dust-tight	Protected against strong jets of water
7	-	-	Protected against temporary immersion in water
8	-	-	Protected against permanent submersion in water. Specific testing conditions must be agreed, especially with regard to highpressure cleaning equipment.
9	-	-	For high-pressure cleaning IPx9 in accordance with DIN 4005

If any components like ballasts or conductors of built-in or mounted luminaires (e.g. wall-mounted luminaires) are accessible to accidental contact, they must comply with the requirements of the two safety levels stipulated for these components. Luminaire construction must be in line with these conditions, which can mean that, for instance, conductors have to feature additional or reinforced insulation.

For lampholders the compliance with the two safety levels is proved by conducting a special voltage test.

European standard EN 50102 "Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK code)" introduces an IK code, analogous to the IP degree of protection of electrical control gear, that was also adopted as a national standard in France, e.g. with the French standard NF EN 50102. Testing is carried out using a pendulum hammer that, in accordance with the IK code, must be dropped from a certain height with respective weights attached to exert the specified impact energy. The table details impact energy values for luminaires (IKOO to IK 1O).

IK Code	Energy Nm or Joule	IK Code	Energy Nm or Joule
IK00	0.0	IK06	1
IK01	0.14	IK07	2
IK02	0.2	IK08	5
IK03	0.35	IK09	10
IK04	0.5	IK10	20
IK05	0.7		

Selection of components, materials and dimensions

The documentation provided by Vossloh-Schwabe is carefully researched. Technical advice is given to the best of our knowledge. The details on the product or the type plate are binding in every case.

Any manipulation of VS products or product packaging is illegal and violates registered trademark rights. Manipulations can negatively influence or destroy technical properties and can possibly result in secondary damage. Vossloh-Schwabe does not accept any liability for manipulated products and cannot be held responsible for any secondary damage.

Manufacturers of luminaires and lighting systems remain responsible for the selection of suitable luminaire components, e.g. operating devices and lampholders, and component materials just as for their safe and correct installation in line with luminaire and system set-up regulations.

Particular attention should be paid to the following:

- temperature measurements and temperature limits
- compliance with creepage and air clearance distances and insulation thicknesses
- selection of components to suit their operating conditions and degree of strain
(e.g. voltage, current, mechanical loading, UV radiation)
- protection against contact and safe protective earth conductor connections
- resistance to corrosion

The product drawings without tolerances are contained in this catalogue only feature nominal dimensions. For space and simplicity reasons, the full dimensions and particularly the associated tolerances cannot be shown. For detailed information resp. details of luminaire design, please request our in-depth dimensional assembly drawings.

All VS products comply with the relevant standards and are developed and produced using the latest technological expertise.

To ensure safe luminaire production we do not recommend reusing dismantled lampholders.
Impulse voltage categories for lampholders

Lampholder	Standard	Impulse voltage category
E14: $250 \mathrm{~V} / 2 \mathrm{~A}$	IEC 60238 / VDE 0616-1	2
E27: $250 / 500 \mathrm{~V} / 4 \mathrm{~A}$		2
E40		2
Starters: $250 \mathrm{~V} / 2 \mathrm{~A}$	IEC 60400 / VDE 0616-3	2
Fluorescent lamps $250 \mathrm{~V} / 500 \mathrm{~V} / 2 \mathrm{~A}$	IEC 60400 / VDE 0616-3	2
Halogen lamps and other lamps	IEC 60838-1 / VDE 0616-5	2
Bayonet fitting	IEC 61184 / VDE 0616-2	2

Torques for screws

With regard to lampholders secured with screws, we recommend using a torque of around 80% of the value stipulated in DIN EN 60598-1

Nominal diameter of the screw's outside thread mm	Torque (Nm) for screws with a head in acc. with DIN EN 60598-1
to 2.8	0.40
<2.8 to 3.0	0.50
<3.0 to 3.2	0.60
<3.2 to 3.5	0.80
<3.6 to 4.1	1.20
<4.1 to 4.7	1.80
<4.7 to 5.3	2.00
<5.3 to 6.0	2.50

A	A type, B type capacitors	The requirements of the safety standard for capacitors differentiates between capacitor types; A type capacitors stand for plastic can capacitors; B type capacitors stand for aluminium can capacitors.
	AG DALI	International working group under the umbrella of ZVEI (the German Electrical and Electronic Manufacturers' Association) in support of DALI (Digital Addressable Lighting Interface).
	Analogue interface 1-10 V	Bipolar interface of dimmable operating devices with a built-in constant current source.
	Average service life	Specified service life of electronic operating devices with a failure rate per unit of time.
B	Ballast	Device that is connected in between the voltage supply and one or more discharge lamps and serves the purpose of igniting the lamps and limiting lamp current during operation.
	Ballast-Lumen Factor (luminous flux factor of a ballast)	The ratio of luminous flux emitted by a reference lamp when operated with a particular production ballast to the luminous flux emitted by the same lamp when operated with its reference ballast.
C	Capacitive circuit (series compensation)	Circuit of an inductive ballast with a capacitor connected in series.
	CE Mark	European regulation governing all products that are introduced to the market. Products must comply with the respective EC directives.
	CELMA	Association of European component and luminaire manufacturers (Committee of E.E.C. Luminaires Components Manufacturers Associations).
	CENELEC	European committee for electronic standardisation (Comité Européen de Normalisation Electrotechnique).
	CISPR	International special commission for radio interference (Comité International Spécial des Perturbations Radioélectriques).
	Colour rendering index (CRI) R_{a}	Index to determine the degree of deviation from a viewed body colour (with 8 standardised test colours) under a given type of lighting. $R_{a}=100$ denotes a light source that causes no distortion of any colour. Lower R_{a} values denote light sources with less positive colour rendition properties.
	Compensated circuit (parallel compensation)	Circuit of an inductive ballast with a capacitor between phase and neutral conductor.
	Compensation capacitors	The power factor can be increased to a value of 0.9-0.98 by using compensation capacitors.
	Conformity declaration	Documentation for an operating device or a luminaire regarding compliance with European directives; this documentation is for submission to national supervisory authorities (e.g. regulation authority for telecommunications and post (Reg. TP) or trade supervisory authorities).
	Convertors	Electronic convertor (electronic conversion of mains voltage in extra-low voltage) to generate operating voltage for low-voltage halogen lamps.
	Creepage and air clearance distances	Regulation minimum distances between voltage-carrying components of different polarity or between voltage-carrying components and the accessible casing surfaces (air clearance: shortest distance through air; creepage distance: shortest distance across a sufface).
	Cross discharge	Discharge in the lamp electrode region during preheating.
D	DALI	Digital interface for controlling dimmable electronic operating devices (Digital Addressable Lighting Interface).
	Δt	Increase in the winding temperature during the operation of a ballast (the ballast is mounted on 75 mm high wooden blocks and its temperature is measured at an ambient temperature of $25^{\circ} \mathrm{C}$).
	$\Delta \mathbf{t a n}^{\text {a }}$	Temperature increase during short-circuit operation (e.g. defective starter, defective lamp).
	DIAL	German institute for applied lighting technology (Deutsches Institu für Angewandte Lichttechnik), Lüdenscheid, Germany.
	DKE	German electrotechnical commission of the DIN and VDE.
	Driver	Name commonly given to ballasts used for operating LED modules.
E	EC directives	Regulations (laws) of the European Community that have to be transposed into national laws within a prescribed period of time.
	Efficiency	Ratio of power output in relation to power input.
	ELC	European Lamp Companies Federation
	EMC	Electromagnetic compatibility
	EMF	Electromagnetic fields
	ENEC agreement	Agreement between the European testing institutes for issuing the European test mark.
	ENEC mark	Marking for a device that complies with the European standards and that was tested by a testing institute that is a part of the ENEC agreement (European Norms of Electrical Cerrification).
	Energy classification EEI	CELMA system to determine energy classes for ballasts for fluorescent lamps (Energy Efficency Index).
	Error current	Current that is caused by a fault in the insulation of a device or via creepage or air clearance distances.
	Error current protection switch	Evaluates the magnitude of the error current and switches the circuit off if a predefined maximum value is reached.
F	Feed-through of mains voltage	The possibility of connecting two lamps to a single terminal so that an electrical connection can be made to another device.
	FELV	Functional extra-low voltage without adequate protection from accidental contact with higher voltages in other parts of the same circuit.
	FEP capacitors	Flame- and explosion-proof capacitors with a contact breaker.
	FGL	Promotion Society for Good Lighting (Fördergemeinschaft Gutes Licht - ZVEI).
	Function protection conductor	It may be necessary to connect a "function protection conductor" to ensure compliance with the EMC requirements or as a starting aid for lamps; VS operating devices are suitably marked.

