Flow - piston inline design

Characteristics

System
Evaluation

Flow - piston inline design

Evaluation
Display

Switching
Measurement
Nominal widths DN $8 . .50$
Range
Media

Pressure
resistance
Temperature
$-20 . .+150{ }^{\circ} \mathrm{C}$
Approvals ATEX

Applications

- Industrial metering and monitoring technology
- Oil monitoring in gearings
- Flow switching in high pressure cleaners
- Flow switching in cooling plants
- Emulsion control in machine tools
- High pressure technology
- をx applications

Product Information

Sensors and Instrumentation

Function and benefits

With the inline devices the piston is located in "line" with the connection lines. In the process, the carrying bodies are predominantly manufactured as rotating and can maintain pressure resistances of up to 800 bar. There is a variety of connections available in this device group with predominantly female thread.

The devices have been designed for measurement in water and oil. For use in oil, some devices were modified so that the switching point and/or the measurement is stabilised in the event of a viscosity fluctuation.

not stabilised

Q

stabilised

Q

There are, however, also versions which are suitable for use in air or gases or which are specially modified for this use. In this case, the mechanics of the devices are provided with additional friction and damping elements.
Q (I/min)

Q (I/min)

Air

With aggressive media, other materials are used and/or a protective coating is applied to the components. Feel free to contact us for advice for this application.

Device overview

نٍ		$\begin{aligned} & \text { n } \\ & \frac{\pi}{0} \\ & \frac{0}{\square} \end{aligned}$					$\begin{gathered} \text { req u! } \\ \text { əכuełs!səı əınssəıd } \end{gathered}$			Medium				®
											$\stackrel{0}{0}$	$\begin{aligned} & \mathscr{0} \\ & \text { む } \\ & \tilde{0} \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \underset{\sim}{y} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	
M1J		\bullet			0.4.. 60	DN 8.. 25	PN 200	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel	-	-	O	O	9
$\begin{aligned} & \mathrm{H} 1 \mathrm{O1} \\ & \mathrm{H} 2 \mathrm{O} 1 \end{aligned}$		\bullet			0.1.. 65	DN $8 . .25$	$\begin{gathered} \text { PN } 200 \\ (500) \end{gathered}$	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel	-	-	O	O	11
H1VO1	토	\bullet			$2 . .220$	DN 32.. 50	PN 200	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel	\bullet	-	O	O	13
$\begin{aligned} & \mathrm{H} 1 \mathrm{O} \\ & \mathrm{H} 2 \mathrm{O} \end{aligned}$		\bullet			0.1.. 65	DN $8 . .25$	$\begin{gathered} \text { PN } 200 \\ (500) \end{gathered}$	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel	\bullet	-	O	O	15
H1VO		\bullet			$2 . .220$	DN 32-50	PN 200	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel	\bullet	-	O	O	17

Fon +49-7354-937233-0 • Fax -88
www.ghm-messtechnik.de • info@ghm-messtechnik.de

Product Information
Sensors and Instrumentation

$$		$\begin{aligned} & \text { n } \\ & \frac{\pi}{0} \\ & \frac{0}{0} \end{aligned}$							Connection material	Medium				$\begin{aligned} & \text { む } \\ & \text { П్ర } \end{aligned}$
										$\begin{aligned} & \frac{\pi}{\#} \\ & \frac{\pi}{3} \end{aligned}$	$\stackrel{0}{0}$	$\begin{aligned} & \text { y } \\ & 0 \\ & \tilde{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { D } \\ & \text { y } \\ & \text { d } \\ & \text { 웆 } \end{aligned}$	
$\begin{aligned} & \mathrm{H} 1 Z 1 \\ & \mathrm{H} 2 \mathrm{Z} 1 \end{aligned}$		-			0.1. 65	DN $8 . .25$	$\begin{gathered} \text { PN } 200 \\ (500) \end{gathered}$	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel	\bullet	-	0	O	19
H1VZ1		-			$2 . .220$	DN 32.. 50	PN 200	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel	-	-	O	O	21
$\begin{aligned} & \mathrm{H} 1 \mathrm{Z} \\ & \mathrm{H} 2 \mathrm{Z} \end{aligned}$		-			0.1.. 65	DN 8.. 25	$\begin{gathered} \text { PN } 200 \\ (500) \end{gathered}$	$-20 . .+70^{\circ} \mathrm{C}$	Brass / stainless steel	\bullet	-	O	O	23
H1VZ	\mid	\bullet			2.. 220	DN 32.. 50	PN 200	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel	-	-	O	O	25
MF-003			-		1.. 100	DN 3	PN 6	$-20 . .+80^{\circ} \mathrm{C}$	Brass	-	-	\bullet	-	27
MF-007			-		0.05.. 1	DN 7	PN 6	$-20 . .+80^{\circ} \mathrm{C}$	Brass	\bullet	-	-	-	29
FW1-..GP			-		$1 . .11$	DN 15.. 25	PN 10	$-20 . .+90^{\circ} \mathrm{C}$	Plastic	\bullet	O	-	-	30
FW1-..GM			-		1.. 11	DN $8 . .25$	$\begin{gathered} \text { PN } 100 \\ (800) \end{gathered}$	$-20 . .+90^{\circ} \mathrm{C}$	Brass	-	O	-	-	32
FW3			-		0.4..2.5	DN 8	PN 100	$-20 . .+90^{\circ} \mathrm{C}$	Brass / stainless steel	-	O	0	-	34
FW4V			-		1	DN 15	PN 300	$-20 . .+90^{\circ} \mathrm{C}$	Brass	-	\bullet	-	-	36
FWJ-...GM			-		$1 . .16$	DN $8 . .25$	PS 100	$-20 . .+90^{\circ} \mathrm{C}$	Brass	\bullet				37
RVM			-		0.04.. 3	DN 8	PN 350	$\begin{gathered} -20 . .+100^{\circ} \mathrm{C} \\ \left(1600^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel	\bullet	-	0	O	39
FX			-		0.4.. 12	DN 15	PN 10	$\begin{gathered} -20 . .+70^{\circ} \mathrm{C} \\ \left(80^{\circ} \mathrm{C}\right) \end{gathered}$	Plastic	-	-	-	-	41

GHM Messtechnik GmbH - Sales Center International Schloßstraße 6•88453 Erolzheim • Germany
Fon +49-7354-937233-0 • Fax -88
www.ghm-messtechnik.de • info@ghm-messtechnik.de

Product Information
Sensors and Instrumentation

Product Information

GHM Messtechnik GmbH - Sales Center International
Schloßstraße 6-88453 Erolzheim • Germany
Fon +49-7354-937233-0 • Fax -88
www.ghm-messtechnik.de •info@ghm-messtechnik.de
GHM
Product Information
Sensors and Instrumentation

HD1K		-	\bullet	0.1. 80	DN $8 . .25$	PN 200	$\begin{gathered} -20 . .+120^{\circ} \mathrm{C} \\ \left(-20 . .+150^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel	-	-	\bigcirc	O	87
HD2K		-	-	0,5.. 60	DN $8 . .25$	PN 200	$\begin{gathered} -20 . .+120^{\circ} \mathrm{C} \\ \left(-20 . .+150^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel		\bullet			89
A-H1.1	(Ex)	$\begin{array}{r} \text { ATE } \\ \text { IN } \\ \text { II } \\ \text { II } \end{array}$	$\begin{aligned} & \text { X swi } \\ & 1 \text { Exi } \\ & \text { G Ex } \\ & \text { D Exi } \end{aligned}$	head 4 T135			$-20 . .+120^{\circ} \mathrm{C}$						91
A-H2.1		ATE IM II II	$\begin{aligned} & \text { X swi } \\ & 1 \text { Ex } \\ & \text { G Ex } \\ & \text { D Ex } \end{aligned}$	head 4 T135			$-20 . .+120^{\circ} \mathrm{C}$						92
HR2K1		\bullet	-	$10 . .150$	DN 32.. 50	PS 200	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel	\bullet				93
HR2Z1		-	-	$10 . .300$	DN 32.. 50	PS 200	$-20 . .+120{ }^{\circ} \mathrm{C}$	Brass / stainless steel	-				97
HR2O1		-	\bullet	$10 . .300$	DN 32.. 50	PS 200	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel	\bullet				99
HR2K2		-	\bullet	15.. 80	DN 32.. 50	PS 200	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel	-				95
HR2VK1		-	\bullet	$10 . .150$	$\begin{gathered} \text { DN } 32 \text { / } 40 \\ / 50 \end{gathered}$	PS 200	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel		\bullet			$\begin{gathered} 10 \\ 1 \end{gathered}$
HR2VK2		\bullet	\bullet	10.. 150	$\begin{gathered} \text { DN } 32 \text { / } 40 \\ / 50 \end{gathered}$	PS 200	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel		-			$\begin{gathered} 10 \\ 3 \end{gathered}$
HR2VZ1		-	-	$10 . .150$	$\begin{gathered} \text { DN } 32 \text { / } 40 \\ / 50 \end{gathered}$	PS 200	$-20 . .+120^{\circ} \mathrm{C}$	Brass / stainless steel		\bullet			$\begin{gathered} 10 \\ 5 \end{gathered}$
HR2VO1		\bullet	-	10.. 150	$\begin{gathered} \text { DN } 32 \text { / } 40 \\ / 50 \end{gathered}$	PS 200	$-20 . .+120{ }^{\circ} \mathrm{C}$	Brass / stainless steel		\bullet			$\begin{gathered} 10 \\ 7 \end{gathered}$

GHM Messtechnik GmbH - Sales Center International
Schloßstraße 6•88453 Erolzheim • Germany
Fon +49-7354-937233-0 • Fax -88
www.ghm-messtechnik.de •info@ghm-messtechnik.de

Product Information
Sensors and Instrumentation

$\begin{aligned} & \text { U } \\ & \text { U } \\ & \hline 0 \end{aligned}$							$\begin{aligned} & \text { Pressure resistance } \\ & \text { in bar } \end{aligned}$			Medium				$\begin{aligned} & \mathscr{0} \\ & \tilde{\pi} \end{aligned}$	
		$\begin{aligned} & \text { 末 } \\ & \frac{\pi}{\pi} \\ & 3 \end{aligned}$								$\frac{0}{\square}$	$\begin{aligned} & \mathscr{0} \\ & \mathscr{0} \\ & \tilde{0} \end{aligned}$				
LABO-HD1K-S				\bullet		0.1. 80	DN $8 . .25$	PN 200 (PN 500)	$\begin{gathered} -20 . .+85^{\circ} \mathrm{C} \\ \left(-20 . .+150{ }^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel	\bullet	-	O	O	109
LABO-HD1K-IUFC				\bullet	0.1.. 80	DN $8 . .25$	PN 200 (PN 500)	$\begin{gathered} -20 . .+85^{\circ} \mathrm{C} \\ \left(-20 . .+150{ }^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel	\bullet	-	O	O	113	
LABO-HD2K-S			\bullet		0.5.. 60	DN 8.. 25	$\begin{aligned} & \text { PN } 200 \\ & \text { (PN 500) } \end{aligned}$	$\begin{gathered} -20 . .+85^{\circ} \mathrm{C} \\ \left(-20 . .+150^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel		\bullet			117	
LABO-HD2K-IUFC				\bullet	0.5.. 60	DN $8 . .25$	PN 200 (PN 500)	$\begin{gathered} -20 . .+85^{\circ} \mathrm{C} \\ \left(-20 . .+150^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel		-			121	
LABO-HR2E-S			\bullet		$5 . .300$	DN 32.. 50	PS 200	$\begin{gathered} -20 . .+85^{\circ} \mathrm{C} \\ \left(-20 . .+120^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel	\bullet				125	
LABO-HR2EIUFC				\bullet	$5 . .300$	DN 32.. 50	PS 200	$\begin{gathered} -20 . .+85^{\circ} \mathrm{C} \\ \left(-20 . .+120^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel	\bullet				129	
LABO-HR2VE-S			\bullet		10.. 160	DN 32.. 50	PS 200	$\begin{gathered} -20 . .+85^{\circ} \mathrm{C} \\ \left(-20 . .+150^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel		\bullet			132	
LABO-HR2VEIUFC				\bullet	$10 . .160$	DN 32..50	PS 200	$\begin{gathered} -20 . .+85^{\circ} \mathrm{C} \\ \left(-20 . .+150^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel		\bullet			136	
FLEX-HD1K		-	-	\bullet	0.1.. 85	DN 8.. 25	PN 200	$\begin{gathered} -20 . .+85^{\circ} \mathrm{C} \\ \left(-20 . .+150^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel	-	-	O	O	139	
FLEX-HD2K		\bullet	\bullet	\bullet	0,5.. 60	DN $8 . .25$	PN 200 (PN 500)	$\begin{gathered} -20 . .+85^{\circ} \mathrm{C} \\ \left(-20 . .+150^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel		\bullet			143	
FLEX-HR2E		-	\bullet	\bullet	$5 . .300$	DN 32..50	PS 200	$\begin{gathered} -20 . .+85^{\circ} \mathrm{C} \\ \left(-20 . .+120^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel	\bullet				148	
FLEX-HR2VE		-	-	-	$10 . .160$	$\begin{aligned} & \text { DN } 32 \text { / } 40 \\ & / 50 \end{aligned}$	PS 200	$\begin{gathered} -20 . .+85^{\circ} \mathrm{C} \\ \left(-20 . .+120^{\circ} \mathrm{C}\right) \end{gathered}$	Brass / stainless steel		-			152	

GHM Messtechnik GmbH - Sales Center International
Schloßstraße 6•88453 Erolzheim • Germany
Fon +49-7354-937233-0 • Fax -88
www.ghm-messtechnik.de •info@ghm-messtechnik.de
Product Information
Sensors and Instrumentation

Errors and technical modifications reserved.