1	IDC terminal (ALF terminal)	IDC-type connection terminal (Insulation Displacement Connection) for automatic luminaire fabrication (ALF terminal).
	IEC	International Electrotechnical Commission
	ILCOS lamp designation syste	International IEC marking system for lamps.
	Illuminance Ev	Illuminance (Ev) is the total luminous flux (Φ) incident on a horizontal, vertical or angled illuminated surface (per unit area). The unit is lux $\left[\mathrm{lx}=\mathrm{Im} / \mathrm{m}^{2}\right]$, with luminous flux in $[\mathrm{lm}]$ and area in $\left[\mathrm{m}^{2}\right]$. Illuminance Ev forms the basis for all lighting calculations and designs.
	Impedance	Impedance is a conductor's apparent resistance to an alternating current.
	IMQ	Italian institute for quality marking; at the same time, the mark of conformity with standards (Istituto Italiano del Marchio di Qualiá).
	Independent lamp operation	Possibility of operating a single lamp with a multi-lamp operating device after the other lamps have failed.
	Independent operating device	Operating device that does not have to be installed in a casing; the safety regulations are fulfilled by the operating device itself.
	Inductance	Inductance establishes the connection between the current and the magnetic flux caused by it in a conductor arrangement after taking account of all design and material fluctuations.
	Inductive circuit	Operation of a fluorescent lamp with a ballast without a capacitor.
	Interference	Interference signals emitted by operating devices via the mains voltage or the air.
	Interference immunity	Property of an operating device to remain fully functional despite interference emitted by other operating devices.
	IP numbers	Code system for marking the protection level of an operating device or a luminaire against moisture or foreign bodies entering (the first figure stands for foreign bodies and the second for moisture).
	IPP technology	Generating the ignition voltage required for high-pressure lamps using the special intelligent pulse pause technology.
L	LBS lamp designation System	Marking system for lamps, established for Europe.
	Leak current	Current of an operating device or a luminaire that is discharged via the potential compensation conductor (earth conductor).
	LED (light emitting diode)	Solid state device embodying a p-n junction, emtting optical radiation when excited by an electric current.
	LED light engine	Functional unit consisting of an LED module and control gear. The LED light module and the control gear can be used separately in two different casings or combined as a single unit.
	LED module	Unit supplied as a light source. In addition to one or more LED's it may contain other components, e.g. optical, electrical, mechanical and/or electronic.
	Light colour	Perceived colour of the light radiated by a lamp.
	LightingEurope	An industry association consisting of European lamp, component and luminaire manufacturers as well as national lighting associations in Europe. LightingEurope is the successor organisation of CELMA and ELC (European Lamp Companies). LightingEurope represents the interests of the European lighting industry.
	Light intensity distribution curve	Represents the spatial distribution of the light intensity of light sources.
	LiTG	German Association for Lighting Technology (Deutsche Lichttechnische Gesellschaft)
	Luminance L	Luminance L is the luminous intensity density of an area that emits or reflects light with a certain emission angle. The unit of luminance L is $\left[\mathrm{cd} / \mathrm{m}^{2}\right]$ and is the photo-technical measure that corresponds to the subjective perception of the level of brightness of a light source or an object, while luminous flux Φ, luminous intensity I and illuminance E are not visible, i.e. not sensed by the human eye. Light only becomes visible when it hits an object that it is either reflected by or penetrates in a diffused manner. Objects of different levels of brightness therefore only seem to be darker or brighter at same illuminance because they reflect the light differently.
	Luminous efficiency / efficiency	Ratio of luminous flux to power input (lm/W).
	Luminous flux ${ }^{\boldsymbol{\Phi}}$ (photon radiation)	Luminous flux Φ is the radiated/emitted light power in lumen [lm] of a light source, a unit of measurement for the number of light photons emitted in all directions. Luminous flux is the photometrical light output perceived by the human eye.
	Luminous intensity 1	Luminous intensity I in [cd] is decisive for characterising of a source of light and is defined as a quotient of the emitted luminous flux Φ and the radiated area of the solid angle Ω. Luminous intensity I is thus the focused luminous flux Φ within the radiated solid angle Ω. Today's LEDs can reach a luminous intensity of more than $\mathrm{I}=10 \mathrm{~cd}$. The luminous intensity value depends on the viewing angle, i.e. the luminous intensity of an LED chip in a 30° reflector will be higher than that of an identical LED chip in a 60° reflector. This is because a 60° reflector results in the same luminous flux Φ having to illuminate a larger area.
M	Mains harmonics	Mains current distortions by higher-frequency currents.
	Master/slave circuit	Operating several lamps in different luminaires with one ballast.
	$\boldsymbol{\mu F}$	Unit of capacitance (microfarad)
	MPP capacitors	Metallised polypropylene film dielectric capacitors.
P	Parallel-compensated circuits	Circuit of an inductive ballast with a capacitor between phase and neutral conductor (connected in parallel to the lamp circuit).
	Part load range	Variable load range up to the maximum rated load.
	PELV	Protective extra-low voltage with adequate protection from accidental contact with higher voltages in other parts of the same circuit.
	Phase-cutting leadingedge control	In accordance with the defined angle, voltage regions are suppressed of the positive and negative sinusoidal oscillations of the mains voltage in an upwards direction starting with the voltage zero crossing.
	Pinch temperature	This is measured at a defined point of the lamp base; the permissible maximum values are internationally determined.
	Polyester resin impregnation	High-grade vacuum impregnation with polyester resin.
	Power factor	Ratio of true power to apparent power (total power). Lambda (λ) expresses the power factor for non-sinusoidal currents and voltages. In contrast, $\cos \varphi$ (phi) expresses the power factor for sinusoidal currents or voltages.
	Pulse Ignition	Generation of the ignition voltage for high-pressure lamps with the help of ballasts (ballast insulation must match the ignition voltage).
	PUSH	Key-operated bipolar interface of VS electronic ballasts for controlling the brightness of connected lamps.

distribution curve

Luminance \mathbf{L}

Luminous efficiency /

Luminous flux ${ }^{\Phi}$
(photon radiation)
Luminous intensity

M Mains harmonics
Master/slave circuit

MPP capacitors
Parallel-compensated

Part load range

Phase-cutting leading-
edge control

Polyester resin
impregnation

Pulse Ignition
PUSH

IDC-type connection terminal (Insulation Displacement Connection) for automatic luminaire fabrication (ALF terminal).
International Electrotechnical Commission

Illuminance (Ev) is the total luminous flux (Φ) incident on a horizontal, vertical or angled illuminated surface (per unit area). The unit is . $x\left[\mid x=-\mathrm{m} / \mathrm{m}^{2}\right]$, with luminous flux in $[\mathrm{m}]$ and area in $\left[\mathrm{m}^{2}\right]$. Illuminance Ev forms the basis for all lighting calculations and designs.

Possibility of operating a single lamp with a multi-lamp operating device after the other lamps have failed
Operating device that does not have to be installed in a casing; the safety regulations are fulfilled by the operating device itself Operation of a fluorescent lamp with a ballast without a capacitor Interference signals emitted by operating devices via the mains voltage or the air Property of an operating device to remain fully functional despite interference emitted by other operating devices the first figure stands for foreign bodies and the second for moisture

Generating the ignition voltage required for high-pressure lamps using the special intelligent pulse pause technology.
Marking system for lamps, established for Europe
Current of an operating device or a uminaire that is discharged via the potential compensation conductor earth conductor).

解 in two different casings or combined as a single unit

Unit supplied as a light source. In addition to one or more LED's it may contain other components, g. optical, electrical, mechanical and/or electronic.

An industry association consisting of European lamp, component and luminaire manufacturers as well as national lighting associations in Europe. LightingEurope is the successor organisation of CELMA and ELC (European Lamp Companies). LightingEurope都

German Association for Lighting Technology (Deutsche Lichttechnische Gesellschaft) Luminance L is the luminous intensity density of an area that emits or reflects light with a certain emission angle. The unit of luminance source or an Light only becomes visible when it hits an object that it is either reflected by or penetrates in a diffused manner. Objects of different evels of brightness therefore only seem to be darker or brighter at same illuminance because they reflect the light differently
Ratio of luminous flux to power input (lm / W).

Luminous flux Φ is the radiated/emitted light power in lumen [lm] of a light source, a unit of measurement for the number of light photons emitted in all directions. Luminous flux is the photometrical light output perceived by the human eye.
uminous intensity I in [cd] is decisive for characterising of a source of light and is defined as a quotient of the emitted luminous flux Φ and the radiated area of the solid angle Ω. Luminous intensity I is thus the focused luminous flux Φ within the radiated solid angle . Today's LEDs can reach a luminous intensity of more than $1=10 \mathrm{~cd}$. The luminous intensity value depends on the viewing angle, e. the luminous intensity of an LED chip in a 30° reflector will be higher than that of an identical LED chip in a 60° reflector. This is because a 60° reflector results in the same luminous flux Φ having to illuminate a larger area

Mains current distortions by higher-frequency currents

Metallised polypropylene film dielectric capacitors
Circuit of an inductive ballast with a capacitor between phase and neutral conductor (connected in parallel to the lamp circuit).

Variable load range up to the maximum rated load
Protective extra-low voltage with adequate protection from accidental contact with higher voltages in other parts of the same circuit.
n accordance with the defined angle, voltage regions are suppressed of the positive and negative sinusoidal oscillations of the This is measured at a defined point of the lamp base; the permissible maximum values are internationally determined

High-grade vacuum impregnation with polyester resin.

Ratio of true power to apparent power (total power). Lambda (λ) expresses the power factor for non-sinusoidal currents and Generation of the ignition voltage for high-pressure lamps with the help of ballasts (ballast insulation must match the ignition voltage) Key-operated bipolar interface of VS electronic ballasts for controlling the brightness of connected lamps.

R	Reference ballast	Special ballast that is either inductive for lamps operated with mains voltage or ohmic for lamps operated at high frequencies. Reference ballasts are designed to deliver comparable values for testing ballasts, selecting reference lamps and testing mass-produced lamps under standardised conditions.
	Reference lamp	When used in combination with a suitable reference ballast, reference lamps provide key electrical data that are close to the target values laid down in the lamp standards.
S	Safety transformer	Isolation transformer for supplying circuits with safety extra-low voltages.
	SELV	Safety extra-low voltage.
	Short-circuit-proof	Short-circuit-proof operating devices do not pose a safety risk if a short-circuit occurs at the output of the operating device; a difference is made between operating devices offering limited and unlimited protection against short-circuit; in the case of operating devices with limited short-circuit protection, an additional mechanism has to be installed.
	Solid angle Ω	Solid angle Ω is the area within a sphere that is pervaded by the light emitted by a light source. The steradian (sr) is the unit of measure for solid angle, whereby $1 \mathrm{sr}=65.5^{\circ}$. This describes a cone with its peak in the light source and a beam spread angle of 65.5°. A whole solid angle is expressed as 4π rs $=12.56$ sr.
	Standards	VS products comply with the regulations of the following European standards: - Electronic ballasts for fluorescent lamps: EN $61347-1$, EN $61347-2-3$, EN 60929 , EN 55015, EN 61547, EN 61000-3-2, IEC 62493 - Electronic ballasts for high-pressure discharge lamps: EN 61347-1, EN 61347-2-12, EN 55015, EN 61547 , EN $61000-3-2$, IEC 62493 - Electronic convertors: EN $61347-1$, EN $61347-2-2$, EN 61047 , EN 55015, EN 61547 , EN $61000-3-2$, IEC 62493 - Electromagnetic ballasts: EN $61347-1$, EN $61347-2-8$, EN $61347-2-9$, EN 60921 , EN 60923 , EN 50294, EN 55015, EN 61547 , EN $61000-3-2$, IEC 62493 - Electromagnetic transformers: EN 61558-1, EN 61558-2-6, EN 55015, EN 61547, EN 61000-3-2, IEC 62493 - Ignitors: EN 61347-1, EN $61347-2$, EN 60927 , EN 55015, EN 61547 , EN $61000-3-2$ - Capacitors: EN 61048 , EN 61049 - Lampholders: EN 60238, EN 60400, EN 60838-1, EN 611 184, EN 60399 - Digital control inputs of operating devices: IEC 62386 - LED: IEC 62031, IEC 61347-1, IEC $61347-2-13$, IEC 62384, IEC 61231 , IEC TR 61341, IEC 60838-2-2, IEC $62471(-1)$, EC 62471-2 - EMC/EMF: EN 55015, EN 61547 , EN $61000-3-2$, IEC 62493
	Stroboscopic effect	Optical illusion whereby objects appear either to be moving or stationary in contrast to their actual state when illuminated by periodically alternating light.
	Superimposed ignition	Generation of the ignition voltage required for high-pressure lamps by the ignitor independent of the ballast (superimposed over the mains voltage).
	System power consumption	Total power input of lamp and operating device (in watt).
T	ta	Ambient temperature
	TALQ	Industrial consortium for the globally recognised standardisation of a management software interface for outdoor lighting networks. The aim is to enable the interoperability of central management systems and outdoor lighting networks made by different manufacturers.
	Tandem circuit	Series connection of two fluorescent lamps using a single ballast.
	$\mathrm{tc}_{\text {c }}$	Maximum operating temperature of the casing at the marked measuring point.
	Temperature details	The temperature details on our VS ballasts are always maximum values; these are based on the maximum voltage values given on the type plate.
	The Connected Lighting Alliance	Industrial consortium that was founded by GE Lighting, Lutron, OSRAM, Panasonic, Philips, Toshiba in August 2012 for the purpose of supporting global use and distribution of wireless connectivity in lighting applications.
	Thermal classes	Classification of transformers according to the degree of heat resistance offered by the insulation materials.
	Thermal cut-out	Protection from overheating due to abnormal lamp conditions (rectifier effect, short-circuit and overload), with automatic restart after cooling.
	Transient mains overvoltages	Voltage peaks that briefly occur and are superimposed over the mains voltage.
	T rating	Rated value of the lampholder's maximum operating temperature (e.g. T 130).
	Tungsten-halogen cycle	In the outer, cooler part of the lamp, the halogen combines with the tungsten vapour released by the filament to form a tungstenhalogen molecule which then decomposes and deposits the tungsten on the filament.
	tw	Maximum permissible winding temperature.
U	UL, UL approval	Underwriters' Laboratories Inc., USA; US conformity mark for safety.
V	VDE mark	Safety mark on the basis of the German safety standard for electrical equipment; tested by the VDE-PZI (Verband Deutscher Elektro techniker - Prüf- und Zertifizierungsinstitut).
	Winding temperature	Temperature of the copper winding in a magnetic ballast; the change in winding temperature is measured using the change of the resistance of the copper winding.
z	Zhaga	Global industrial consortium that has taken on the task of standardising the interfaces needed for LED light engines.
	ZVEI	Central association of the electrotechnical and electronics industry in Germany (Zentralverband Elektrotechnik- und Elektronikindustrie e.V.).

Ref. No.	Type	Page	Approval
100064	02120	234	1,3
100069	02150	234	1,3,33
100082	02525	87	1
100086	02543	87	1
100096	02574	86	1
100098	02575	87	1
100125	03210	352	-
100194	06700	352	-
100217	07400	353	-
100270	08610	353	-
100273	08701	353	-
100305	09105	202	1,3
100310	09205	202	1,3
100417	17400	353	-
100437	20200	242	1
100442	20400	222	-
100444	20401	222	-
100448	20501	222	-
100484	22600	216	1,3,33
100486	22601	216	1,3,33
100487	22602	216	1,3,33
100532	27151	213	1,3
100536	27200	213	1,3
100540	27201	213	1,3
100551	27356	221	1,3
100557	27450	214	1,3,33
100559	27460	214	1,3
100572	27722	221	1,3
100579	27820	211	1,3,33
100581	27821	211	1,3
100583	27822	221	1,3
100585	28100	214	1,3,33
100588	28200	214	1,3,33
100591	28500	212	1,3,33
100593	28501	212	1,3,33
100616	30023	319	1
100662	30300	310	1
100710	30523	319	1
100720	30550	319	1
100723	30602	86	1
100741	30620	86	1
100877	32100	308	1
100912	32300	317	1
100913	32301	84	1
100921	32311	84	1
100922	32321	84	1
100925	32326	85	1
100928	32330	85	1
100931	32336	85	1
100932	32341	84	1
100934	32361	84	1
100937	32381	85	1
100939	32400	303, 307, 309	1
101162	32600	308	1
101207	32620	308	1
101248	32680	308	1
101253	32690	308	1
101258	32700	303	1
101274	32720	303	1
101275	32730	303	1
101290	35002	188	1,3,33
101294	35003	188	1,3,33
101298	35004	189	1,3,33
101306	35006	189	1,3,33
101310	35007	189	1,3,33
101314	35008	189	1,3
101320	35010	189	1,3,33
101324	35011	190	1,3,33
101344	35051	190	1,3,33
101346	35052	190	1,3

Ref. No.	Type	Page	Approval
101358	35100	191	15,3
101364	35201	190	1,3,33
101367	35202	191	1,3,33
101410	35812	181	1,3
101448	35862	181	1,3
101485	36050	193	1,3,33
101489	36051	193	1,3,33
101491	36052	194	1,3,33
101493	36053	194	1,3,33
101497	36061	197	-
101521	36300	192	1,3
101528	40100	230	1,3
101532	40150	230	-
101627	43000	235	1,3,33
101629	43010	235	1,3
101631	43100	235	1,3
101636	43300	236	1,3,33
101643	46100	220	1,3
101647	46101	220	1,3
101651	46102	222	1,3
101655	46103	222	1,3
101681	47102	218	1,3
101706	47200	218	1,3
101708	47202	218	1,3
101712	47205	219	1,3
101716	47206	219	1,3
101740	47502	218	1,3
101745	47504	219	1,3,33
101765	47600	218	1,3
101769	47605	219	1,3,33
101773	47606	219	1,3
101781	47700	219	1,3
101784	47900	220	1,3,33
101785	47920	220	1,33
101787	48500	220	1,3
101789	48501	220	1,3
101791	48502	222	1,3
101793	48503	222	1,3
101812	49401	221	1
101910	52001	333	1
102407	58001	230	-
102409	58016	230	1,3
102577	62010	73,343	1
102582	62015	73,343	1
102599	62050	73,343	1
102615	62104	73	1
102617	62105	73	1
102624	62310	74,344	1
102635	62600	72	1
102637	62601	72	1
102923	78100	311	1,3
102925	78101	311	1,3
102938	80003	332	-
102939	80003	332	-
102946	80006	332	-
102947	80006	332	-
102956	80014	348	-
103020	80342	345	-
103021	80342	345	-
103026	80343	345	-
103027	80343	345	-
103087	80433	354	-
103359	81019	332	-
103360	81019	332	-
103365	81022	332	-
103366	81022	332	-
103414	81093	330	-
103415	81093	330	-
103424	81095	329	1,33
103430	81109	330	-

Ref. No.	Type	Page	Approval
103431	81109	330	-
103442	81120	330	-
103443	81120	330	-
103467	83000	340	-
103468	83000	340	-
103483	83002	340	-
103484	83002	340	-
103504	83006	347	1
103515	83008	347	1
103520	83011	340	1,33
103569	83173	340	-
103570	83173	340	-
103582	83218	345	-
103583	83218	345	-
103587	83218	348	-
103590	83219	345	-
103591	83219	345	-
103594	83219	348	-
103595	83221	345	1
103597	83223	345	1
103643	83285	340	1,33
103709	84122	229	-
103710	84122	229	-
103711	84123	229	-
103712	84123	229	-
103743	84154	229	-
103744	84154	229	-
103749	84159	229	-
103750	84159	229	-
103818	86037	87	-
104928	94304	346,347	-
105144	96010	346,347	-
105179	96033	346	-
105185	96034	346	-
105448	97031	195	-
105482	97064	237	-
105483	97065	237	-
105484	97065	237	-
105775	35060	195,196	-
105776	35060	195,196	-
105777	35760	196	-
105820	97515	195	-
105824	97516	195	-
105843	97532	223	-
105845	97533	223	-
105847	97534	223	-
105931	35061	196	-
105981	97638	197	-
106094	98085	228	-
106095	98086	237	-
106248	32800	305	1,34
106249	32820	305	1,34
106256	94060	310	-
106262	35842	181	1,3
106416	35060	195,196	-
106417	35760	196	-
106455	09210	202	1,3
106457	32480	308	1
106513	78201	311	1,34
106583	78201	311	1,34
106585	62110	73	1
106766	94067	354	-
106767	94068	354	-
106768	94069	354	-
106802	94074	354	-
106817	98006	350	-
106818	02170	235	1,3
106829	94450	355	-
106893	35814	183	1,3
106912	35912	181	1,3

Ref. No.	Type	Page	Approval
106948	09501	357	-
106949	09502	357	-
107065	31662	83	1
107066	31672	83	1
107096	83015	348	1
107154	05202	352	-
107177	96242	338	-
107178	96206	338	-
107192	32360	318	1
107193	32340	318	1
107194	32320	318	1
107195	32310	318	1
107213	32390	317	1
107214	32391	317	1
107215	32395	317	1
107331	83015	348	1
107445	43410	237	1
107536	09000	231	1,3
107617	35844	183	1,3
107618	35864	183	1,3
107677	21100	88	34
107694	33100	311	-
107716	81096	329	1,33
107723	43510	236	1
107780	12800	75,358	1
107861	35914	183	1,3
107957	84171	225	1
107958	84172	226	1,3
107959	84173	225	1
107960	84174	226	1,3
108208	12800	75,358	1
108266	98003	208, 223, 225	-
108267	98004	208,226	-
108304	97159	356	-
108373	12812	76,359	1
108374	12810	76,358	1
108375	12810	76,358	1
108416	62622	73	1
108437	28920	215	1,3
108438	28921	215	1,3
108449	30471	305	1
108454	43500	236	1
108575	35944	183	1,3
108576	35964	183	1,3
108608	84175	226	1,3
108614	84175	226	1,3
108666	84172	226	1,3
108669	84174	226	1,3
108671	43020	235	1,3
108674	30350	310	1
108678	94071	307	-
108718	62150	72	1
108719	62151	72	1
108730	48230	215	1
108747	64740	335	1,33
108748	64800	351	1
108758	64741	336	1,33
108773	22800	216	1
108775	22801	216	1
108777	22850	216	1
108778	22851	216	1
108780	97044	223	-
108816	22604	216	1,3,33
108819	22852	227	1
108845	97117	224	-
108847	17803	353	-
108878	36060	197	-
108898	35012	190	1,3,33
108927	35500	191	1,3
108928	35510	191	1,3

Ref. No.	Type	Page	Approval
108932	35530	192	1,3
108933	35540	192	1,3
108934	35550	192	1,3
108936	64401	334	1,33
108937	02500	86	1
108940	85007	320	-
108947	98002	208,227	-
108948	84180	227	1
108953	64770	335	1,33
108956	97194	355	-
108965	64501	334	1,33
108979	31000	314	1,34
108983	64307	325	1,33
108984	22900	216	1
108994	84181	227	1
109007	31010	314	1,34
109039	83007	341	-
109041	81130	331	-
109044	96172	342	-
109045	97511	338	-
109052	83007	341	-
109054	81130	331	-
109060	96172	342	-
109062	97511	338	-
109074	83293	341	-
109077	85070	336	-
109081	83274	342	-
109084	96159	331	-
109086	97147	224	-
109087	83293	341	-
109092	85070	336	-
109093	83274	342	-
109095	96159	331	-
109098	83035	341	-
109099	83035	341	-
109102	81002	330	-
109103	81002	330	-
109110	85075	326	-
109112	85075	326	-
109119	97666	327	-
109120	97666	327	-
109122	97635	327	-
109123	97635	327	-
109126	97697	327	-
109145	81024	330	-
109149	96211	331	-
109150	96211	331	-
109152	81132	331	-
109153	81132	331	-
109158	83297	350	1
109159	83282	338	-
109162	03210	352	-
109166	05202	352	-
109184	97698	337	-
109187	96148	341	-
109188	96148	341	-
109190	96154	342	-
109191	96154	342	-
109195	96147	341	-
109196	96147	341	-
109198	83260	348	-
109199	83260	348	-
109200	96229	349	-
109201	96229	349	-
109235	35610	187	1,3
109238	35611	188	1,3
109240	35612	188	1,3
109243	83300	350	-
109247	09708	356	-
109248	09701	357	-