CHM-HONS댜들

Product Information
Sensors and Instrumentation

Flow Indicator M1J

- No electrical supply required
- Individually calibrated display range
- Compact design

Characteristics

A piston fitted with a magnet is pushed through the medium against the force of a spring. This activates the pointer of the measuring device by means of a magnetic coupling. Because of the hermetic separation from the medium, the display unit cannot be soiled by the medium.

Technical data

Switch	without	
Nominal width	DN 8.. 25	
Process connection	female thread G $1 / 4$..G 1 (further process connections available on request)	
Display range	0.4..60 $1 / \mathrm{min}$	for details see table "Ranges"
Pressure loss	0.4.1.4 bar at $\mathrm{Q}_{\text {max }}$.	
$\mathrm{Q}_{\text {max }}$.	to $80 \mathrm{l} / \mathrm{min}$	
Tolerance	± 5 \% of full scale value	
Pressure resistance	PN 200 bar	
Media temperature	$-20 . .+120{ }^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water (oils, gases and aggressive media available on request)	
Electrical data	none	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, FKM
Non-mediumcontact materials	Acrylic, NBR	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the display range.	

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Scaling is via a $10 . .100$ \% display.

Display range $\mathrm{I} /$ min $\mathrm{H}_{2} \mathrm{O}$	Qmax. $_{\text {mad }}$ recommended	Pressure loss bar at $\mathrm{Qmax}_{\text {m }} \mathrm{O}$
$0.4-4$	10	0.6
$1.0-10$	20	
$2.0-20$	30	0.4
$3.0-30$	40	
$4.0-40$	60	0.8
$6.0-60$	80	1.4

Special ranges are available.

Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$	M1J-008GM	40	15	1.2
	G ${ }^{3} / 8$	M1J-010GM			
	G $1 / 2$	M1J-015GM			
	G ${ }^{3} 4$	M1J-020GM		18	1.1
	G 1	M1J-025GM			1.0
Stainless steel	G $1 / 4$	M1J-008GK	41	15	1.2
	G $3 / 8$	M1J-010GK			
	G $1 / 2$	M1J-015GK			1.1
	G $3 / 4$	M1J-020GK		18	
	G 1	M1J-025GK			1.0

Product Information

Sensors and Instrumentation

Handling and operation

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter
(use magnetic filter for ferritic components)

Ordering code

1. Display

J with frontal measurement display J
2. Nominal width

008 DN 8-G $1 / 4$
010 DN $10-\mathrm{G}^{3} / 8$
015 DN $15-\mathrm{G}^{1 / 2}$
020 DN $20-\mathrm{G}^{3 / 4}$
025 DN 25-G 1
3. Process connection

G female thread
4. Connection material

M	brass
K	stainless steel

5. Display range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow

004	$0.4-4 \mathrm{l} / \mathrm{min}$
010	$1.0-10 \mathrm{l} / \mathrm{min}$
020	$2.0-20 \mathrm{l} / \mathrm{min}$
030	$3.0-30 \mathrm{l} / \mathrm{min}$
040	$4.0-40 \mathrm{l} / \mathrm{min}$
060	$6.0-60 \mathrm{l} / \mathrm{min}$

Options

- Special ranges/special scaling
- Temperature display $0 . .120^{\circ} \mathrm{C}$
- Reinforced piston

Ordering information

- Specify direction of flow, medium, and display range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about display range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request display range)

GHD-HONSEERG

Product Information
Sensors and Instrumentation

Flow Display H1O1 / H2O1

- No electrical supply required
- Individually calibrated display
- Compact design

Characteristics

A piston fitted with a magnet is pushed through the medium against the force of a spring. This activates the pointer of the measuring device by means of a magnetic coupling. Because of the hermetic separation from the medium, the display unit cannot be soiled by the medium.

Technical data

Switch	without	
Nominal width	DN $8 . .25$	
Connection type	female thread G $1 / 4$.. G 1 (further process connections available on request)	
Display range	0.1.. $85 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	0.4..3.5 bar at $\mathrm{Q}_{\text {max }}$.	
$\mathbf{Q}_{\text {max }}$.	to $100 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 5 \%$ of full scale value	
Pressure resistance	PN 200 bar optionally PN 500 bar	
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$	
Media	water, oils (gases and aggressive media available on request)	
Electrical data	none	
Materials media-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, FKM
Non-mediumcontact materials	PC, acrylic	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the display range.	

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.
Standard type H1O1

Display range l/min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss bar at $\mathrm{Q}_{\text {max. }} \mathrm{H}_{2} \mathrm{O}$
$0.1-1.2$	6	0.4
$0.5-6.0$	10	0.5
$1.0-12.0$	20	0.6
$2.0-23.0$	30	0.4
$3.0-34.0$	40	
$4.0-45.0$	60	0.8
$6.0-65.0$	80	1.4
$20.0-85.0$	100	1.6

Special ranges are available.
Viscosity compensated type H2O1

Display range I/min oil		Pressure loss bar at $\mathrm{Q}_{\text {max. }}$ oil $\mathrm{mm}^{2} / \mathrm{s}$					Viscosity stability $\pm 8 \%$, min.
$\begin{gathered} 30 . .330 \\ \mathrm{~mm}^{2} / \mathrm{s} \end{gathered}$		30	60	100	205	330	
0.5-10	12	1.1	1.4	1.6	2.8	3.5	$\pm 0.3 \mathrm{l} / \mathrm{min}$
1.5-20	22	2.2	2.3	2.4			$\pm 0.5 \mathrm{l} / \mathrm{min}$
2.5-30	35	1.9	2.0	2.1	2.3	2.9	$\pm 0.8 \mathrm{l} / \mathrm{min}$
6.0-45	60					2.6	$\pm 2.7 \mathrm{l} / \mathrm{min}$
12.0-65	80	2.1	2.3	2.4	2.6	2.8	$\pm 3.0 / \mathrm{min}$

Special ranges are available.
Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$	H.O1-008GM	40	15	1.3
	G $3 / 8$	H.O1-010GM			
	G $1 / 2$	H.O1-015GM			
	G ${ }^{3} 4$	H.O1-020GM		18	1.2
	G 1	H.O1-025GM			1.1
Stainless steel	G ${ }^{1 / 4}$	H.O1-008GK	41	15	1.3
	G $3 / 8$	H.01-010GK			
	G $1 / 2$	H.01-015GK			1.2
	G ${ }^{3} / 4$	H.O1-020GK		18	
	G 1	H.01-025GK			1.1

GHD-HONSEERG

Product Information

Sensors and Instrumentation

Handling and Operation

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet.
- If the media are dirty, install a filter (use magnetic filter for ferritic components)

Ordering code

1. Construction

Options

- Special ranges/special scaling
- Pressure resistance PN 500
- Temperature display $0 . .120^{\circ} \mathrm{C}$
- reinforced piston

Ordering information

- Specify direction of flow, medium, and display range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about display range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request display range)

GHM-HONSEERG

Sensors and Instrumentation

Product Information

Flow Display H1VO1

- Viscosity stabilised from $\mathbf{3 0}$ to $200 \mathrm{~mm}^{2} / \mathrm{s}$
- No electrical supply required
- Individually calibrated display

Characteristics

A piston fitted with a magnet is pushed through the medium against the force of a spring. This activates the pointer of the measuring device by means of a magnetic coupling. Because of the hermetic separation from the medium, the display unit cannot be soiled by the medium.

Technical data

Switch	without	
Nominal width	DN 32.. 50	
Process connection	female thread G $1^{11} / 4$..G 2 (further process connections available on request)	
Display range	$2 . .220 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
$\mathrm{Q}_{\text {max }}$.	to $250 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 5 \%$ of the full scale value plus viscosity variation	
Pressure resistance	PN 200 bar	
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water, oils (gases and aggressive media available on request)	
Electrical data	none	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite DN 32..40: NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, DN 32..40: FKM
Non-mediumcontact materials	PC, acrylic	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the display range.	

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Display range $\mathbf{l} / \mathrm{min}$ $\mathrm{H}_{2} \mathrm{O}$ or oil $30 . .200 \mathrm{~mm}^{2} / \mathrm{s}$	$\mathbf{Q}_{\text {max. }}$ recommended
$2-15$	50
$5-25$	60
$10-45$	100
$20-65$	150
$30-110$	200
$50-160$	230
$100-220$	250

Special ranges are available.

Dimensions and weights

DN	G	Types	L	SW	\mathbf{X}	Weight kg
32	$\mathrm{G} 1^{1} / 4$	H1VO1-032G.	165	70	29	5.8
40	$\mathrm{G} 1^{1 / 2}$	H1VO1-040G.				5.5
50	G 2	H1VO1-050G.	150	-	26	5.0

DN 50

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Handling and Operation

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter
(use magnetic filter for ferritic components)

Ordering code

		1.	2.	3.	4.
$\mathbf{H 1 V}$	$\mathbf{O 1}$	-	\mathbf{G}	\square	\square

$\mathrm{O}=$ Option

1.	Display	
	O1	with measurement display at side O1
2.	Nominal width	
	032	DN 32-G 11/4
	040	DN 40-G 11/2
	050	DN 50-G 2
3.	Process connection	
	G	female thread
4.	Connection material	
	M	brass
	K	stainless steel
5.	Display range $\mathrm{H}_{2} \mathrm{O}$ or oil $\mathbf{3 0 . . 3 3 0 \mathrm { mm } ^ { 2 } / \mathrm { s }}$ for horizontal inwards flow	
	012	2-15l/min
	025	5-25 I/min
	040	10-45 $/ / \mathrm{min}$
	060	20-65 I/min
	100	30-110 $/ / \mathrm{min}$
	150	50-160 $\mathrm{I} / \mathrm{min}$
	200	100-220 $1 / \mathrm{min}$

Options

- Special ranges/special scaling
- Temperature display $0 . .120^{\circ} \mathrm{C}$

Ordering information

- Specify direction of flow, medium, and display range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about display range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request display range)

GHM-HONSEERG

Product Information
Sensors and Instrumentation

Flow Indicator H1O / H2O

- No electrical supply required
- Individually calibrated display
- Compact design

Characteristics

A piston fitted with a magnet is pushed through the medium against the force of a spring. This activates the pointer of the measuring device by means of a magnetic coupling. Because of the hermetic separation from the medium, the display unit cannot be soiled by the medium.

Technical data

Switch	without	
Nominal width	DN $8 . .25$	
Process connection	female thread G $1 / 4$..G 1 (further process connections available on request)	
Display range	0.1.85 $\mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	0.4.3.5 bar at $\mathrm{Q}_{\max \text {. }}$	
$\mathbf{Q m a x}_{\text {ma }}$	To $100 \mathrm{l} / \mathrm{min}$	
Tolerance	± 5 \% of full scale value	
Pressure resistance	PN 200 bar optionally PN 500 bar	
Media temperature	$-20 . .+120{ }^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water, oil (gases and aggressive media available on request)	
Electrical data	none	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, FKM

Non-medium- CW614N nickelled, PC

contact materials
Weight see table "Dimensions and weights"

Installation Standard: horizontal inwards flow from the location left; other installation positions are possible; the installation position affects the display range.

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.
Standard type H1O

Display range l/min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss bar at $\mathrm{Q}_{\text {max }} \mathrm{H}_{2} \mathrm{O}$
$0.1-1.2$	6	0.4
$0.5-6.0$	10	0.5
$1.0-12.0$	20	0.6
$2.0-23.0$	30	0.4
$3.0-34.0$	40	
$4.0-45.0$	60	0.8
$6.0-65.0$	80	1.4
$20.0-85.0$	100	1.6

Special ranges are available.

Viscosity compensated type H2O

Display range I/min oil	$\underset{\text { recomm }}{\mathbf{Q}_{\text {max. }}}$ ended	Pressure loss bar at $\mathrm{Q}_{\text {max. }}$ oil $\mathrm{mm}^{2} / \mathrm{s}$					Viscosity stability $\pm 8 \%$, min.
$\begin{gathered} 30 . .330 \\ \mathrm{~mm}^{2} / \mathrm{s} \end{gathered}$		30	60	100	$\begin{gathered} 20 \\ 5 \end{gathered}$	330	
0.5-10	12	1.1	1.4	1.6	2.8	3.5	$\pm 0.3 \mathrm{l} / \mathrm{min}$
1.5-20	22	2.2	2.3	2.4			$\pm 0.5 \mathrm{l} / \mathrm{min}$
2.5-30	35	1.9	2.0	2.1	2.3	2.9	$\pm 0.8 \mathrm{l} / \mathrm{min}$
6.0-45	60					2.6	$\pm 2.7 \mathrm{l} / \mathrm{min}$
12.0-65	80	2.1	2.3	2.4	2.6	2.8	$\pm 3.0 \mathrm{l} / \mathrm{min}$

Special ranges are available.
Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$	H.O-008GM	40	15	1.4
	G ${ }^{3} / 8$	H.O-010GM			
	G $1 / 2$	H.O-015GM			1.3
	G $3 / 4$	H.O-020GM		18	
	G 1	H.O-025GM			1.2
Stainless steel	G $1 / 4$	H.O-008GK	41	15	1.3
	G $3 / 8$	H.O-010GK			
	G $1 / 2$	H.O-015GK			
	G ${ }^{3} / 4$	H.O-020GK		18	1.2
	G 1	H.O-025GK			1.1

GHD-HONSEERG

Product Information

Sensors and Instrumentation

Handling and Operation

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet.
- If the media are dirty, install a filter (use magnetic filter for ferritic components)

Ordering code

1. Construction

	1	standard	
	2	viscosity compensated	
2.	Display		
	O	with measurement display at side O	
3.	Nominal width		
	008	DN 8 -G $1 / 4$	
	010	DN $10-\mathrm{G}$ ¹8	
	015	DN 15-G ${ }^{1 / 2}$	
	020	DN $20-\mathrm{G} \frac{3}{4}$	
	025	DN 25-G 1	
4.	Process connection		
	G	female thread	
5.	Connection material		
	M	brass	
	K	stainless steel	
6.	H 1 - Display range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow		
	001	$0.1-1.2 \mathrm{l} / \mathrm{min}$	
	005	0.5-6.0 $1 / \mathrm{min}$	
	010	1.0-12.0 $\mathrm{l} / \mathrm{min}$	
	020	2.0-23.0 $1 / \mathrm{min}$	
	030	3.0-34.0 l/min	
	040	4.0-45.0 l/min	
	060	6.0-65.0 l/min	
	080	20.0-85.0 $/ \mathrm{min}$	
	H 2 - display range oil $30 . .330 \mathrm{~mm}^{2} / \mathrm{s}$ for horizontal inwards flow		
	008	0.5-10 1/min	\bullet
	015	1.5-20 $1 / \mathrm{min}$	\bullet
	025	2.5-30 $\mathrm{l} / \mathrm{min}$	\bullet
	040	6.0-45 $\mathrm{l} / \mathrm{min}$	\bullet
	060	12.0-65 $\mathrm{l} / \mathrm{min}$	\bullet

Options

- Special ranges/special scaling
- Pressure resistance PN 500
- Temperature display $0 . .120^{\circ} \mathrm{C}$
- reinforced piston

Ordering information

- Specify direction of flow, medium, and display range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about display range).
- For gases, specify pressure (relative or absolute), temperature and medium (e.g. air) (enquire about display range).

GHM-HONSEERG

Sensors and Instrumentation
Product Information

Flow Indicator H1VO

- Viscosity stabilised from $\mathbf{3 0}$ to $\mathbf{2 0 0} \mathbf{~ m m}^{2} / \mathrm{s}$
- No electrical supply required
- Individually calibrated display

Characteristics

A piston fitted with a magnet is pushed through the medium against the force of a spring. This activates the pointer of the measuring device by means of a magnetic coupling. Because of the hermetic separation from the medium, the display unit cannot be soiled by the medium.

Technical data

Switch	without
Nominal width	DN 32.. 50
Process connection	femalethread G 1^{11}...G 2 (further process connections available on request)
Display range	$2.220 \mathrm{l} / \mathrm{min}$ for details
Qmax.	to $250 \mathrm{l} / \mathrm{min}$ table "Ranges"
Tolerance	$\pm 5 \%$ of the full scale value plus viscosity variation
Pressure resistance	PN 200 bar
Media temperature	$-20 . .+120{ }^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Media	water, oils (gases and aggressive media available on request)
Electrical data	none
Materials medium-contact	Brass construction: Stainless steel CW614N nickelled, construction: 1.4571, CW614N, 1.4310, $1.4404,1.4310$, hard hard ferrite ferrite PTFE-coated, DN 32..40: NBR DN 32..40: FKM
Non-mediumcontact materials	CW614N nickelled, PC
Weight	see table "Dimensions and weights"
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the display range.

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Display range l/min $\mathrm{H}_{2} \mathrm{O}$ or oil $30 . .200 \mathrm{~mm}^{2} / \mathrm{s}$	$\mathbf{Q}_{\text {max. }}$ recommended
$2-15$	50
$5-25$	60
$10-45$	100
$20-65$	150
$30-110$	200
$50-160$	230
$100-220$	250

Special ranges are available.

Dimensions and weights

DN	G	Types	L	SW	X	Weight kg
32	$\mathrm{G} 1^{1} / 4$	H1VO-032G.	165	70	29	5.8
40	$\mathrm{G} 1^{1} / 2$	H1VO-040G.				5.5
50	G 2	H1VO-050G.	150	-	26	5.0

GHO-HONSEERG

Product Information

Sensors and Instrumentation

Handling and Operation

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter
(use magnetic filter for ferritic components)

Ordering code

O=Option

Options

- Special ranges/special scaling
- Temperature display $0 . .120^{\circ} \mathrm{C}$

Ordering information

- Specify direction of flow, medium, and display range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about display range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request display range)

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Flow indicator H1Z1 / H2Z1

- No electrical supply required
- Individually calibrated display
- Compact design

Characteristics

A piston fitted with a magnet is pushed through the medium against the force of a spring. This activates the pointer of the measuring device by means of a magnetic coupling. Because of the hermetic separation from the medium, the display unit cannot be soiled by the medium.

Technical data

Switch	without	
Nominal width	DN $8 . .25$	
Process connection	female thread G $1 / 4$..G 1 (further process connections available on request)	
Display range	0.1..85 $\mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	0.4.3.5 bar at $\mathrm{Q}_{\max \text {. }}$	
$\mathbf{Q m a x}_{\text {ma }}$	to $100 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 5 \%$ of full scale value	
Pressure resistance	PN 200 bar optionally PN 500 bar	
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water, oil (gases and aggressive media available on request)	
Electrical data	none	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, FKM
Non-mediumcontact materials	PC, acrylic	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the display range.	

GHM-HONSㄷ=ㄷ든

Sensors and Instrumentation

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.
Standard type H1Z1

Display range I/min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss bar at $\mathrm{Q}_{\text {max }} \mathrm{H}_{2} \mathrm{O}$
$0.1-1.2$	6	0.4
$0.5-6.0$	10	0.5
$1.0-12.0$	20	0.6
$2.0-23.0$	30	0.4
$3.0-34.0$	40	
$4.0-45.0$	60	0.8
$6.0-65.0$	80	1.4
$20.0-85.0$	100	1.6

Special ranges are available.

Viscosity compensated type H2Z1

Display range 1/min oil	$\mathbf{Q}_{\text {max }}$. recommended	Pressure loss bar at $\mathrm{Q}_{\text {max. }}$ oil $\mathrm{mm}^{2} / \mathrm{s}$					Viscosity stability $\pm 8 \%$, min.
$\mathrm{mm} 2 / \mathrm{s}$		30	60	100	205	330	
0.5-10	12	1.1	1.4	1.6	2.8	3.5	$\pm 0.3 \mathrm{l} / \mathrm{min}$
1.5-20	22	2.2	2.3	2.4			$\pm 0.5 \mathrm{l} / \mathrm{min}$
2.5-30	35	1.9	2.0	2.1	2.3	2.9	$\pm 0.8 \mathrm{l} / \mathrm{min}$
6.0-45	60					2.6	$\pm 2.7 \mathrm{l} / \mathrm{min}$
12.0-65	80	2.1	2.3	2.4	2.6	2.8	$\pm 3.0 \mathrm{l} / \mathrm{min}$

Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G ${ }^{1 / 4}$	H.Z1-008GM	40	15	1.3
	G 318	H.Z1-010GM			
	G $1 / 2$	H.Z1-015GM			
	G ${ }^{3 / 4}$	H.Z1-020GM		18	1.2
	G 1	H.Z1-025GM			1.1
Stainless steel	G ${ }^{1 / 4}$	H.Z1-008GK	41	15	1.3
	G ${ }^{1 / 8}$	H.Z1-010GK			
	G $1 / 2$	H.Z1-015GK			1.2
	G ${ }^{3 / 4}$	H.Z1-020GK		18	
	G 1	H.Z1-025GK			1.1

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Handling and operation

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter
(use magnetic filter for ferritic components)

Ordering code

1. Construction

1 standard
2 viscosity compensated
2. Display Z1 with frontal measurement display Z1
3. Nominal width

008	DN $8-G^{1} / 4$
010	DN $10-G^{3} / 8$
015	DN $15-G^{1 / 2}$
020	DN $20-G^{3} / 4$
0025	DN $25-G 1$

4. Process connection

G female thread
5. Connection material

M brass
K stainless steel
6. H 1 - Display range $\mathrm{H}_{2} \mathrm{O}$ for horizontal
6. inwards flow

001	$0.1-1.2 \mathrm{l} / \mathrm{min}$	
005	0.5-6.0 $1 / \mathrm{min}$	
010	$1.0-12.0 \mathrm{l} / \mathrm{min}$	
020	2.0-23.0 $1 / \mathrm{min}$	
030	$3.0-34.0 \mathrm{l} / \mathrm{min}$	
040	4.0-45.0 $\mathrm{l} / \mathrm{min}$	
060	$6.0-65.0 \mathrm{l} / \mathrm{min}$	
080	20.0-85.0 $/ \mathrm{min}$	
H 2 - display range oil $30 . .330 \mathrm{~mm}^{2} / \mathrm{s}$ for horizontal inwards flow		
008	0.5-10 1/min	\bullet
015	1.5-20 $1 / \mathrm{min}$	\bullet
025	2.5-30 $1 / \mathrm{min}$	\bullet
040	6.0-45 $1 / \mathrm{min}$	\bullet
060	12.0-65 $/ / \mathrm{min}$	\bullet

Options

- Special ranges/special scaling
- Pressure resistance PN 500
- Temperature display $0 . .120^{\circ} \mathrm{C}$
- Reinforced piston

Ordering information

- Specify direction of flow, medium, and display range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about display range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request display range)

GHM-HONSEERG

Sensors and Instrumentation

Flow Indicator H1VZ1

- Viscosity stabilised from $\mathbf{3 0}$ to $\mathbf{2 0 0} \mathbf{~ m m}^{2} / \mathrm{s}$
- No electrical supply required
- Individually calibrated display

Characteristics

A piston fitted with a magnet is pushed through the medium against the force of a spring. This activates the pointer of the measuring device by means of a magnetic coupling. Because of the hermetic separation from the medium, the display unit cannot be soiled by the medium.