Ref. No.	Type	Page	Approval
109249	09703	356	-
109253	09701	357	-
109280	96033	346	-
109281	96034	346	-
109282	83258	347	-
109283	83258	347	-
109285	08610	353	-
109291	08701	353	-
109317	96160	357,358	17
109318	96160	357,358	17
109330	27700	210	1,3,33
109331	27701	210	1,3,33
109332	27800	210	1,3
109335	27801	210	1,3
109338	28500	211	1,3,33
109339	28501	211	1,3,33
109340	28600	211	1,3,33
109341	28601	211	1,3,33
109383	64001	324	1,33
109384	64001	324	1,33
109386	64101	324	1,33
109387	64101	324	1,33
109411	97244	315	-
109429	64501	334	1,33
109462	83282	338	-
109487	48300	220	1
109497	32380	318	1
109512	96124	342	-
109532	84000	209	-
109547	33300	302, 306, 309	1,34
109548	97255	302	-
109550	97257	302,313	-
109553	94095	307	-
109554	94096	309	-
109555	97260	338	-
109556	97260	338	-
109559	96124	342	-
109560	97698	337	-
109568	62111	73	1
109575	97065	237	-
109592	09705	357	-
109600	09704	358	-
109621	94435	354	-
109622	94436	354	-
109674	33400	302	1,34
109676	97636	326	-
109677	97636	326	-
109679	97665	337	-
109680	97665	337	-
109685	94088	206	-
109686	09170	206	1,3
109725	97750	355	-
109728	97752	355	,
109784	02110	234	1,3,33
109790	43200	236	1,3
109792	43210	236	1,3,33
109794	97664	337	-
109795	97664	337	-
109805	81024	330	,
109838	64770	335	1,33
140413	Z 70 S	50	14
140425	Z 250 S	51	14
140427	Z 400 S	52	14
140430	Z 1000 S	55	14
140432	Z 2000 S	58	-
140471	Z 1000 L	56	-
140481	Z 70 K	50	14
140489	Z 250 K	51	14
140496	Z 1000 S/400 V	56	14
140497	Z 2000 S/400 V	58	14

Ref. No.	Type	Page	Approval
140499	Z 3500 S/400 V	58	-
140537	CE 50	68	-
140594	Z 400 M	53	14
140597	Z 400 MK	53	14
140607	Z 1000 TOP	55	14
140608	Z 1200/2,5	57	-
140609	Z 1200/9	57	-
140613	PZS 1000 K	60	14
140617	PZI 1000/1 K	60	14
140621	PU 12 K	63	14
140622	PU 120 K	63	14
140623	PU 121 K	63	-
140627	AS 1000 K	66	-
140693	Z 400 M S	53	14
141193	AS $1000 \mathrm{KA10}$	67	-
141580	Z 70 K D20	50	14
141581	Z 250 K D20	51	14
141582	Z 400 M K D20	53	14
141583	Z 400 S D20	52	14
141584	Z 1000 S D20	55	14
142098	ZPU 70 K D20	64	14
142099	ZPU 250 K D20	64	14
142150	PR 12 KD	63	14
142170	PR 12 KLC	63	14
142320	Z 70 K	50	14
142330	Z 70 K D20	50	14
142340	Z 250 K	51	14
142350	Z 250 K D20	51	14
142360	Z 400 MK	53	14
142361	Z 400 M K VS-Power	53	14
142370	Z 400 M K D20	53	14
142783	PZ 1000/400 V A5	59	14
142784	PZ 1000 K D20	59	14
142897	Z 400 M K VS-Power	53	14
146990	Z 750 S	54	14
147230	SP 230/10 K	18	14
147707	Z 400 M VS-Power	53	14
147790	HZ 600 K	61	-
147791	HZ 1000 K	62	-
147793	HZ $2000 \mathrm{~K} / 400 \mathrm{~V}$	62	-
149992	SU 1-10VK	65	14
149993	PR 1-10VKLC	65	14
159968	0607	224	-
160597	NaHJ 250.160	27	1,19,31
160604	NaHJ 250.163	27	-
160613	$\mathrm{NaHJ} 70 / 50.157$	26	1
161158	$\mathrm{NaHJ} 100 / 70.519$	27	1
161367	NaHJ 35.485	26	1
161371	NaHJ 35.638	26	-
161379	NaH 50.486	26	1
161392	NaHJ 70.653	26	-
161399	NaH 50.654	26	-
161460	UNaH 70/40\%.691	44	-
161469	$\mathrm{NaHJ} 100 / 70.703$	27	1
161471	$\mathrm{NaHJ} 100 / 70.709$	27,44	-
161475	UNaH 150/40\%.717	44	-
161662	NaHJ 70.158	26	1
161686	NaHJ 250.915	27	1,31,32
161707	NaHJ 100.941	27	1
161757	STr 50/12.301	296	15,19
161781	STr 20/12.306	296	19
161860	STr 20/12.306	297	19
161935	STr 105/12.406	297	-
162400	EST 75/12G.302	294	14
163256	L 20.122	172,176	34
163305	L7/9/11.207	168	-
163318	L 7/9.209	172	34
163683	L 4/6/8.304	173	1,19,25
163694	L7/9/11.307	168	1,19,25,31
163702	L 15.308	176	34,35

Ref. No.	Type	Page	Approval
163711	LN 13.313	168,173	1,19,25,31
163730	LN 16.316	168,174	1,25
163763	LN 181.319	169	1,19,25,31
163861	LN 15.329	174	1,25
164013	L 25.346	174	1
164033	L 30.347	174	19,25,31
164326	L 4/6/8.404	173	1
164335	L7/9/11.411	168	1
164342	LN 13.413	168,173	1
164353	LN 181.418	170	1
164358	LN 16.417	168,175	1
164438	L 36/40.443	170, 175	1
164555	LN 36.505	170, 175	1
164560	LN 58.506	170, 175	1
164566	LN 18.507	170,175	1
164572	LN 18.510	169,174	1
164590	LN 36.511	169,174	1
164680	LN 30.530	169	-
164779	L 181.602	171	-
164828	L 58.625	171,175	-
164870	L 58.657	171,175	-
167100	Q 50.501	38	1
167125	Q 50.508	38	1
167132	Q 80.510	38	1
167136	Q 125/80.511	38	1
167140	Q 125.512	38	1
167144	Q 250.513	38	1,19,31
167185	Q 50.535	38	-
167213	Q 50.550	38	1,32
167250	Q 400.561	38	1,19,31
167263	Q 125.568	38	1,19,31,32
167299	Q 80.584	38	-
167302	Q 80.587	38	19
167304	Q 80.588	38	1,19,31,32
167306	Q 80/50.592	38	-
167311	Q 80/50.596	38	1
167326	Q 125/80.611	38	1
167330	Q 400.612	38	1,19,31,32
167335	Q 400.613	38	-
167367	Q 250.528	38	1,19,31,32
167374	Q 400.669	38	1
169125	STr 105/12.406	296	-
169389	LN 58.568	169,174	1
169645	LN 30.801	174	1
169647	LN 13.805	168	1
169658	L 58.718	169,174	1
169721	NaHJ 150.995	29	1,32
169722	NaHJ 70.158	29	1,32
169747	STr 105/12.311	297	19,31
169748	STr 50/12.401	297	-
169779	LN 36.570	169,174	1
169830	STr 50/12.401	296	-
169892	UNaH 250/40\%.983	44	-
169947	Q 125.549	38	1,19
170002	STr 105/12.311	296	15,19,31
170091	STr 50/12.301	297	14,19
170117	L 14.139	176	-
172773	Phase-cutting trailing-edge dimmer	295	-
172774	Phase-cutting leading-edge dimmer	295	-
172775	Cover plate	164,295	-
172776	Light sensor	164	-
172777	Multi sensor	164	-
172778	Manual controller	164	-
174961	NaHJ 70.300	26	1,31
178177	NaHJ 250.340	27	1
178771	NaHJ 250.727	34	1,19,32
178790	NaHJ 400.006	34	1,31,32
179424	NaHJ 400.737	34	1,19,31,32
179444	STr 50/12.337	297	-
179454	NaH 600.005	34	1,19

Ref. No.	Type	Page	Approval
179604	STr 60/12.338	296	-
179608	STr 60/12.338	297	-
179740	NaHJ 400.006	34	1,31,19
179742	NaH 600.010	34	1
179743	NaHJ 250.003	34	1
179792	EST 60/12.388	291	1,14,28
179793	EST 120/12.389	291	1,14,28
183000	EHXC 100.353	15	1,14,28
183001	EHXC 100.353	15	1,14,28
183026	EHXe 35.356	10	14
183027	EHXe 70.357	10	14
183028	$E H X \subset 50.358$	9	1,14,28
183029	$E H X=50.358$	9	1,14,28
183030	$E H X \subset 50.358$	9	1,14,28
183032	EHX 50.372	11	1,14,28
183033	$E H X \subset 35.325$	9	1,14,28
183034	$E H X \subset 35.325$	9	1,14,28
183035	EHX 35.325	9	1,14,28
183036	$E H X \subset 70.326$	9	1,14,28
183037	EHXc 70.326	9	1,14,28
183038	EHXc 70.326	9	1,14,28
183039	ELXc 424.223	155	1,14,28
183040	ELXc 226.878	142	1,14,28
183046	EHXC 150G. 334	15	1,14,28
183047	EHXC 150G. 334	15	1,14,28
183048	EHXd 50.360	16	14,28
183049	EHXd 70.361	16	14,28
183050	EHXd 100.362	16	14,28
183051	EHXd 150.363	16	14,28
183052	EHXX 250.364	16	14,28
183059	ELXd 235.735	161	1,14,28
183060	EHXd 50.360	17	14,28
183061	EHXd 70.361	17	14,28
183062	EHXX 100.362	17	14,28
183063	EHXX 150.363	17	14,28
183064	EHXX 250.364	17	14,28
183094	ELXc 328.224	155	1,2
183097	EHXc 20.370	11	1,14,28
183098	$E H X \subset 35.371$	11	1,14,28
183099	$E H X \subset 70.373$	11	1,14,28
183103	ELXc 135.225	152	1,2,26
183104	ELXc 136.226	152	1,2,26
183108	ELXc 226.878	142	1,14,28
183109	ELXc 414.227	158	16
183110	ELXc 424.228	158	16
183111	ELXc 228.229	158	16
183112	ELXc 328.230	158	16
183113	ELXc 135.231	158	16
183114	ELXc 235.232	158	16
183115	ELXc 239.233	158	16
183116	ELXc 149.234	158	16
183117	ELXc 249.235	158	16
183118	ELXc 254.236	158	16
183119	ELXc 180.237	158	16
183122	ELXc 114.238	159	16
183123	ELXc 128.239	159	16
183124	ElXc 214.240	159	16
183125	ELXc 228.241	159	16
183126	ELXc 414.242	159	16
183127	ELXc 118.243	159	16
183128	ELXC 136.244	159	16
183129	ElXc 158.245	159	16
183130	ELXc 218.246	159	16
183131	ELXc 236.247	159	16
183132	ElXc 258.248	159	16
183133	ELXc 418.249	159	16
183134	ELXc 118.879	144	16
183135	ELXc 126.880	144	16
183136	ELXC 218.881	144	16
183137	ELXc 226.882	144	16