Technical data

Switch	without	
Nominal width	DN 32.. 50	
Process connection	female thread G $1^{1} 1_{4}$..G 2 (further process connections available on request)	
Display range	$2 . .220 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
$\mathrm{Q}_{\text {max. }}$	to $250 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 5 \%$ of the full scale value plus viscosity variation	
Pressure resistance	PN 200 bar	
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water, oils (gases and aggressive media available on request)	
Electrical data	none	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite DN 32..40: NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, DN 32..40: FKM
Non-mediumcontact materials	PC, acrylic	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the display range.	

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.
$\left.\begin{array}{|c|c|}\hline \begin{array}{c}\text { Display range } \\ \mathrm{I} / \mathrm{min}\end{array} & \begin{array}{c}\mathbf{Q}_{\text {max. }} \\ \text { recommended }\end{array} \\ \mathrm{H}_{2} \mathrm{O} \text { or oil } 30 . .200 \mathrm{~mm}^{2} / \mathrm{s}\end{array}\right]$

Special ranges are available.

Dimensions and weights

DN	G	Types	L	SW	X	Weight kg
32	$\mathrm{G} \mathrm{1} 1^{1} 4$	H1VZ1-032G.	165	70	29	5.8
40	$\mathrm{G} 1^{1} / 2$	H1VZ1-040G.				5.5
50	G 2	H1VZ1-050G.	150	-	26	5.0

DN 32.. 40

$$
\text { DN } 50
$$

Product Information

Sensors and Instrumentation

Handling and Operation

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter
(use magnetic filter for ferritic components)

Ordering code

$\mathrm{O}=$ Option

1.	Display	
	Z1	with frontal measurement display Z1
2.	Nominal width	
	032	DN 32-G 11/4
	040	DN 40-G 11/2
	050	DN 50-G 2
3.	Process connection	
	G	female thread
4.	Connection material	
	M	brass
	K	stainless steel
5.	Display range $\mathrm{H}_{2} \mathrm{O}$ or oil $\mathbf{3 0 . . 3 3 0 \mathrm { mm } ^ { 2 } / \mathrm { s }}$ for horizontal inwards flow	
	012	2-15I/min
	025	5-25 I/min
	040	10-45 $/ / \mathrm{min}$
	060	20-65 I/min
	100	30-110 $/ / \mathrm{min}$
	150	50-160 $\mathrm{I} / \mathrm{min}$
	200	100-220 $1 / \mathrm{min}$

Options

- Special ranges/special scaling
- Temperature display $0 . .120^{\circ} \mathrm{C}$

Ordering information

- Specify direction of flow, medium, and display range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about display range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request display range)

GHD-HONSEERG

Sensors and Instrumentation

Product Information

Flow Indicator H1Z / H2Z

- No electrical supply required
- Individually calibrated display
- Compact design

Characteristics

A piston fitted with a magnet is pushed through the medium against the force of a spring. This activates the pointer of the measuring device by means of a magnetic coupling. Because of the hermetic separation from the medium, the display unit cannot be soiled by the medium.

Technical data

Switch	without	
Nominal width	DN 8.. 25	
Process connection	female thread G $1 / 4$.. G 1 (further process connections available on request)	
Display range	0.1.85 $\mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	0.4.3.5 bar at $\mathrm{Q}_{\max \text {. }}$	
$\mathrm{Qmax}_{\text {m }}$	to $100 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 5 \%$ of full scale value	
Pressure resistance	PN 200 bar optionally PN 500 bar	
Media temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water, oil (gases and aggressive media available on request)	
Electrical data	none	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, FKM
Non-mediumcontact materials	PC, acrylic	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the display range.	

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.
Standard type H1Z

Display range I/min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss bar at $\mathrm{Q}_{\text {max. }} \mathrm{H}_{2} \mathrm{O}$
$0.1-1.2$	6	0.4
$0.5-6.0$	10	0.5
$1.0-12.0$	20	0.6
$2.0-23.0$	30	0.4
$3.0-34.0$	40	
$4.0-45.0$	60	0.8
$6.0-65.0$	80	1.4
$20.0-85.0$	100	1.6

Special ranges are available.

Viscosity compensated H2Z

Display range I/min oil	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss bar at $\mathrm{Q}_{\text {max }}$ oil mm²/s					Viscosity stability
$\begin{gathered} 30 . .330 \\ \mathrm{~mm}^{2} / \mathrm{s} \end{gathered}$		30	60	100	205	330	
0.5-10	12	1.1	1.4	1.6	2.8	3.5	$\pm 0.3 \mathrm{l} / \mathrm{min}$
1.5-20	22	2.2	2.3	2.4			$\pm 0.5 \mathrm{l} / \mathrm{min}$
2.5-30	35	1.9	2.0	2.1	2.3	2.9	$\pm 0.8 \mathrm{l} / \mathrm{min}$
6.0-45	60					2.6	$\pm 2.7 \mathrm{l} / \mathrm{min}$
12.0-65	80	2.1	2.3	2.4	2.6	2.8	$\pm 3.0 \mathrm{l} / \mathrm{min}$

Special ranges are available.

Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$	H.Z-008GM	40	15	1.4
	G $3 / 8$	H.Z-010GM			1.3
	G $1 / 2$	H.Z-015GM			
	G $3 / 4$	H.Z-020GM		18	
	G 1	H.Z-025GM			1.2
Stainless steel	G $1 / 4$	H.Z-008GK	41	15	1.3
	G $3 / 8$	H.Z-010GK			
	G $1 / 2$	H.Z-015GK			
	G ${ }^{3 / 4}$	H.Z-020GK		18	1.2
	G 1	H.Z-025GK			1.1

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Handling and Operation

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter
(use magnetic filter for ferritic components)

Ordering code

1. Construction

1 standard 2 viscosity compensated
2. Display

Z \quad with frontal measurement display Z
3. Nominal width

008	DN $8-G^{1} / 4$
010	DN $10-G^{3} / 8$
015	DN $15-G^{1 / 2}$
020	DN $20-G^{3} / 4$
025	DN $25-G 1$

4. Process connection

G female thread
5. Connection material

M brass
K stainless steel
6. H 1 - Display range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow

001	0.1-1.2 $1 / \mathrm{min}$	
005	0.5-6.0 $1 / \mathrm{min}$	
010	$1.0-12.0 \mathrm{l} / \mathrm{min}$	-
020	2.0-23.0 $\mathrm{l} / \mathrm{min}$	-
030	3.0-34.0 $1 / \mathrm{min}$	
040	4.0-45.0 $\mathrm{l} / \mathrm{min}$	
060	6.0-65.0 $1 / \mathrm{min}$	
080	20.0-85.0 $/ \mathrm{min}$	
H 2 - display range oil $30 . .330 \mathrm{~mm}^{2} / \mathrm{s}$ for horizontal inwards flow		
008	0.5-10 $\mathrm{l} / \mathrm{min}$	\bullet
015	1.5-20 $1 / \mathrm{min}$	\bullet
025	2.5-30 $1 / \mathrm{min}$	\bullet
040	6.0-45 $\mathrm{l} / \mathrm{min}$	\bullet
060	12.0-65 $\mathrm{l} / \mathrm{min}$	\bullet

Options

- Special ranges/special scaling
- Pressure resistance PN 500
- Temperature display $0 . .120^{\circ} \mathrm{C}$
- Reinforced piston

Ordering information

- Specify direction of flow, medium, and display range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about display range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request display range)

GHM-HONSEERG

Sensors and Instrumentation

Product Information

Flow Indicator H1VZ

- Viscosity stabilised from $\mathbf{3 0}$ to $\mathbf{2 0 0} \mathbf{~ m m}^{2} / \mathrm{s}$
- No electrical supply required
- Individually calibrated display

Characteristics

A piston fitted with a magnet is pushed through the medium against the force of a spring. This activates the pointer of the measuring device by means of a magnetic coupling. Because of the hermetic separation from the medium, the display unit cannot be soiled by the medium.

Technical data

Switch	without	
Nominal width	DN 32.. 50	
Process connection	female thread G $1^{11} / 4$.G 2 (further process connections available on request)	
Display range	$2 . .220 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Qmax.	to $250 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 5 \%$ of the full scale value plus viscosity variation	
Pressure resistance	PN 200 bar	
Media temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$	
Media	water, oils (gases and aggressive media available on request)	
Electrical data	none	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite DN 32..40: NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, DN 32..40: FKM
Non-mediumcontact materials	PC, acrylic	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the display range.	

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Display range l/min $\mathrm{H}_{2} \mathrm{O}$ or oil $30 . .200 \mathrm{~mm}^{2} / \mathrm{s}$	$\mathbf{Q}_{\text {max. }}$ recommended
$2-15$	50
$5-25$	60
$10-45$	100
$20-65$	150
$30-110$	200
$50-160$	230
$100-220$	250

Special ranges are available.

Dimensions and weights

DN	G	Types	L	SW	\mathbf{X}	Weight kg
32	$\mathrm{G} \mathrm{1} 1 / 4$	H1VZ-032G.	165	70	29	5.8
40	$\mathrm{G} \mathrm{1} 1 / 2$	H1VZ-040G.				5.5
50	G 2	H1VZ-050G.	150	-	26	5.0

DN 50

Product Information

Sensors and Instrumentation

Handling and Operation

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter
(use magnetic filter for ferritic components)

Ordering code

O=Option

1.	Display	
	Z	with frontal measurement display Z
2.	Nominal width	
	032	DN 32-G 11/4
	040	DN 40-G 11/2
	050	DN 50-G 2
3.	Process connection	
	G	female thread
4.	Connection material	
	M	brass
	K	stainless steel
5.	Display range $\mathrm{H}_{2} \mathrm{O}$ or oil $30 . .330 \mathrm{~mm}^{2} / \mathrm{s}$ for horizontal inwards flow	
	012	2-15I/min
	025	5-25 $/$ /min
	040	10-45 I/min
	060	20-65 I/min
	100	30-110 $\mathrm{I} / \mathrm{min}$
	150	50-160 $\mathrm{I} / \mathrm{min}$
	200	100-220 l/min

Options

- Special ranges/special scaling
- Temperature display $0 . .120^{\circ} \mathrm{C}$

Ordering information

- Specify direction of flow, medium, and display range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about display range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request display range)

GHM-HONSEERG

Flow Switch MF-003

- Compact construction

- Monitoring of small quantities of air/gas

Characteristics

Mechanical flow switch for gaseous media, with magnetic triggering of a reed switch. Robust construction in brass.

Technical data	
Switch	reed switch
Nominal width	DN 3
Process connection	female thread M5 (further process connections available on request)
Switching value	selectable between $1 . .100 \mathrm{NI} / \mathrm{min}$ (air 1 bar abs. $0^{\circ} \mathrm{C}$) The switching point is suitable for horizontally decreasing flows.
$\mathrm{Q}_{\text {max. }}$	$100 \mathrm{l} / \mathrm{min}$
Tolerance	$\pm 15 \%$ of full scale value
Pressure resistance	PN 6 bar
Media temperature	$-20 . .+80^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Medium	gas
Wiring	normally opened (n.o.) no. 0.372
Switching voltage	max. 125 V AC
Switching current	max. 0.5 A
Switching capacity	max. 10 VA
Protection class	2 - safety insulation
Ingress protection	IP 65
Electrical connection	2 wires 170 mm
Materials medium-contact	CW614N, 1.4310, hard ferrite, NBR
Non-mediumcontact materials	PVC
Weight	0.06 kg
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the switching point.

Dimensions

Handling and operation

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet.
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.

Product Information

Sensors and Instrumentation

- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Ordering code

		1.	2.
MF -	$\mathbf{0 0 3}$	\mathbf{G}	\mathbf{M}

1. Nominal width 003 DN 3-M5
2. Process connection

G female thread
3. Connection material

M
brass

Ordering information

- Specify direction of flow, medium, and switching value.
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request switching values).