Ref. No.	Type	Page	Approval
183150	ELXc 118.879	144	16
183151	ELXC 126.880	144	16
183152	ELXc 218.881	144	16
183153	ELXc 226.882	144	16
186005	EST 70/12.601	293	1,14,28
186007	EST 105/12.602	293	1,14,28
186068	EST 200/12.649	292	1,13,28
186072	EST 70/12.380	290	1,14,28
186077	EST 105/12.381	290	1,14,28
186098	EST 150/12.622	290	1,14,28
186117	EST 70/12.643	292	1,14,28
186118	EST 105/12.644	292	1,14,28
186119	EST 150/12.645	292	1,14,28
186173	EST 60/12.635	290	13
188080	Cord grip	13	-
188093	ELXC 135.856	155	1,14,28
188094	ELXC 235.857	155	1,14,28
188095	ELXC 149.858	155	1,14,28
188140	ELXC 140.862	135,155	1,14,28
188142	ELXC 154.864	155	1,14,28
188144	ELXC 180.866	135,155	1,14,28
188223	EHX 235.316	12	1,14,28
188224	EHXC 270.317	12	1,14,28
188276	ELXX 170.808	149	1,14,28
188329	ELXd 124.600	137,162	1,14,28
188330	ElXd 224.601	137,162	1,14,28
188331	ELXd 139.602	137,162	1,14,28
188332	ELXd 154.603	137,162	1,14,28
188333	ELXd 254.604	137,162	1,14,28
188334	ELXd 180.605	137,162	1,14,28
188335	ELXd 249.606	162	1,14,28
188336	ELXd 124.607	137,161	1,14,28
188337	ELXd 224.608	137,161	1,14,28
188338	ELXd 139.609	137,161	1,14,28
188339	ELXd 239.610	137,161	1,14,28
188340	ELXd 154.611	137,161	1,14,28
188341	ELXX 254.612	137,161	1,14,28
188342	ELXd 180.613	137,161	1,14,28
188343	ELXd 249.614	161	1,14,28
188344	ELXd 118.615	137,163	1,14,28
188345	ELXd 218.616	137,163	1,14,28
188346	ELXd 136.617	137,163	1,14,28
188347	ELXd 236.618	137,163	1,14,28
188348	ELXd 158.619	163	1,14,28
188349	ELXd 258.620	163	1,14,28
188350	ELXd 239.621	137,162	1,14,28
188400	ELXc 257.836	142,143	1,14,28
188431	ELXd 226.801	149	14,28
188438	ELXC 414.868	155	1,14,28
188455	EHX 235.316	12	1,14,28
188456	EHXC 270.317	12	1,14,28
188490	ELXd 226.801	149	14,28
188495	ELXd 170.808	149	1,14,28
188549	ELXd 218.803	149	1,14,28
188550	ELXd 242.807	149	1,14,28
188564	ELXd 118.802	149	1,14,28
188565	ELXd 142.806	149	1,14,28
188589	ElXc 128.869	140, 141	1,14,28
188590	ELXc 128.869	142,143	1,14,28
188595	ELXc 336.214	155	1,14,28
188596	ELXd 318.622	161	1,14,28
188597	ELXd 324.623	137,161	1,14,28
188598	ELXd 424.624	137,161	1,14,28
188599	ELXd 418.625		1,14,28
188600	ELXd 324.626	137,162	1,14,28
188601	ELXd 318.627	163	1,14,28
188602	ELXd 424.628	137,162	1,14,28
188603	ELXd 418.629		1,14,28
188604	ELXd 280.630	161	1,14,28
188605	ElXd 280.631		1,14,28

Ref. No.	Type	Page	Approval
188616	ELXc 240.863	135,155	1,14,28
188617	ELXc 249.859	155	1,14,28
188618	ELXc 254.865		1,14,28
188619	ELXc 280.538	135,155	1,14,28
188643	ELXc 242.837	140,141	1,14,28
188661	ELXs 116.900	134,151	14,28
188662	ELXs 116.903	134,151	14,28
188663	ELXs 121.901		14,28
188664	ELXs 121.904	134,151	14,28
188665	ELXs 124.902	134,151	14,28
188666	ELXs 124.905	134,151	14,28
188667	ELXs 126.906	134	14,28
188668	ELXs 126.907	134	14,28
188680	ELXc 155.378	141	1,14,28
188681	ELXC 155.378	143	1,14,28
188683	ELXc 170.833	143	1,14,28
188687	ELXc 242.837	142,143	1,14,28
188694	ELXd 118.802	149	1,14,28
188695	ELXd 142.806	149	1,14,28
188696	ElXd 218.803	149	1,14,28
188697	ELXd 242.807	149	1,14,28
188698	ELXc 213.870	140	1,14,28
188699	ELXc 218.871	140	1,14,28
188700	ELXc 142.872	140, 141	1,14,28
188704	ELXc 136.207	156	14
188705	ELXc 236.208	156	14
188706	ELXc 158.209	156	14
188707	ELXc 258.210	156	14
188708	ELXc 136.207	156	14
188709	ELXc 236.208	156	14
188710	ELXc 158.209	156	14
188711	ELXc 258.210	156	14
188712	ELXc 213.870	142	1,14,28
188713	ELXc 218.871	142	1,14,28
188714	ELXC 142.872	142,143	1,14,28
188717	ElXd 135.823	161	1,14,28
188744	ElXc 418.204	155	1,14,28
188864	ElXd 117.715	150	1,14,28
188865	ElXd 117.715	150	1,14,28
188866	ElXd 217.717	150	1,14,28
188867	ElXd 217.717	150	1,14,28
188868	ELXc 136.216	157	1,14,28
188869	ELXc 236.217	157	1,14,28
188870	ELXc 158.218	157	1,14,28
188871	ElXc 258.219	157	1,14,28
188873	ELXd 118.718	137,161	1,14,28
188874	ElXd 218.719	137,161	1,14,28
188875	ELXd 136.720	137,161	1,14,28
188876	ElXd 236.721	137,161	1,14,28
188877	ELXd 158.722	137,161	1,14,28
188878	ElXd 258.723	161	1,14,28
188886	ELXc 213.874	145	1,14,28
188887	ELXc 218.875	145	1,14,28
188888	ELXc 142.876	145,146	1,14,28
188889	ELXc 242.877	145,146	1,14,28
188912	ELXc 136.216	157	1,14,28
188913	ELXc 236.217	157	1,14,28
188914	ELXc 158.218	157	1,14,28
188915	ELXc 258.219	157	1,14,28
188921	ElXc 135.220	156	14,28
188922	ELXc 235.221	156	14,28
188923	ElXd 142.709	150	1,14,28
188924	ElXd 142.709	150	1,14,28
188932	ELXd 135.724	162	1,14,28
188933	ElXd 235.725	162	1,14,28
188945	ELXC 139.632	154	1,14,28
188946	ELXC 154.633	154	1,14,28
188947	ELXc 180.634	154	1,14,28
188948	ELXc 239.635	154	1,14,28
188949	ELXc 254.636	154	1,14,28

Ref. No.	Type	Page	Approval
188950	ELXc 280.637	154	1,14,28
188952	ELXd 118.705	150	1,14,28
188953	ElXd 118.705	150	1,14
188954	ELXd 218.707	150	1,14,28
188955	ELXd 218.707	150	1,14
188974	ElXd 242.711	150	1,14,28
188975	ELXd 242.711	150	1,14
188991	EHXC 20.329 B	8	1,14,28
188992	EHXC 20.329 I	8	1,14,28
188993	EHXc 35G.327 B	8	1,14,28
188994	EHXC 35G.327 I	8	1,14,28
400548	32020	307	1
400671	94066	354	-
400699	80474	354	-
400732	97755	356	-
400772	80476	355	-
400779	80475	354	-
400817	85076	326	-
400818	85076	326	-
400819	85077	337	-
400820	85077	337	-
400913	12600	75	1
400914	12600	75	1
400915	12610	75	1
400916	12610	75	1
400917	12614	75	1
400918	12614	75	1
401536	94444	354	-
401549	94438	355	-
401970	97754	356	-
500105	36010	194	1
500106	36011	194	1
500296	Capacitor	276	1
500299	Capacitor	276	1
500300	Capacitor	276	1
500301	Capacitor	276	1
500302	Capacitor	276	1
500303	Capacitor	276	1
500304	Capacitor	276	1
500305	Capacitor	276	1
500315	Capacitor	276	1
500316	Capacitor	276	1
500317	Capacitor	276	1
500318	Capacitor	276	1
500319	Capacitor	276	1
500320	Capacitor	276	1
500321	Capacitor	276	1
500322	Capacitor	276	1
500323	Capacitor	276	-
500401	NaHJ 250.011	34	-
500402	NaHJ 400.737	34	1
500403	NaHJ 400.012	34	1
500574	35613	187	1,3
500757	84001	206, 209	-
500810	64401	334	1,33
500843	STr 50/12.207	296	-
500969	NaHJ 250.727	34	1,19
500976	NaHJ 250.727	34	1,19
501351	08400	347	-
501352	08400	347	-
501356	64601	334	1,33
501358	64601	334	1,33
501533	09145	203	1
501534	09146	203	1
501942	97268	314	-
502004	33500	314	1,34
502064	97320	315	-
502111	31020	315	1,34
502112	31030	315	1,34
502394	33600	77	1

ENEC la applied$2 \mathrm{EA}^{15} \text { (D) }$			
$3 \mathrm{c} \mathrm{UL}_{\mathrm{L}} \mathrm{us}$			
5 Csv			
7			
$\begin{aligned} & 13 \begin{array}{l} \text { KEMA } \\ \text { KEUR } \\ 13 a))_{\text {EMC }} \\ \hline \text { KEMA (C } \end{array} \end{aligned}$			
$14 \text { VE }$			
VDE 14a applied			
15 vDE			
17			
19			
$25 B$			
$31 \text { ®(RAM (S) }$			
32			
$33 \bigcirc$			
$34 c \boldsymbol{1}_{\text {us }}$			
35 (\#1)			