GHD-HONSBERG

Product Information
Sensors and Instrumentation

Flow Switch MF-007

- Monitoring of small flows

Characteristics

Mechanical flow switch for water, with magnetic triggering of a reed switch. Robust construction in brass.

Technical data

Switch	reed switch
Nominal width	DN 7
Process connection	female thread M10x1 (further process connections available on request)
Switching value	selectable between $0.05 . .1 \mathrm{I} / \mathrm{min} \mathrm{H}_{2} \mathrm{O}$ The switching value is suitable for vertical decreasing flows from below.
$\mathbf{Q m a x}_{\text {m }}$	$21 / \mathrm{min}$
Tolerance	± 15 \% of full scale value
Pressure resistance	PN 6 bar
Media temperature	$-20 . .+80^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Media	water
Wiring	normally opened (n.o.) no. 0.453
Switching voltage	max. 120 V AC
Switching current	max. 0.5 A
Switching capacity	max. 10 VA
Protection class	2 - safety insulation
Ingress protection	IP 65
Electrical connection	2 wires 300 mm
Materials medium-contact	CW614N, hard ferrite, NBR
Non-mediumcontact materials	PTFE, CW614N nickelled, 1.4305
Weight	0.06 kg
Installation location	vertical inwards flow from below.

Dimensions

Handling and operation

- Include straight calming section of $5 \times$ DN in inlet and outlet
- Include a filter if the media are dirty (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads.

Capacitive, inductive and lamp loads must be operated using a protective circuit.

Ordering code

	1.	2.
MF	$\mathbf{0 .}$	
$\mathbf{0 0 7}$	\mathbf{G}	\mathbf{M}

1. Nominal width

007 DN 7-M10x1
2. Process connection

G female thread
3. Connection material

$$
\begin{array}{l|l}
\mathrm{M} & \text { brass } \\
\hline
\end{array}
$$

Ordering information

- Specify direction of flow, medium, and switching value.

GHD-HONSBERG

Sensors and Instrumentation

Product Information

Flow Switch FW1-...GP

- Economical design
- High switching power
- Insensitive to dirt

Characteristics

Mechanical flow switch, for fluid media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in POM material.

Technical data

Switch	reed switch
Nominal width	DN 15.. 25
Process connection	female thread G $1 / 2$... 1 (note: for plastic parts it is not possible to guarantee trueness of calibration; further process connections available on request)
Switching range	$1 . .11 \mathrm{l} / \mathrm{min}$ for details see
Pressure loss	0.2..0.8 bar at $\mathrm{Q}_{\text {max. }}$ mor details see
$\mathbf{Q m a x}_{\text {ma }}$	
Tolerance	$\pm 10 \%$ of full scale value
Pressure resistance	PN 10 bar
Media temperature	$-20 . .+90^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$
Media	water (oil available on request)
Wiring	
Switching voltage	max. 230 V AC
Switching current	max. 0.5 A
Switching capacity	max. 50 VA
Protection class	2 - safety insulation
Ingress protection	IP 67
Electrical connection	for round plug connector M12x1, 4-pole
Materials medium-contact	POM GV, POM, 1.4310, hard ferrite
Non-mediumcontact materials	PC, 1.4301, 1.4305
Weight	see table "Dimensions and weights"
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the switching point and range.

Ranges

Details in the table correspond to horizontal inwards flow with decreasing flow rate.

\mathbf{G}	DN	Switching range $I /$ min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ rec- om- mend ed	Pressure loss bar at $\mathrm{Q}_{\text {max. }} \mathrm{H}_{2} \mathrm{O}$
$\mathrm{G}^{1 / 2}$	DN 15	$1-6$	20	0.8
$\mathrm{G}^{3 / 4}$	DN 20	$1-11$	30	0.2
G 1	DN 25			

Special ranges are available.

Dimensions and weights

G	Types	L	H	B	SW	X	Weight kg
G $1 / 2_{1 / 2}$	FW1-015GP	85	30	-	27	12	0.05
G $^{3 / 4}$	FW1-020GP	100	36	36	-	18	0.15
G 1 2	FW1-025GP		38	40			0.20

FW1-015GP

FW1-020..025GP

GHM-HONSBERG

Product Information

Handling and Operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet - Include a filter if the media are dirty (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

Loosen screw slightly, push the switching head into the desired position, and then retighten the screw.

Ordering code

1. Nominal width

015	DN $15-\mathrm{G}^{1 / 2} / 2$
020	DN $20-\mathrm{G}^{3 / 4}$
025	DN $25-\mathrm{G} 1$

2. Process connection

G female thread
3. Connection material

$$
\begin{array}{l|l}
P & P O M \\
\hline
\end{array}
$$

4.	Switching range $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ for horizontal inwards flow			
	006	$1-6 \mathrm{I} / \mathrm{min}$		
	011	$1-11 \mathrm{l} / \mathrm{min}$	\bullet	\bullet

Options

- Switching value for oil
- Special values
- Cable outlet 3 m

Ordering information

- Specify direction of flow, medium, and switching range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about switching range).

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Flow Switch FW1-...GM

- Economical design
- High switching power
- Insensitive to dirt

Characteristics

Mechanical flow switch, for fluid media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass and POM.

Technical data	
Switch	reed switch
Nominal width	DN $8 . .25$
Process connection	female thread G $1 / 4$..G 1 (further process connections available on request)
Switching range	$1 . .11 \mathrm{l} / \mathrm{min}$ for details see
Pressure loss	
$\mathbf{Q}_{\text {max }}$.	to $30 \mathrm{l} / \mathrm{min}$ table Ranges
Tolerance	$\pm 10 \%$ of full scale value
Pressure resistance	PN 100 bar optionally up to PN 800 bar
Media temperature	$-20 . .+90^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$
Media	water (oils and aggressive media available on request)
Wiring	
Switching voltage	max. 230 V AC
Switching current	max. 0.5 A
Switching capacity	max. 50 VA
Protection class	2 - safety insulation
Ingress protection	IP 67
Electrical connection	for round plug connector M12x1, 4-pole
Materials medium-contact	CW614N nickelled, CW614N, POM, 1.4310, hard ferrite
Non-mediumcontact materials	PC, 1.4301, 1.4305
Weight	see table "Dimensions and weights"
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the switching point and range.

Ranges

Details in the table correspond to horizontal inwards flow with decreasing flow rate.

G	DN	Switching range $1 / m i n \mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss bar at $\mathrm{Q}_{\text {max. }} \mathrm{H}_{2} \mathrm{O}$
G $1 / 4$	DN 8	1-6	8	0.2
G ${ }^{3 / 8}$	DN 10		10	0.3
G $1 / 2$	DN 15		20	0.8
G ${ }^{3} / 4$	DN 20	1-11	30	0.2
G 1	DN 25			

Special ranges are available.

Dimensions and weights

G	Types	L	H	B	X	Weight kg
G $1 / 4$	FW1-008GM	89	30	25	18	0.35
G ${ }^{1 / 8}$	FW1-010GM					
G ${ }^{1 / 2}$	FW1-015GM	85			12	0.30
G $3 / 4$	FW1-020GM	100	36	36	18	0.75
G 1	FW1-025GM		38	40		0.85

FW1-008..010GM

FW1-015GM

FW1-020..025GM

GHM-HONSBERG

Product Information

Sensors and Instrumentation

Handling and Operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet - Include a filter if the media are dirty (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

Loosen screw slightly, push the switching head into the desired position, and then retighten the screw.

Ordering code

1. Nominal width

Options

- Switching value for oil
- Special values
- Cable outlet 3 m
- Pressure stages PS 500 and PS 800 for DN 15

Ordering information

- Specify direction of flow, medium, and switching range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about switching range).

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Flow Switch FW3

- Compact construction
- Insensitive to dirt

Characteristics

Mechanical flow switch, for fluid media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass.

Technical data

Switch	reed switch	
Nominal width	DN 8	
Process connection	female thread G $1 / 4$ (further process connections available on request)	
Adjustment range	0.4..2.5 $\mathrm{I} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	up to 1.9 bar at $\mathrm{Q}_{\text {max }}$.	
$\mathbf{Q m a x}_{\text {ma }}$	2.5..6 /min	
Tolerance	$\pm 10 \%$ of the full scale value, minimum $0.3 \mathrm{I} / \mathrm{min}$	
Pressure resistance	PN 100 bar	
Media temperature	$-20 . .+90^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water (oils available on request)	
Wiring	normally open (n.o.) No. 0.378	
Switching voltage	max. 230 V AC	
Switching current	max. 0.5 A	
Switching capacity	max. 50 VA	
Protection class	2 - safety insulation	
Ingress protection	IP 67	
Electrical connection	for round plug connector M12x1, 4-pole	
Materials medium-contact	Brass construction: CW614N nickelled, POM, 1.4310, hard ferrite	Stainless steel construction: 1.4305, POM, 1.4310, hard ferrite
Non-mediumcontact materials	PC, 1,4301, 1.4305	
Weight	0.25 kg	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the switching point.	

Ranges

Details in the table correspond to horizontal inwards flow with decreasing flow rate.

Switching value $I /$ min $\mathrm{H}_{2} \mathrm{O}$ Choose between	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure Ioss bar at $\mathrm{Q}_{\text {max. }} \mathrm{H}_{2} \mathrm{O}$
$0.4-0.6$	2.5	1.3
$0.7-1.4$	4.0	1.0
$1.5-2.5$	6.0	1.9

Special ranges are available.

Dimensions

GHM-HONSEERG

Product Information

Handling and Operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet - If the media are dirty, install a filter
(use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

As delivered, the device has been set up; if readjustment is required, loosen the screw slightly, twist the switching head to the desired position, and then retighten the screw.

Ordering code

$\mathrm{O}=$ program option

1. Nominal width

$$
008 \quad \text { DN } 8-G^{1 / 4}
$$

2. Process connection
G female thread
3. Connection material

M	brass
K	O stainless steel

Switching value selectable in the range for $\mathrm{H}_{2} \mathrm{O}$ for
4. horizontal inwards flow (specify switching value when ordering)

	006	$0.4-0.6 \mathrm{I} / \mathrm{min}$
	014	$0.7-1.4 \mathrm{I} / \mathrm{min}$
	025	$1.5-2.5 \mathrm{I} / \mathrm{min}$

Options

- Switching value for oil
- Special values
- Cable outlet 3 m

Ordering information

- Specify direction of flow, medium, and switching range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about switching range).

GHD-HONSBERG

Product Information

Flow Switch
 FW4V-015GM

- Bidirectional flow switching
- Viscosity stabilised
- Compact design

Characteristics

Mechanical flow switch, for viscous media, with spring-supported piston and magnetic triggering of a reed switch.

Technical data

Sensor	reed switch
Nominal width	DN 15
Process connection	female thread G $1 / 2$
Switching point	$1 \mathrm{l} / \mathrm{min}$ the switching point is suitable for horizontally decreasing flows.
Pressure loss	8 bar at $\mathrm{Q}_{\text {max }}$.
$\mathrm{Q}_{\text {max. }}$	$10 \mathrm{l} / \mathrm{min}$
Tolerance	± 10 \%
Viscosity stability	$\begin{aligned} & \text { at } 30 . .330 \mathrm{~mm}^{2} / \mathrm{s} \\ & \pm 10 \%, \mathrm{~min} \pm 0.5 \mathrm{I} / \mathrm{min} \end{aligned}$
Pressure resistance	PS 300 bar
Media temperature	$-20^{\circ} \mathrm{C} . .+90^{\circ} \mathrm{C}$
Ambient temperature	$-20^{\circ} \mathrm{C} . .+70^{\circ} \mathrm{C}$
Media	oils
Wiring	
Switching voltage	max. 230 V AC
Switching current	max. 0.5 A
Switching capacity	max. 50 VA
Protection class	2 - safety insulation
Ingress protection	IP 67
Electrical connection	for round plug connector M12x1, 4-pole
Materials medium-contact	CW614N nickelled, 1.4310, hard ferrite
Non-mediumcontact materials	PC, 1.4305
Weight	0.95 kg
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the switching point.

Dimensions

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet.
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads.

Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

The setting of the switching points to $1 \mathrm{l} / \mathrm{min}$ is carried out in the factory.