Ref. No.	Type	Page	Approval
502416	97282	315	-
502503	05202	314	-
502515	83301	350	-
502555	35942	181	1,3
502556	35962	181	1,3
502592	STr 50/12.422	296	-
502783	Capacitor	276	1
502799	NaHJ 100.941	29	1
502818	Q 125.598	38	-
503010	NaHJ 35.485	29	1,32
503041	64781	335	1,33
503136	NaHJ 70/50.695	45	1
503457	97000	327	5
503458	97000	327	5
503579	97322	325	-
503773	98087	208,228	-
503923	64201	324	1,33
503924	64201	324	1,33
504078	98011	208,226	-
504109	NaHJ 250.340	27	1
504131	$\mathrm{NaHJ} 100 / 70.703$	29,45	1
504135	$\mathrm{NaHJ} 150 / 100.973$	29,45	1
504202	28315	215	1
504296	31690	316	1
504297	31691	316	1
504302	64719	334	1,33
504303	64719	334	1,33
504351	Capacitor	276	1
504416	31695	83	1
504467	Q 250.417	41	1,32
504474	Q 400.001	41	1,32
504615	97321	336	-
504640	83226	345	-
504641	83226	345	-
504643	83227	345	-
504644	83227	345	-
504669	31696	83	1
504749	96021	351	-
504769	83283	338	-
504933	97272	199	-
504938	97277	198	-
504939	97278	198	-
505002	Q 400.001	41	1
505003	97280	199	-
505014	64770	72	1
505029	31980	82	1
505030	31981	82	1
505054	NaHJ 250.915	29	1,31,32
505118	97281	199	-
505251	93088	321	-
505389	64770	72	1,33
505720	64719	72	,
505721	64719	72	1,33
505732	09404	203	1,3
505732	09404	207	1,3
505733	09405	203	1,3,33
505734	09406	203	1,3,33
505735	09415	204	1,3,33
505736	09416	204	1,3,33
505737	09420	204	1,3,33
505739	09421	204	1,3
505745	09426	205	1,3,33
505746	09427	205	1,3,33
505747	09440	205	1,3
505750	09450	205	1,3,33
505751	09460	206	1,3,33
505782	J 400.027	34	1
505951	83310	314	-
506007	28310	215	1,33
506020	09607	358	17

Ref. No.	Type	Page	Approval
506024	09607	358	17
506026	09606	357	17
506027	09606	357	17
506120	NaHJ 100.670	28	1,19
506122	NaHJ 35.485	28	1,32
506211	94079	354	-
506247	64360	325	1,33
506249	64360	325	1,33
506255	64775	335	1,33
506257	64775	335	1,33
506263	64785	335	1,33
506265	64785	335	1,33
506267	64785	335	1,33
506366	Capacitor	276	1
506398	33700	313	1,34
506495	Capacitor	276	1
506807	93089	321	-
506943	83001	349	1,33
507049	81018	332	-
507050	81018	332	-
507052	81017	332	-
507053	81017	332	-
507075	83283	338	-
507105	34000	306	1
507133	48205	219	1
507134	48206	219	1
507177	83005	349	-
507178	83005	349	-
507181	STr 50/12.342	296	-
507256	Q 250.703	38	1
507341	NaHJ 70/50.157	28	1
507342	$\mathrm{NaHJ} 100 / 70.703$	28	1
507343	NaHJ 150/100.973	28	1
507470	33710	313	1,34
507490	97257	302,313	-
507498	NaH 50.486	29	1
507562	97677	207	-
507592	97528	85,319	-
507593	97528	85	-
507627	UNaH 150/100.722	45	1
507656	41900	82	1
507671	NaHJ 100.126	27	1,19
507697	$\mathrm{NaHJ} 70 / 50.695$	29	1
507797	97267	356	-
507798	97267	356	-
507802	83146	346	1
507803	83147	346	1
507936	LN 58.192	170,175	1
507992	45930	187	14
507993	45940	187	14
507994	45960	187	14
507995	45980	187	14
508067	97037	328	5
508186	LN 58.116	169,174	1
508245	Q 400.613	38	-
508306	33710	313	1,34
508314	09465	206	1,3
508352	96004	331	-
508353	96004	331	-
508423	28330	215	1
508468	Capacitor	276	1
508484	Capacitor	277	1
508562	97355	321	15
508563	97356	321	-
508590	09407	204	1,3
508667	Capacitor	276	1
508668	Capacitor	276	1
508723	NaHJ 250.340	29	1
508741	NaHJ 400.012	34	1
508744	NaHJ 250.011	34	-

Ref. No.	Type	Page	Approval
508746	Q 250.417	41	1
508922	LN 181.940	169	1
509100	NaHJ 150.355	28	1,19,31
509110	93034	313	-
509117	34301	83	1
509118	93035	313	-
509152	47105	217	1,3,33
509154	47106	217	1,3,33
509156	47304	217	1,3,33
509162	47505	217	1,3,33
509164	47506	217	1,3,33
509169	NaHJ 70.653	28	-
509170	NaHJ 35.638	28	-
509171	NaHJ 150.679	28	-
509213	42000	81	1,3
509214	42100	82	1,3
509263	64307	325	1,33
509295	97355	321	15
509296	97356	321	15
509340	97427	328	17
509349	LN 58.990	169,174	1
509356	31400	80	1,34
509357	33800	312	1,34
509373	L 36.120	171,175	-
509490	NaHJZ 70/50.785	32	15
509491	NaHJZ 100/70.786	32	15
509492	NaHJZ 150/100.787	32	15
509502	LN 26.813	169	1,31
509519	93059	196	-
509520	93058	196	-
509521	93057	196	-
509522	93056	196	-
509534	40710	241	1
509535	40730	241	1
509613	J 400.027	34	1
520733	97705	326	-
520734	97705	326	-
520735	85074	326	-
520736	85074	326	-
520759	97708	327	-
520760	97708	327	-
520865	30470	306	1,34
520880	94455	312	-
520882	94457	312	-
520992	L13.210	168,173	-
521010	80280	312	-
521123	84105	228	1,3
525583	97760	313	-
525791	STr 50/12.109	296	-
525893	80016	241	-
526019	27780	212	1
526020	27781	212	1
526021	28580	212	,
526022	28581	212	1
526169	Capacitor	277	1
526170	Capacitor	277	1
526171	Capacitor	277	1
526196	NaHJ 150.679	27	-
526517	NaHJ 35.485	26	1
526616	NaHJ 150.679	29	-
526715	Q 1000.311	41	-
526886	97497	336	17
527191	LN 36.130	169,174	1
527196	LN 36.201	170,175	1
527502	71001	181	1,3,33
527503	71002	181	1,3,33
527504	71003	181	1,3,33
527506	71011	181	1,3,33
527507	71012	181	1,3,33
527508	71013	181	1,3,33

Ref. No.	Type	Page	Approval	
527509	71014	181	1,3,33	FNV
527510	71015	181	1,3	1 -
527511	71016	181	1,3	
527512	71019	181	1,3,33	ENEC
527529	71101	182	1,3,33	la applied
527530	71102	182	1,3,33	
527531	71103	182	1,3,33	FW ${ }_{15}$ (D)
527533	71111	182	1,3,33	$2 \mathbb{C N}^{15}$
527534	71112	182	1,3,33	
527535	71113	182	1,3,33	(1)
527536	71114	182	1,3,33	c UL US
527537	71115	182	1,3	
527538	71116	182	1,3	
527539	71119	182	1,3,33	(1)
527556	71201	184	1,3,33	5 csv
527557	71202	184	1,3,33	
527558	71203	184	1,3,33	
527560	71211	184	1,3,33	
527561	71212	184	1,3,33	7 -
527562	71213	184	1,3,33	
527563	71214	184	1,3,33	
527564	71215	184	1,3	13 KEMA
527565	71216	184	1,3	
527566	71219	184	1,3,33	
527585	71301	182	1,3,33)) ${ }_{\text {KEMA }}^{\text {KEMA }}$
527586	71302	182	1,3,33	13a)EMC
527587	71303	182	1,3,33	
527589	71311	182	1,3,33	
527590	71312	182	1,3,33	
527591	71313	182	1,3,33	14 -
527592	71314	182	1,3,33	
527594	71315	182	1,3	VDE
527595	71316	182	1,3	14a applied
527596	71319	182	1,3,33	
527735	71501	180	1,3,33	
527736	71502	180	1,3,33	
527737	71503	180	1,3,33	15 VD
527739	71511	180	1,3,33	
527740	71512	180	1,3,33	
527741	71513	180	1,3,33	$17 \bigcirc$
527742	71514	180	1,3,33	
527743	71515	180	1,3	
527744	71516	180	1,3	0
527745	71519	180	1,3,33	19
527762	71601	185	1,3,33	
527763	71602	185	1,3,33	
527764	71603	185	1,3,33	
527766	71611	185	1,3,33	
527768	71612	185	1,3,33	
527769	71613	185	1,3,33	(5)
527770	71614	185	1,3,33	28 EMC
527771	71615	185	1,3	
527772	71616	185	1,3	
527773	71619	185	1,3,33	IRAM (S)
527790	71701	184	1,3,33	31
527791	71702	184	1,3,33	
527792	71703	184	1,3,33	
527794	71711	184	1,3,33	
527795	71712	184	1,3,33	
527796	71713	184	1,3,33	
527797	71714	184	1,3,33	
527798	71715	184	1,3	$33 \sim$
527799	71716	184	1,3	
527800	71719	184	1,3,33	
528029	71801	183	1,3,33	-
528030	71802	183	1,3,33	34 c
528031	71803	183	1,3,33	
528033	71811	183	1,3,33	
528034	71812	183	1,3,33	$35(-1)^{\text {un }}$
528035	71813	183	1,3,33	

Ref. No.	Type	Page	Approval
528036	71814	183	1,3,33
528037	71815	183	1,3
528038	71816	183	1,3
528039	71819	183	1,3,33
528089	72001	186	1,3,33
528090	72002	186	1,3,33
528091	72003	186	1,3,33
528093	72011	186	1,3,33
528094	72012	186	1,3,33
528095	72013	186	1,3,33
528096	72014	186	1,3,33
528097	72015	186	1,3
528098	72016	186	1,3
528099	72019	186	1,3,33
528116	72101	186	1,3,33
528117	72102	186	1,3,33
528118	72103	186	1,3,33
528120	72111	186	1,3,33
528121	72112	186	1,3,33
528122	72113	186	1,3,33
528123	72114	186	1,3,33
528124	72115	186	1,3
528125	72116	186	1,3
528126	72119	186	1,3,33
528236	Q 400.616	38	1,19
528252	12900	76	15
528253	12910	76	15
528254	12911	76	15
528521	Q 700.035	41	-
528536	NaHJ 1000.089	35	1
528548	NaHJ 1000.089	35	1
528554	Capacitor	277	1
528555	Capacitor	277	1
528582	L 18.121	171,175	1
528761	Q 1000.096	41	1
528886	Q 1000.145	41	1
528958	12901	76	15
529029	LN 36.149	169,174	1
529072	NaHJ 250.163	27	-
529087	NaHJ 250.204	27	1,19
529464	97498	336	-
529560	NaH 600.140	34	-
529596	40712	241	1
529599	64740	335	1,33
529665	Capacitor	277	1
529666	Capacitor	277	1
529832	84101	207	1,3
529836	84103	208	-
529841	34311	83	1
529845	34326	83	1
530007	L 36.334	169,174	1,19,25,31
530008	L 36/40.443	170, 175	,
530024	30400	304	1
530025	30450	304	1
530026	30460	304	1
530027	30465	304	1
530079	43520	237	1
530195	NaHJ 100.271	27	-
530252	L 36.158	171,175	14
530458	72201	185	1,3,33
530459	72202	185	1,3,33
530460	72203	185	1,3,33
530462	72211	185	1,3,33
530463	72212	185	1,3,33
530464	72213	185	1,3,33
530465	72214	185	1,3,33
530466	72215	185	1,3
530467	72216	185	1,3
530468	72219	185	1,3,33
530535	84104	208	1,3

Ref. No.	Type	Page	Approval
530829	40711	241	1
530831	40731	241	1
530878	11000	198	1,3,33
530879	11010	198	1,3,33
530941	LN 18.131	169,174	1
531017	J 1000G. 41	37	-
531018	NaH 1000G. 46	37	-
531021	J 2000G. 42	37	-
531024	J 2000G. 40	37	-
531182	VNaH 600.02	22	-
531193	VJ 2000.05	22	-
531472	VNaHJ 1000.61	22	-
531474	VJD 2000.63	22	-
531475	VNaHJ 400 PZT .743	21	-
531476	VNaHJ 250PZT. 745	21	-
531480	VNaHJ 1000.61	22	-
531481	VJD 2000.63	22	-
532149	L18.121	171,175	1
532155	LN 2x18.135	169,174	1
532377	09420	202	1,3
532378	09421	202	1,3
532379	09422		1,3
532380	09423	203	1,3
532390	97545	337	-
532391	80023	337	-
532399	64770	339	-
532430	13010	88	34
532431	13010	88	34
532521	97685		-
532602	12801	75,358	1
532603	12801	75,358	1
532604	12811	76,358	1
532605	12811	76,358	1
532606	12812	76,359	1
532610	33906	312	1
532644	L4/6/8.218	173	-
533043	LN 18.162	170,175	1
533067	LN 30.806	175	-
533312	41500	238	1
533313	41510	238	1
533314	41520	238	1
533315	41540	238	1
533316	41550	238	1
533317	41560	238	1
533391	VNaHJ 35PZTG. 050	20	1
533392	VNaHJ 70PZTG. 051	20	1
533393	VNaHJ 100PZTG. 078	20	-
533394	VNaHJ 150PZTG. 052	20	1
533395	NaHJZ 70/50.520	31,46	1
533396	NaHJZ 100/70.519	31,46	1
533398	NaHJZ 150/100.466	31,46	
533399	QZ 80/50.551	39	-
533400	QZ 125/80.553	39	-
533428	12601	75	,
533429	12601	75	1
533430	12611	75	,
533431	12611	75	1
533432	12612	75	1
533484	NaH 600.005	34	1,19
533565	NaHJ 150.620	27	1
533568	NaHJ 70.128	26	1
533572	NaHJ 70.128	28	1
533602	NaHJ 150.159	27	1,19
533650	LN 75.170	175	1
533663	37001	81	1
533705	Q 250.606	38	-
533820	64308	325	1,33
533860	40650	239	1
533861	40651	239	,
533865	40655	240	1

Ref. No.	Type	Page	Approval
533866	40656	240	1
533947	UNaH 100/40\%.452	44	-
533948	UNaH 150/40\%.453	44	-
533949	UNaH 250/40\%.454	44	-
533957	34510	78	1
533991	64770	339	-
534016	34110	79	1
534017	34111	79	1
534073	84108	208	1,3
534080	34105	79	1
534081	34106	79	1
534087	97658	329,339	17
534088	97701	329,339	-
534089	97692	329	17
534090	97700	339	17
534097	97632	356	17
534107	VNaHJ 35PZTG. 053	20	1
534109	VNaHJ 70PZTG. 054	20	1
534111	VNaHJ 70PZTG. 067	20	-
534115	VNaHJ 150PZTG. 055	20	1
534117	VNaHJ 150PZTG. 068	20	-
534122	VNaHJ 35PZTG. 041	20	-
534128	$\mathrm{UNaH} 70 / 40 \% .501$	44	-
534220	34511	78	1
534252	LN 58.722	170,175	1
534487	NaHJ 1000.089	35	1
534490	LN 24/26.804	169	1
534540	NaHJ 150.620	27	1
534621	L 18.934	169,174	-
534624	L18.933	171,175	-
534627	L 18.936	170,175	-
534644	09900	203	1
534689	98013	353	-
534832	62063	344	1
534833	62063	344	1
534948	41530	238	1
534954	41570	238	1
534979	34120	79	1
535032	31705	315	1
535034	31755	315	1
535131	02113	234	1
535142	NaHJ 400.743	33	1
535146	30800	305	1
535191	NaHJ 70.128	28	1
535216	NaHJ 150.620	28	1
535247	97742	344,352	-
535263	30800	305	1
535267	95300	305	-
535333	UNaH 150/40\%. 142	44	-
535347	UNaH 100/40\%.522	44	-
535348	UNaH 70/40\%.525	44	-
535357	91522	328	-
535474	97734	238	17
535610	33890	313	1,34
535657	VNaHJ 70PZTG. 566	19	1
535673	64900	351	-
535674	64940	351	-
535684	62061	344	1
535685	62061	344	1
535694	80010	344,352	-
535695	VNaHJ 150PZTG. 567	19	1
535750	42200	81	1
535751	42210	81	1
535755	42222	81	1
535778	LN 2x18.135	170,175	1
535977	L 36.132	169,174	14
535988	30485	305	1
536140	NaHJ 1000.089	35	1
536142	NaHJ 400.743	33	1
536143	NaHJ 400.743	33	1

Ref. No.	Type	Page	Approval	
536144	NaHJ 400.744	33	-	FN
536145	NaHJ 400.743	33	1	1 EC
536146	NaHJ 400.743	33	1	
536147	NaHJ 250.741	33	1	ENEC
536148	NaHJ 250.741	33	1	la applied
536149	NaHJ 250.741	33	1	
536150	NaHJ 250.742	33	-	FW ${ }_{15}$ (D)
536151	NaHJ 250.741	33	1	2 ES
536152	NaHJ 250.741	33	1	
536164	97765	316	-	(1)
536199	VNaHJ 35PZTG. 568	19	1	3 c U US
536200	VNaHJ 100PZTG. 571	19	-	
536201	VNaHJ 35PZTG. 568	19	1	
536202	VNaHJ 70PZTG. 566	19	1	
536203	VNaHJ 100PZTG. 571	19	-	
536204	VNaHJ 150PZTG. 567	19	1	
536205	VNaHJ 35PZTG. 574	19	-	
536207	VNaHJ 70PZTG. 575	19	-	
536209	VNaHJ 150PZTG. 576	19	-	
536220	12612	75	1	
536258	Q 400.801	40	1	
536259	Q 400.801	40	1	
536260	Q 250.800	40	1	
536261	Q 250.800	40	1	
536378	Capacitor	275	1)) KEMA
536379	Capacitor	275	1	13a) =MC(
536380	Capacitor	275	1	
536381	Capacitor	275	1	
536382	Capacitor	275	1	
536383	Capacitor	275	1	
536384	Capacitor	275	1	
536385	Capacitor	275	1	VDE
536386	Capacitor	275	1	14a applied
536387	Capacitor	275	,	
536388	Capacitor	275	,	
536389	Capacitor	275	1	
536390	Capacitor	275	1	15 VDE
536391	Capacitor	275	,	
536392	Capacitor	275	1	S
536393	Capacitor	275	1	
536394	Capacitor	275	1	
536395	Capacitor	275	,	
536396	Capacitor	275	1	0
536397	Capacitor	275	,	
536398	Capacitor	275	1	
536399	Capacitor	275	1	
536400	Capacitor	275	1	
536401	Capacitor	275	1	
536402	Capacitor	275	1	(1)
536403	Capacitor	275	1	
536404	Capacitor	275	,	28 EMC
536405	Capacitor	275	1	
536406	Capacitor	276	-	
536428	34150	79		बRAM (S)
536429	34151	79	1	
536445	97735	344,352	-	
536446	97735	344,352	-	
536451	62062	344	1	
536452	62062	344	,	
536469	31500	80	,	
536582	NaHJ 70.128	29		
536593	NaHJ 150.620	29	1	33
536741	Capacitor	277	1	
536742	Capacitor	277	,	
536743	Capacitor	277	1	
536813	Capacitor	277	1	34 c
537079	81100	333	-	
537080	81100	333	-	
537087	83141	333	,	$35(-\sqrt{b})$
537088	83141	333	1	

Ref. No.	Type	Page	Approval
537103	Q 1000.097	41	19
537132	24100	213	1,3
537135	24110	213	1,3
537138	24120	213	1,3
537144	24150	213	1,3
537147	24160	213	1,3
537150	24170	213	1,3
537153	24350	214	1,3
537155	24360	214	1,3
537157	23350	214	1,3
537160	23360	214	1,3
537165	49100	218	1,3
537166	49105	218	1,3
537167	49106	218	1,3
537173	49500	218	1,3
537174	49505	218	1,3
537175	49506	218	1,3
537181	59100	218	1,3
537182	59105	219	1,3
537183	59106	219	1,3
537205	59500	218	1,3
537206	59505	219	1,3
537207	59506	219	1,3
537403	STr 50/12.109	297	-
537484	41600	242	1
537628	94448	355	-
537703	Q 400.801	40	1
537726	NaHJ 250.741	33	1
537744	L 15.007	175	-
537750	L 30.006	175	-
537763	NaHJ 150.620	29	1
537793	NaHJ 150.679	27	-
537869	Q 400.715	40	-
537873	Q 400.732	40	-
538034	Q 400.801	40	1
538072	L 361.342	174	1
538089	09700	356	-
538189	NaHJ 70.128	30	1
538204	NaHJ 400.743	33	1
538258	NaHJ 35.485	30	1
538262	NaHJ 150.620	30	1
538264	NaHJ 150.620	30	1
538361	$\mathrm{NaHJ} 70 / 50.520$	28	1
538407	NaHJ 70.128	26	1
538537	NaHJ 70.653	30	-
538540	Q 1000.096	41	1
538543	NaHJ 150.620	28	1
538592	UNaH 400/40\%.892	47	-
538620	NaHJ 400.744	33	-
538675	PKNaHJ 70.128	24	-
538676	PKNaHJ 100.941	24	-
538677	PKNaHJ 150.620	24	-
538678	PKNaHJ 250.741	25	-
538679	PKNaHJ 400.743	25	-
538680	PKNaHJ 70.653	24	-
538681	PKNaHJ 100.271	24	-
538682	PKNaHJ 150.679	24	-
538683	PKNaHJ 250.742	25	-
538684	PKNaHJ 400.744	25	-
538685	PKNaHJ 70.128	24	-
538686	PKNaHJ 100.941	24	-
538687	PKNaHJ 150.620	24	-
538688	PKNaHJ 250.741	25	-
538689	PKNaHJ 400.743	25	-
538690	PRKUNaH 70/40\%.525	42	-
538691	PRKUNaH 100/40\%.522	42	-
538692	PRKUNaH 150/40\%. 142	42	-
538693	PRKUNaH 250/40\%.936	43	-
538694	PRKUNaH 400/40\%.906	43	-
538695	PRKUNaH 70/40\%.525	42	-