Ordering code

	1.	2.	3.	4.
FW4V	$\mathbf{0 1 5}$	\mathbf{G}	\mathbf{M}	$\mathbf{0 0 1}$

1. Nominal width

015 DN 15-G $1 / 2$
2. Process connection

G female thread
3. Connection material

$$
\mathrm{M} \quad \text { brass }
$$

4. Switching point $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow
001 1 I/min

Options

- Special values
- Cable outlet 3 m

Ordering information

- For viscous media specify viscosity, temperature, and medium (e.g. ISO VG 68) (enquire about switching range).

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de - info@honsberg.com

Product Information

Flow switch
 FWJ-...GM

GHD-HONSBERG

Sensors and Instrumentation

Installation location

Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the switching/display range.

- Flow rate display
- Solid construction
- Metal switching head

Characteristics

Mechanical flow switch for fluid media, with spring-supported piston and magnetic triggering of a reed switch and a display separated from the medium. Robust construction in brass

Ranges

Details in the table correspond to horizontal inwards flow with decreasing flow rate.

G	DN	Switching range $\mathrm{I} / \mathrm{min} \mathrm{H}_{2} \mathrm{O}$	Display $\mathrm{I} / \mathrm{min} \mathrm{H}_{2} \mathrm{O}$	Qmax. recommended I/min for ranges	
$\mathbf{1 - 4 / 2 - 1 0}$	$\mathbf{8 - 1 6}$				
$\mathrm{G}^{1 / 4}$	DN 8	$1-5$	$1-6$	18	20
$\mathrm{G}^{3 / 8}$	DN 10	$1-5$	20	30	
$\mathrm{G}^{1 / 2}$	DN 15	$2-10$	$2-12$	25	40
$\mathrm{G}^{3 / 4}$	DN 20	$8-16$	$6-20$	25	40

Special ranges available on request

Dimensions and weights

G	Types	\mathbf{L}	\mathbf{B}	\mathbf{X}	Ød	\mathbf{a}	$\mathbf{S W}$	Weight kg
$\mathrm{G}^{1 / 4}$	FWJ-008GM	96	30	10.5	19	1.5	27	0.61
$\mathrm{G}^{3} / 8$	FWJ-010GM	96	30	11.0	23	2	27	0.58
$\mathrm{G} \sqrt[1]{2}$	FWJ-015GM	113	40	14.5	27	2.5	36	1.09
$\mathrm{G}^{3 / 4}$	FWJ-020GM	113	40	14.5	33	2.5	36	1.01

GHM-HONSBERG

Product Information

Sensors and Instrumentation

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- Include a filter if the media are dirty (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switched on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

Loosen screws slightly, push the switching head into the desired position, and then retighten the screws.

Ordering code

1. switching head

2. Nominal width

Options

- Switching value for oil
- Special values
- Cable outlet

Ordering information

- Specify direction of flow, medium, and switching range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about switching range).

GHD-HONSBERG

Product Information

Flow Switch RVM

- Monitoring of small flows
- PN 300 / 350

Characteristics

Mechanical flow switch, for fluid media, with magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data

Switch	reed switch	
Nominal width	DN 8	
Process connection	female thread G $1 / 4$	
Switching range	0.04..3 $1 / \mathrm{min}$	for details see table "Ranges"
$\mathbf{Q}_{\text {max. }}$	to $3.6 / \mathrm{min}$	
Tolerance	$\pm 10 \%$ of full scale value	
Pressure resistance	brass construction stainless steel construction	PN 300 bar PN 350 bar
Media temperature	$-20 . .+100^{\circ} \mathrm{C}$ optionally $160{ }^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$	
Media	water (gas and aggressive media available on request)	
Wiring	normally open (n.o.) no. 0.372 changeover no. 0.282	
Switching voltage	max. 200 V AC	
Switching current	max. 1 A	
Switching capacity	max. 20 VA	
Protection class	2 - safety insulation	
Ingress protection	IP 65	
Electrical connection	DIN 43650-C plug	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4571, hard ferrite	Stainless steel construction: 1.4571, hard ferrite
Non-mediumcontact materials	switching head PBT, PA, NBR, brass nickelled, stainless steel	

Sensors and Instrumentation

Weight	
Installation location	

see table "Dimensions and weights"
Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the switching point and range.

Ranges

Details in the table correspond to horizontal inwards flow with decreasing flow rate.

Switching range $\mathrm{H}_{2} \mathrm{O}$	Types	$\mathbf{Q}_{\text {max. }}$ recommended
$40.0-130.0 \mathrm{ml} / \mathrm{min}$	RVM-008G.013	$0.168 \mathrm{I} / \mathrm{min}$
$0.1-0.6$	$\mathrm{l} / \mathrm{min}$	RVM-008G.060
$0.5-3.0$	$\mathrm{l} / \mathrm{min}$	RVM-008G.300

Special ranges are available

Dimensions and weights

Construction	Type	B	Weight kg
Brass	RVM-008GM...	17	0.14
Stainless steel	RVM-008GK...	18	0.15

GHM-HONSBERG

Product Information

Sensors and Instrumentation

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet.
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

Loosen screw slightly, push the switching head into the desired position, and then retighten the screw.

Ordering code

1. Nominal width
008 DN 8 - G $1 / 4$
2. Process connection
G female thread
3. Connection material

M	brass
K	stainless steel

4. Switching range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow

013	$40.0-130.0 \mathrm{ml} / \mathrm{min}$		
060	$0.1-$	0.6	$\mathrm{I} / \mathrm{min}$
300	$0.5-$	3.0	$\mathrm{l} / \mathrm{min}$

Options

- Switching values for oil or gas
- Special values
- Switch contact as changeover

Ordering information

- Specify direction of flow, medium, and switching range.
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request switching range).

Product Information

Flow Switch FX

- Adjusted switching value
- Integrated filter
- High switching power
- Optional flow limiter in the outlet piece

Characteristics

Mechanical flow switch, for fluid media, with magnetic triggering of a reed switch. Plastic housing with integrated filter.

Technical data

Switch	reed switch
Nominal width	DN 15
Process connection	male thread G $1 / 2 \mathrm{~A}$ (note: For plastic parts it is not possible to guarantee trueness of calibration)
Switching range	
Pressure loss	0.75..1.1 bar at $\mathrm{Q}_{\text {max. }}$ (table "Ranges"
$\mathbf{Q}_{\text {max. }}$	$12 \mathrm{l} / \mathrm{min}$ -
Tolerance	$\pm 15 \%$ of full scale value
Pressure resistance	PN 10 bar
Media temperature	$-20 . .+70^{\circ} \mathrm{C}\left(80{ }^{\circ} \mathrm{C}\right.$ at 6 bar $)$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Media	water
Wiring	normally open (n.o.) No. 0.372
Switching voltage	max. 230 V AC
Switching current	max. 1 A
Switching capacity	max. 50 VA
Protection class	2 - safety insulation
Ingress protection	IP 65
Electrical connection	cable 0.5 m
Materials medium-contact	POM GV, CW614N, CuSn8, hard ferrite, NBR, Nylon type FXF with additional spring 1.4310
Non-mediumcontact materials	PVC
Weight	without spring 0.14 kg with spring 0.15 kg
Installation location	Standard: All mounting positions except entry above are possible, the mounting position has influence on the switching point.
Filter	$25 \mu \mathrm{~m}$

Ranges

Details in the table correspond to horizontal inwards flow with decreasing flow rate.

G Spring	Switching value I/min $\mathrm{H}_{2} \mathrm{O}$ Choose between	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss bar at $\mathrm{Q}_{\text {max. }}$ $\mathrm{H}_{2} \mathrm{O}$	Type	
$\mathrm{G}^{1 / 2}$ $\mathrm{~A}^{1 / 2}$	no	$0.4-5$	12	0.75	FX-01 $5 A P$
	yes	$2.0-12$	15	1.10	FXF-0 $15 A P$

Special ranges are available

Dimensions

Handling and operation

- Include straight calming section of $5 \times$ DN in inlet and outlet
- It must be ensured that the values given for voltage, current, and power are not exceeded
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Ordering code

1. Spring-supported

> | - | without spring support |
| :--- | :--- |
| F- | with spring support |

2. Nominal width

015 DN $15-\mathrm{G}^{1 / 2}$ A
3. Process connection

A male thread
4. Connection material

P POM

Ordering information

- Specify direction of flow, medium, and switching value.
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request switching value).
- Integrated flow limiter

Options

Integrated flow limiter

Characteristics

Mechanical flow limiter for fluid media. From a pre-pressure greater than 2 bar, the flow rate is controlled to the desired volume flow.

Flow value\%
of controlled value

Technical data

\(\left.$$
\begin{array}{|l|lr|}\hline \text { Controlled values } & 3 \mathrm{I} / \mathrm{min} & \begin{array}{r}5 \mathrm{I} / \mathrm{min} \\
8 \mathrm{I} / \mathrm{min}\end{array}\end{array}
$$ \begin{array}{r}6 \mathrm{I} / \mathrm{min}

12 \mathrm{I} / \mathrm{min}\end{array}\right]\)\begin{tabular}{|lll|}

\hline | Differential |
| :--- |
| pressure | \& $2 . .10 \mathrm{bar}$ \&

\hline Tolerance \& $\pm 15 \%$ \&

\hline | Medium |
| :--- |
| temperature | \& $0 . .65^{\circ} \mathrm{C}$ \&

\hline | Ambient |
| :--- |
| temperature | \& $0 . .65^{\circ} \mathrm{C}$

\hline Medium \& water

\hline Materials \& $\mathrm{POM}, \mathrm{NBR}$

\hline Weight \& 0.05 kg additionally

\hline
\end{tabular}

GHM-HONSEERG

Product Information
Sensors and Instrumentation

Flow Indicator / Switch NH1

- Optionally switching contact
- Rotatable scale
- Visual range 360°

Characteristics

The NH1 flow indicator provides a reliable visual display of the present flow of a transparent fluid. The medium moves the indicator against the force of a spring, and in this way provides a quantitative determination of the flow, by reading the scale. The measurement tube is equipped with a dovetail guide which can optionally hold an NH1K limit value unit.

Technical data

Flow indicator NH1

Nominal width	DN 15
Process connection	female thread ${ }^{1 / 2}$ (further process connections available on request)
Display range	$3 . .15 \mathrm{l} / \mathrm{min}$ - the display range corresponds to horizontal inwards flow with increasing flow rate.
$\mathrm{Q}_{\text {max. }}$	$20 \mathrm{l} / \mathrm{min}$
Tolerance	$\pm 10 \%$ of full scale value
Pressure resistance	PN 10
Media temperature	$-20 . .+65^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+65^{\circ} \mathrm{C}$
Media	water
Materials medium-contact	CW614N nickelled, acrylic XT, POM, 1.4310, FKM. with hard ferrite switching head
Non-mediumcontact materials	CW614N nickelled, acrylic XT
Weight	0.35 kg
Installation location	vertical inwards flow from below

Switching contact NH1K

Switch	reed switch
Switching range	$3 . .15 \mathrm{I} / \mathrm{min}-$ the switching range corresponds to horizontal inwards flow with decreasing flow rate.
Tolerance	$\pm 10 \%$ of full scale value
Ambient temperature	$-20 . .+65^{\circ} \mathrm{C}$

Switching voltage	max. 250 V AC
Switching current	$\max .0 .5 \mathrm{~A}$
Switching capacity	$\max .50 \mathrm{VA}$
Protection class	2 - safety insulation
Ingress protection	IP 65
Electrical connection	for round plug connector M12x1, 4-pole
Materials	POM
Weight	0.02 kg

Dimensions

Handling and operation

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter
(use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Ordering code

	1.	2.	3.	4.	5.
$\mathbf{N H 1}$		$\mathbf{0 1 5}$	\mathbf{G}	\mathbf{M}	$\mathbf{0 1 5}$

1. Switching contact

-	flow indicator without switching contact
K-	flow indicator with switching contact

2. Nominal width

015 DN 15-G $1 / 2$
3. Process connection

G female thread
4. Connection material

M brass
5. Display range/switching range $\mathbf{H}_{2} \mathrm{O}$
for vertical inwards flow
$015 \quad 3-15 \mathrm{I} / \mathrm{min}$

Ordering information

- Specify direction of flow, medium, and display range.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Flow Indicator / Switch NO

- Optionally switching contact
- Also for dark and dirty media
- Rotatable scale
- Visual range 360°

Characteristics

Mechanical flow meter with spring-supported pistons for fluid or gaseous media. The measured value is transferred to a display ring via a magnetic coupling. Because of this separation, the display cannot become dirty. Robust construction in brass or stainless steel.