Ref. No.	Type	Page	Approval
538696	PRKUNaH 100/40\%.522	42	-
538697	PRKUNaH 150/40\%. 142	42	-
538698	PRKUNaH 250/40\%.936	43	-
538699	PRKUNaH 400/40\%.906	43	-
538700	PRKUNaH 70/40\%. 525	42	-
538701	PRKUNaH 100/40\%.522	42	-
538702	PRKUNaH 150/40\%. 142	42	-
538703	PRKUNaH 250/40\%.983	43	-
538704	PRKUNaH 400/40\%.937	43	-
538705	PRKUNaH 70/40\%.525	42	-
538706	PRKUNaH 100/40\%.522	42	-
538707	PRKUNaH 150/40\%. 142	42	-
538708	PRKUNaH 250/40\%.983	43	-
538709	PRKUNaH 400/40\%.937	43	-
538710	UNaH 400/40\%.906	47	1
538711	UNaH 250/40\%.936	47	1
538715	UNaH 400/40\%.937	47	-
538801	L 18.249	171,175	14
538807	NaHJ 35.485	30	1
538810	NaHJ 70.128	30	1
538823	NaHJ 70.128	30	1
538828	NaHJ 70.653	30	-
538830	NaHJ 70.128	29	1
538831	NaHJ 150.620	29	1
538834	NaHJ 150.620	30	1
538843	NaHJ 150.625	30	1
539050	UNaH 150/100.722	45	1
539081	NaHJ 100.581	30	1
539128	23370	214	1,3
539209	NaHJ 400.743	33	1
539212	NaHJ 1000.089	35	1
539223	NaHJ 70.128	30	1
539270	NaHJ 150.355	29	1,19,31
539274	NaHJ 250.741	33	1
539283	UNaH 250/40\%.746	47	-
539286	NaHJ 150.620	30	1
539306	NaHJ 150.620	30	1
539311	NaHJ 150.679	30	-
539328	PRKUNaH 70/40\%. 525	42	-
539329	PRKUNaH 70/40\%.525	42	-
539330	PRKUNaH 100/40\%.522	42	-
539331	PRKUNaH 100/40\%.522	42	-
539332	PRKUNaH 150/40\%. 142	42	-
539333	PRKUNaH 150/40\%. 142	42	-
539334	PRKUNaH 250/40\%.936	43	-
539335	PRKUNaH 400/40\%.906	43	-
539336	PRKUNaH 250/40\%.936	43	-
539337	PRKUNaH 400/40\%.906	43	-
539384	UNaH 600/40\%.060	47	-
539434	NaHJ 70.128	26	1
539492	NaHJ 100.941	28	1
539497	34520	78	1
539515	$\mathrm{NaH} 50 / 35.797$	29,45	1
539517	UNaH 250/40\%.747	47	-
539609	NaHZ 50/35.797	31	1
542349	NaHJ 250.340	29	1
542503	41663	242	1
542557	NaHJ 150.679	30	-
542983	28740	211	1
542984	28741	211	1
543048	85011	320	-
543049	85012	320	-
543053	85013	320	-
543054	85012	320	-
543058	85015	320	-
543059	85016	320	-
543267	31530	80	1
543295	PKNaHJ 100.345	24	-
543299	PKNaHJ 150.301	24	-
543303	62370	74,344	1

Ref. No.	Type	Page	Approval
543304	62070	74,343	1
543349	NaHJ 100.941	29	1
543378	PKNaH 50PZT. 992	24	-
543384	PRKUNaH 70/40\%.525	42	-
543385	PRKUNaH 150/40\%. 142	42	-
543386	PRKUNaH 250/40\%.936	43	-
543388	PRKUNaH 100/40\%.522	42	-
543389	PRKUNaH 400/40\%.906	43	-
543401	PKNaHJ 35.008	24	-
543414	62415	74,343	1
543530	32210	303, 306, 309	1
543615	97765	316	-
543640	09701	357	-
543641	09701	357	-
543643	42242	81	1
543733	VNaH 50 PZTG .058	20	-
543737	NaHJ 35.209	28	1
543738	NaH 50.206	28	1
543739	NaHJ 100.213	28	1
543740	NaHJ 150.216	33	1
543741	NaHJ 70.226	28	1
543742	PRKUNaH 70/40\%.525	42	-
543743	PRKUNaH 100/40\%.522	42	-
543744	PRKUNaH 150/40\%. 142	42	-
543745	PRKUNaH 250/40\%.936	43	-
543746	PRKUNaH 400/40\%.906	43	-
543747	UNaH 250/40\%.936	47	1
543748	UNaH 400/40\%.906	47	1
543770	40560	240	1
543771	40561	240	1
543772	40562	240	1
543773	40563	240	1
543777	40566	240	1
543778	40567	240	1
543781	40570	240	1
543782	40571	240	1
543783	40572	240	1
543784	40573	240	1
543787	40576	240	1
543788	40577	240	1
543793	40660	239	1
543794	40661	239	1
543795	40662	239	1
543796	40663	239	1
543800	40666	239	1
543801	40667	239	1
543802	40670	239	7
543803	40671	239	7
543805	40672	239	7
543806	40673	239	7
543809	40676	239	7
543810	40677	239	7
543986	NaHJ 400.743	33	1
544000	41600	242	1
544011	41672	242	1
544210	NaHJ 250.741	33	1
544605	62009	73,343	1
544621	64800	351	-
544728	UNaH 70/40\%.525	45	-
544729	UNaH 150/40\%. 142	45	-
544730	UNaH 100/40\%.522	45	-
544760	PRKUNaH 50/40\%.021	42	-
544787	NaHJ 1000.089	35	1
544895	34700	78	la
544896	34720	78	la
545261	22860	217	1
545262	22861	217	1
545405	LN 26.238	170	1
545894	09446	205	1,3
545896	09447		1,3

[^0]: Circuit diagrams see page 96

[^1]: Circuit diagrams see page 96

[^2]: Circuit diagrams see page 96

[^3]: Circuit diagrams see page 190

[^4]: Circuit diagrams see page 96

[^5]: Circuit diagrams see page 96

[^6]: * Please ensure that lamps are only dimmed if specified as "dimmable" by the manufacturer.

[^7]: Source: Epcos Databook 201

[^8]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^9]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^10]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^11]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^12]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^13]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^14]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^15]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^16]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^17]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^18]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^19]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^20]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^21]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^22]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^23]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^24]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017
 ** Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI $1000 / 1 \mathrm{~K}$ (see page 60)

[^25]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017
 ** Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI $1000 / 1 \mathrm{~K}$ (see page 60)

[^26]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017
 ** Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI $1000 / 1 \mathrm{~K}$ (see page 60)

[^27]: * Step 2: $E E I=A 3$, minimum EU energy efficiency requirements as of 2012 | Step 3: $A 2$, minimum EU energy efficiency requirements as of 2017
 ** Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI $1000 / 1 \mathrm{~K}$ (see page 60)

[^28]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^29]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^30]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^31]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^32]: * Step 2: EEI = A3, minimum EU energy efficiency requirements as of 2012 | Step 3: A2, minimum EU energy efficiency requirements as of 2017

[^33]: * With IPP technology

[^34]: * With IPP technology

[^35]: * With IPP technology

[^36]: With IPP technology
 ** For flange-mounting with gasket for degree of protection IP55

[^37]: * Not suitable for HI lamps types NDL, WDL or for HS lamps types S, de-Luxe, Comfort or similar

[^38]: Suitable ballasts see page 38 , 40 und 41

[^39]: * For full-load lamp start

[^40]: * The devices are fifted with a temperature switch to protect against impermissible overheating.

 Once the device has cooled down, it is switched on again. It may prove necessary to briefly dis- and then reconnect the device to the mains voltage.
 ** The temperature protection inside the luminaire must be checked when using devices without a cap.
 ***To achieve the mean service life, the max. temperature (tc max.) at the t_{c} point must not be exceeded; failure rate $=0.2 \%$ per 1000 hrs

[^41]: * With a conductor of, for instance, 100 pF per $\mathrm{m}\left(3 \times 2.5 \mathrm{~mm}^{2}\right)$ - wiring must be taken into consideration

[^42]: * Voltage range 210-275 V ** Voltage range 250-315 V

[^43]: * Z 400 M VS power ignitor is not suitable for C -HI lamps

[^44]: Circuit diagrams see pages 255-259

[^45]: Circuit diagrams see pages 255-259

[^46]: Circuit diagrams see pages 255-259

[^47]: Circuit diagrams see pages 255-259

[^48]: Circuit diagrams see pages 255-259

[^49]: Preliminary data

[^50]: Circuit diagrams see pages 255-259

[^51]: Circuit diagrams see pages 255-259

[^52]: Circuit diagrams see pages 255-259

[^53]: Circuit diagrams see pages 255-259

[^54]: Circuit diagrams see pages 255-259

[^55]: Circuit diagrams see pages 255-259

[^56]: Preliminary data

[^57]: Preliminary data

[^58]: Circuit diagrams see pages 255-259

[^59]: Circuit diagrams see pages 255-259

[^60]: Circuit diagrams see pages 255-259

[^61]: * Energy efficiency: EEI $=$ B2 and EEI $=\mathrm{B} 1$, valid until 2017

[^62]: * Energy efficiency: $\mathrm{EEI}=\mathrm{B} 2$ and $\mathrm{EEI}=\mathrm{B} 1$, valid until 2017
 ** Ballasts without CE mark for markets outside of the EU

[^63]: * Energy efficiency: EEI = B2 and EEI=B1, valid until 2017

[^64]: * Energy efficiency: EEI = B2 and EEI=B1, valid until 2017

[^65]: * Energy efficiency: $\mathrm{EEI}=\mathrm{B} 2$ and $\mathrm{EEI}=\mathrm{B} 1$, valid until 2017
 ** Ballasts without CE mark for markets outside of the EU

[^66]: * Energy efficiency: EEI=B2 and EEI=B1, valid until 2017
 ** Ballasts without CE mark for markets outside of the EU

[^67]: * Lampholder 527596 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
 the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

[^68]: Lampholder 527566 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
 the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

[^69]: Lampholder 530468 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
 the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

[^70]: Lampholder 528126 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
 the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

[^71]: * ELXc devices can also be wired under observation of the circuit diagram on the ballast.

[^72]: * Lampholders 528126 and 528134 may only be used in luminaires that are operated with electronic ballasts that have been certified according to
 the applicable standards and that cover the luminaire performance range of 26,32 and 42 W .