Technical data

Flow indicator NO

Nominal width	DN $8 . .25$
Process connection	female thread G $1 / 4$..G 1 (further process connections available on request)
Display range	$3 . .60 \mathrm{l} / \mathrm{min}$ for details see
$\mathbf{Q m a x}_{\text {m }}$	$60 \mathrm{l} / \mathrm{min}$ table "Ranges"
Tolerance	$\pm 10 \%$ of the full scale value, minimum $1 \mathrm{l} / \mathrm{min}$
Pressure resistance	PN 50 bar
Media temperature	$-20 . .+90{ }^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$
Media	water (oils, gases and aggressive media available on request)
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR, FKM
Non-mediumcontact materials	Acrylic XT
Weight	see table "Dimensions and weights"
Installation location	Standard: Horizontal inwards flow from the left; other installation positions are possible; the installation position affects the switching point and range.

Switch contact NOK

Switch	reed switch
Switching range	$3 . .50 \mathrm{l} / \mathrm{min}$, for details see table "Ranges"
Tolerance	$\pm 5 \%$ of the full scale value, minimum $1 \mathrm{l} / \mathrm{min}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Wiring	normally open (n.o.) no. 0.378

Switching voltage	max. 250 V AC
Switching current	$\operatorname{max.1~A~}$
Switching capacity	max. 50 VA
Protection class	2 - safety insulation
Ingress protection	IP 65
Electrical connection	for round plug connector M12x1, 4-pole
Materials	POM
Weight	0.02 kg

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.

G	Display range l/min $\mathrm{H}_{2} \mathrm{O}$	Switching range l/min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended	Types
$\mathrm{G}^{1 / 4}$	$3-15$	$3-12$	15	NO.-008G.015
$\mathrm{G}^{3 / 8}$				NO.-010G.015
$\mathrm{G}^{1 / 2}$	$5-30$	$5-25$	30	NO.-015G.030
$\mathrm{G}^{3 / 4}$	$5-50$	$5-40$	50	NO.-020G.030
G 1	$10-60$	$10-50$	60	NO.-025G.060

GHD-HONSEERG

Product Information

Sensors and Instrumentation

Dimensions and weights

\mathbf{G}	Types	\mathbf{X}	Weight kg
$\mathrm{G}^{1 / 4}$	NO.-008G.015	13	1.30
$\mathrm{G}^{3 / 8}$	NO.-010G.015		1.25
$\mathrm{G}^{1 / 2}$	NO.-015G.030	15	
$\mathrm{G}^{3 / 4}$	NO.-020G.030	18	1.15
G 1	NO.-025G.060		1.05

Handling and Operation

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet.
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.
- Remove the transport lock (white plastic screw in acrylic body) before starting operation. Then seal the threaded hole with the sticker (included in the shipment).

Ordering code

O=Option

1. Switching contact

$$
\begin{array}{|l|l|}
\hline- & \text { flow indicator without switching contact } \\
\hline \text { K- } & \text { flow indicator with switching contact } \\
\hline
\end{array}
$$

2. Nominal width

	008
	DN $8-\mathrm{G}^{1 / 4}$
	010
015	DN $10-\mathrm{G}^{3 / 8}$
	020
	DN $15-\mathrm{G}^{1 / 2}$
	025

3. Process connection G female thread
4. Connection material M brass
5. Display range/switching range $\mathrm{H}_{2} \mathrm{O}$
6. for vertical inwards flow

	015	$3-15 \mathrm{I} / \mathrm{min}$			
	030	$5-30 \mathrm{I} / \mathrm{min}$			\bullet
050	$5-50 \mathrm{I} / \mathrm{min}$		\bullet		
	050	$10-60 \mathrm{I} / \mathrm{min}$	\bullet		

Options

- Display range 20.. 100 \%
- Special values

Ordering information

- Specify direction of flow, medium, and display range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about display range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request display range)

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Flow indicator OT-...AM

- precise an quick balancing
- flow rate displayed directly in I/min
- regulating valve with adjustment scale

Characteristics

The mechanical flow indicator enables a quantitative flow signalling. With the adjustment valve water amounts are stopped exactly and readily.

Technical data	
Nominal width	DN $8 . .25$
Process connection	Female thread G ${ }^{3} 4$ A G 1 A
Display range	0,6..30 $\mathrm{l} / \mathrm{min}$ for details see
Qmax.	to $30 \mathrm{l} / \mathrm{min}$ table "Ranges"
Tolerance	$\pm 10 \%$ of the full scale value, minimum $0,2 \mathrm{l} / \mathrm{min}$
Pressure resistance	PN 10 bar
Media temperature	$-20 . .+100{ }^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$
Media	Water
Materials medium-contact	CW614N, PSU, PP,1.4310, EPD11
Weight	see table "Dimensions and weights"
Installation location	Installation position may influence indicating range. Scale arrange - ment for upward flow.

Ranges
Type PN bar Indicating range I/min $\mathrm{H}_{2} \mathrm{O}$ $\mathbf{Q}_{\text {max. }}$ rec. I/min $\mathrm{H}_{2} \mathrm{O}$ OT-020AM024 $0,6-2,4$ 2,4 OT-020AM035 $1,0-3,5$ 3,5 OT-020AM080 10 $2,0-8,0$ 8,0 OT-025AM150 $4,0-15,0$ 15,0 OT-025AM300 $8,0-30,0$ 30,0

Dimensions and weights

G	Type	$\underset{\mathrm{mm}}{\mathrm{~L}}$	$\underset{\mathrm{mm}}{\mathrm{X}}$	weight kg
G ${ }_{4} / 4$	OT-020AM024	81	9	0,20
	OT-020AM035			
	OT-020AM080			
G1A	OT-025AM150	104	12	0,35
	OT-025AM300			

Ordering code

	2.	3.	4.
OT -	A	M	

1. Nominal width

| 020 | DN | $15-G^{3} / 4 \mathrm{~A}$ |
| :--- | :--- | :--- | :--- |
| 025 | DN | $20-\mathrm{G} 1 \mathrm{~A}$ |

2. Process connection

A Male thread
3. Connection material

M brass
4. Indicating range $\mathbf{H}_{2} \mathrm{O}$

	024	$0,6-2,4 \mathrm{I} / \mathrm{min}$	
	035	$1,0-3,5 \mathrm{I} / \mathrm{min}$	
	080	$2,0-8,0 \mathrm{I} / \mathrm{min}$	
	150	$4,0-15,0 \mathrm{I} / \mathrm{min}$	
	300	$8,0-30,0 \mathrm{I} / \mathrm{min}$	

Ordering information

- Please indicate flow direction, metering substance and indicating range with your order.

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Flow Indicatorl Switch NJ / NJV

- Scale for various viscosities or viscosity stabilised from 30 to $200 \mathrm{~mm}^{2} / \mathrm{s}$
- Also for dark or dirty media
- Robust construction

Characteristics

Mechanical flow meter with spring-supported piston for fluid media The measured value is transferred to a display ring via a magnetic coupling. Because of this separation, the display cannot become dirty. Robust construction in brass or stainless steel.

Technical data			
Switch	optional reed switch		
Nominal width	DN $8 . .25$		
Process connection	female thread G $1 / 4$..G 1 (further process connections available on request)		
Display range	$2 . .80 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"	
Qmax.	to $80 \mathrm{l} / \mathrm{min}$		
Tolerance	$\pm 8 \%$ of the full scale value, minimum $1 \mathrm{l} / \mathrm{min}$		
Pressure resistance	PN 100 bar		
Media temperature	$-20 . .+100{ }^{\circ} \mathrm{C}$		
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$		
Media	water (NJ only), oils (aggressive media available on request)		
Wiring	for options, see "Switch contact options"		
Switching voltage			
Switching current			
Switch performance			
Protection class			
Protection class			
Electrical connection			
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction only with NJ: 1.4571, 1.4310, hard ferrite PTFE-coated, FKM	
Non-mediumcontact materials	Acrylic HS		

GHD-HONSBERG

Sensors and Instrumentation
Weight
Installation
location
see table "Dimensions and weights"
Standard: Vertical inwards flow from below; other installation positions are possible; the installation position affects the switching point and range.

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.
Standard NJ

G	Display range I/min $\mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} \mathbf{Q}_{\text {max. }} \\ \text { recommended } \end{gathered}$	Types
G $1 / 4$	2-10	10	NJ-008G. 010
G $3 / 8$		20	NJ-010G. 010
	4-20		NJ-010G. 020
G $1 / 2$	2-10	40	NJ-015G. 010
	4-20		NJ-015G. 020
	10-40		NJ-015G. 040
G ${ }^{1 / 4}$	2-10	60	NJ-020G. 010
	4-20		NJ-020G. 020
	10-40		NJ-020G. 040
G 1	2-10	80	NJ-025G. 010
	4-20		NJ-025G. 020
	10-40		NJ-025G. 040
	20-80		NJ-025G. 080

Special ranges are available.
Multi-scale display ranges

$\mathbf{1}$	$\mathbf{2 0 - 4 5}$	$\mathbf{7 5 - 1 2 0}$	$\mathbf{1 8 0 - 2 5 0}$	$\mathbf{m m}^{2} / \mathbf{s}$
$2-10$	$0.6-8$	$0.2-7$	$0.1-4$	$\mathrm{I} / \mathrm{min}$
$4-20$	$2.0-19$	$1.0-17$	$0.5-15$	
$10-40$	$7.0-38$	$6.0-37$	$4.0-36$	
$20-80$	$19.0-73$	$17.0-68$	$13.0-63$	

Viscosity stabilised NJV
Viscosity compensated devices are measured in the factory as per ISO VG100.

G	Display range 1/min oil $30 . .200 \mathrm{~mm}^{2} / \mathrm{s}$	$Q_{\text {max. }}$ recommended	Types
G $1 / 4$	2-10	10	NJV-008G. 010
G $3 / 8$		20	NJV-010G. 010
	4-20		NJV-010G. 020
G ${ }^{1 / 2}$	2-10	40	NJV-015G. 010
	4-20		NJV-015G. 020
	10-40		NJV-015G. 040
G ${ }^{3} 4$	2-10	60	NJV-020G. 010
	4-20		NJV-020G. 020
	10-40		NJV-020G. 040
	10-60		NJV-020G. 080
G 1	2-10	80	NJV-025G. 010
	4-20		NJV-025G. 020
	10-40		NJV-025G. 040
	10-60		NJV-025G. 060

Special ranges are available.

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de - info@honsberg.com
Product Information
Sensors and Instrumentation

Dimensions and weights

G	Types	Weight kg		
		without switching head NJ- / NJV-	With switching head Plastic NJK / NJVK	with metal switching head NJM / NJVM
G $1 / 4$...-008G....	1.5	1.65	1.95
G $3 / 8$...-010G....	1.4	1.55	1.85
G $1 / 2$...-015G....	1.3	1.45	1.75
G $3 / 4$...-020G....			
G 1	...-025G....	1.2	1.35	1.65

Switch contact options

Plastic switch contacts

Switch contact K1

| Wiring | maker
 no. 0.338
 diode green |
| :--- | :--- | :--- |
| Switching voltage | $\max .250 \mathrm{~V} \mathrm{AC}$ |
| Switching current | $\max .0 .5 \mathrm{~A}$ |
| Switch performance | max. 10 VA |
| Protection class | $2-$ safety insulation |
| Ingress protection | IP 65 |
| Electrical
 connection | DIN 43650-A plug |
| Non-medium-
 contact materials | PA |
| Additional
 weight | 0.2 kg |

Switch contact K2

Wiring	normally open (n.o.) no. 0.445
Switching voltage	max. 250 V AC
Switching current	$\max .0 .5 \mathrm{~A}$
Switching capacity	max. 10 VA
Protection class	2 - safety insulation
Ingress protection	IP 65
Electrical connection	DIN $43650-\mathrm{A}$ plug
Non-medium- contact materials	PA
Additional Weight	0.2 kg

Switch contact K3

| Wiring | changeover |
| :--- | :--- | :--- |

GHM-HONSEERG

Product Information

Sensors and Instrumentation

Switch contact M1

Wiring	no. 0.333 Attention! Only hood is earthed, not the body of the flow indicator
Switching voltage	max. 250 V AC
Switching current	max. 5 A
Supply voltage	230 V AC, optionally $125 \mathrm{~V} \mathrm{AC}, 24 \mathrm{~V}$ DN (10 mA)
Protection class	1 - PE connection
Ingress protection	IP 65
Electrical connection	cable 2.5 m
Non-mediumcontact materials	steel, rilsan-coated, PA
Additional weight	0.35 kg

Switch contact M2

Wiring	normally open (n.o.) no. 0.215
	Attention! Only hood is earthed, not the body of the flow indicator
Switching voltage	max. 250 V AC
Switching current	max. 0.5 A
Switch performance	max. 10 VA
Protection class	$1-\mathrm{PE}$ connection
Ingress protection	IP 65
Electrical connection	cable 2.5 m
Non-medium- contact materials	steel, rilsan-coated, PA
Additional weight	0.3 kg

GHD-HONSEERG

Product Information

Handling and Operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet.
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

If it is necessary to set the switching value, the switching head can be adjusted lengthways. When the switching value is reached, the switch contact is fixed in place by fastening bolts.

Ordering code

O=Option

1. Construction

	NJ	standard	
	NJV	viscosity compensated	
2.	Switching contact		
	-	without switch contact	
	K1-	with switch contact K1 - wiring 0.338	
	K2-	with switch contact K2 - wiring 0.445	
	K3-	with switch contact K3 - wiring 0.347	
	M1-	with switch contact M1-wiring 0.333	
	M2-	with switch contact M2-wiring 0.215	
3.	Nominal width		
	008	DN 8-G 1_{4}	
	010	DN $10-\mathrm{G}^{3 / 8}$	
	015	DN 15-G 1/2	
	020	DN $20-\mathrm{G} 3 / 4$	
	025	DN 25-G 1	
4.	Process connection		
	G	female thread	
5.	Connection material		
	M	brass	
	K	stainless steel	
6.	NJ - display range $\mathrm{H}_{2} \mathrm{O}$ for vertical inwards flow		
	010	2-10 $\mathrm{I} / \mathrm{min}$	\bullet
	020	4-20 $1 / \mathrm{min}$	\bullet
	040	10-40 $/ / \mathrm{min}$	\bullet
	080	20-80 1/min	\bullet
	NJV - display range oil $30 . .200 \mathrm{~mm}^{2} / \mathrm{s}$ for vertical inwards flow		
	010	2-10 $1 / \mathrm{min}$	\bullet
	020	4-20 $1 / \mathrm{min}$	\bullet
	040	10-40 $/ / \mathrm{min}$	\bullet
	060	20-60 $1 / \mathrm{min}$	\bullet

Options

- Special quantities/special scaling

Ordering information

- Specify direction of flow, medium, and display range.
- For viscous media specify viscosity, temperature, and medium (e.g. ISO VG 68) (enquire about display range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request display range).

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de - info@honsberg.com
Product Information

Flow Indicator / Switch VF

- Optionally switching contact

Characteristics

Mechanical flow indicator, which provides a quantitative flow display for fluid or gaseous media.

Technical data

Flow indicator VF

Nominal width	DN 8	
Process connection	female thread G $1 / 4$	
Display range	0.005..5 //min	for details see table "Ranges"
$Q_{\text {max }}$	$51 / \mathrm{min}$	
Tolerance	$\pm 10 \%$ of full scale value	
Pressure resistance	PN 16 bar	
Media temperature	$-20 . .+100{ }^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$	
Media	water (oils to $46 \mathrm{~mm}^{2} / \mathrm{s}$, gases and aggressive media available on request)	
Materials medium-contact	Brass construction: CW614N nickelled, Duran 50, 1.4571, hard ferrite, NBR	Stainless steel construction: 1.4571, Duran 50, hard ferrite, FKM
Non-mediumcontact materials	anodised aluminium	
Weight	0.14 kg	
Installation location	Standard: Vertical inwards flow from below; other installation positions are possible; the installation position affects the switching point and range.	

GHM-HONSEERG

Sensors and Instrumentation

Switching contact VFR

Switch	reed switch
Process connection	female thread G $1 / 4$
Switching range	0.005.. $5 \mathrm{l} / \mathrm{min}$, for details see "Ranges"
Tolerance	$\pm 10 \%$ of full scale value
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Wiring	normally open (n.o.) no. 0.372
Switching voltage	max. 200 V AC
Switching current	max. 1 A
Switching capacity	max. 20 VA
Protection class	2 - safety insulation
Ingress protection	IP 65
Electrical connection	DIN 43650-C plug
Non-mediumcontact materials	PBT, PA, NBR, nickelled brass, stainless steel
Weight	0.02 kg

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.

Displaylswitching range $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended	Types
$5.0-60.0 \mathrm{ml} / \mathrm{min}$	$60.0 \mathrm{ml} / \mathrm{min}$	VF.-008G.006
$25.0-130.0 \mathrm{ml} / \mathrm{min}$	$130.0 \mathrm{ml} / \mathrm{min}$	VF.-008G.013
$0.1-0.6 \mathrm{l} / \mathrm{min}$	$0.6 \mathrm{l} / \mathrm{min}$	VF.-008G.060
$0.5-3.0 \quad \mathrm{l} / \mathrm{min}$	$3.0 \mathrm{l} / \mathrm{min}$	VF.-008G.300
$1.0-5.0 \quad \mathrm{l} / \mathrm{min}$	$5.0 \mathrm{l} / \mathrm{min}$	VF.-008G.500

Dimensions

Product Information

Handling and operation

- Include straight calming section of $5 \times$ DN in inlet and outlet.
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Ordering code

1. Types

VF	flow indicator	
	VFR	flow indicator with switching contact

2. Nominal width
008 DN 8 - G $1 / 4$
3. Process connection

G female thread
4. Connection material

M	brass
K	stainless steel

	K	stainless steel
5.	Display / switching range $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ for vertical inwards flow	
	006	$5.0-60.0 \mathrm{ml} / \mathrm{min}$
	013	$25.0-130.0 \mathrm{ml} / \mathrm{min}$
	060	$0.1-0.6 \mathrm{I} / \mathrm{min}$
	300	$0.5-3.0 \mathrm{I} / \mathrm{min}$
	500	$1.0-5.0 \mathrm{I} / \mathrm{min}$

Options

- Display and switching ranges for oil or gas
- Special values
- Scale $0 . .100$ \%
- Types VFR - switching head with changeover
- Model for air

Ordering information

- Specify direction of flow, medium, and display range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about display range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request display range)

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 - 42897 Remscheid • Germany
Fon +49-2191-9672-0 • Fax -40
www.ghm-messtechnik.de • info@honsberg.com

GHD-HONSEERG

Product Information
Sensors and Instrumentation

Flow Indicator / Switch vo

- Optionally switching contact

Characteristics

Mechanical flow indicator, which provides a quantitative flow display for fluid media.

Technical data

Flow indicator VO

Nominal width	DN 15.0.25	
Process connection	female thread G 1 1..G 1	
Display range	0.1.. $150 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
$Q_{\text {max }}$.	$150 \mathrm{l} / \mathrm{min}$	
Tolerance	± 10 \% of full scale value	
Pressure resistance	PN 10 bar	
Media temperature	$-20 . .+100{ }^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water (oils, gases and aggressive media available on request)	
Materials medium-contact	Brass construction: CW614N nickelled, Duran 50, 1.4571, hard ferrite, NBR	Stainless steel construction: 1.4571, Duran 50, hard ferrite, FKM
Non-mediumcontact materials	anodised aluminium	
Weight	see table "Dimensions and weights"	
Installation location	Standard: Vertical inwards flow from below; other installation positions are possible; the installation position affects the switching point and range.	

Switching contact VOR for DN 15

Switch	reed switch
Switching range	$0.1 . .28 \mathrm{I} / \mathrm{min}$, for details see "Ranges"
Tolerance	$\pm 10 \%$ of full scale value
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$

| normally open (n.o.) |
| :--- | :--- |
| no. 0.372 |
| max. 230 V AC |
| max. 3 A |
| max. 60 VA |
| 2 -safety insulation |
| IP 65 |
| DIN $43650-\mathrm{C}$ plug |
| PC, PA, NBR, nickelled brass, stainless
 steel
 0.02 kg |

Switching contact VOR for DN 25

Switch/sensor	reed switch
Switching range	$15 . .150 \mathrm{I} / \mathrm{min}$, for details see "Ranges"
Tolerance	-10% of full scale value
Ambient temperature	normally open (n.o.) no. 0.372
Wiring	º
Switching voltage	max. 230 V AC
Switching current	max. 1.5 A
Switching capacity	max. 100 VA
Protection class	$2-$ safety insulation
Ingress protection	IP 65
Electrical connection	plug DIN 43650-A / ISO 4400
Non-medium- contact materials	PBC, PA, NBR, nickelled brass, stainless steel
Weight	0.02 kg

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.

G	Displayl Switching range I/min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended	Types
$\mathrm{G}^{1 / 2}$	$0.2-0.5$	0.5	VO.-015G.0005
	$0.3-1.0$	1.0	VO.-015G.0010
	$0.7-2.0$	2.0	VO.-015G.0020
	$1.6-4.0$	4.0	VO.-015G.0040
	$3.0-8.0$	8.0	VO.-015G.0080
	$8.0-20.0$	20.0	VO.-015G.0200
	$12.0-28.0$	28.0	VO.-015G.0280
	$15.0-45.0$	45.0	VO.-025G.0450
	$30.0-90.0$	90.0	VO.-025G.0900
	$60.0-150.0$	150.0	VO.-025G.1500

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de - info@honsberg.com

Product Information

G(1)-HONSEERG

Dimensions and weights

G	Types	D	H	L	X	SW	Weight kg
G $1 / 2$	VO-015G.	32	-	114	8	27	0.30
	VOR-015G.		53				0.32
G 1	VO-025G.	50	-	158	10	41	1.00
	VOR-025G.		77				1.02

Handling and operation

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Ordering code

1. Types

VO	flow indicator
VOR	flow indicator with switching contact

2. Nominal width

$$
\begin{array}{l|l}
\hline 015 & \text { DN } 15-\mathrm{G}^{1 / 2} \\
025 & \text { DN } 25-\mathrm{G} 1
\end{array}
$$

3. Process connection

G female thread
4. Connection material

	M	brass		
	K	stainless steel		
5.	Display / switching range $\mathrm{H}_{2} \mathrm{O}$ for vertical inwards flow			
	0005	$0.2-0.5 \mathrm{l} / \mathrm{min}$		\bullet
	0010	0.3-1.0 $1 / \mathrm{min}$		
	0020	0.7-2.0 $/ 1 / \mathrm{min}$		\bullet
	0040	$1.6-4.0 \mathrm{l} / \mathrm{min}$		\bullet
	0080	$3.0-8.0 \mathrm{l} / \mathrm{min}$		-
	0200	8.0-20.0 $/ / \mathrm{min}$		-
	0280	12.0-28.0 $1 / \mathrm{min}$		\bullet
	0450	15.0-45.0 $1 / \mathrm{min}$	\bullet	
	0900	30.0-90.0 $1 / \mathrm{min}$	\bullet	
	1500	60.0-150.0 $1 / \mathrm{min}$	\bullet	

Options

- Display and switching ranges for oil or gas
- Special values
- Scale $0 . .100$ \%
- Optionally transformer 250 V AC, 1,5 A, 50 VA, Wiring no. 0.282
- Types VOR - switching head with changeover
- Model for air

Ordering information

- Specify direction of flow, medium, and display range.
- For oils. State viscosity, temperature and designation (e.g. ISO VG 68) (enquire about display range).
- For gases, specify pressure (relative or absolute), temperature and medium (e.g. air) (enquire about display range).

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Flow Switch MR

- High switching power
- Compact design

Characteristics

Mechanical flow switch, for fluid or gaseous media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data

Switch	reed switch	
Nominal width	DN 8.0.25	
Process connection	female thread G $1 / 4$... 1 (further process connections available on request)	
Switching range	0.4..60 l/min	for details see table "Ranges"
Pressure loss	0.4..1.9 bar at $\mathrm{Q}_{\text {max }}$.	
$\mathbf{Q m a x}_{\text {ma }}$	to $80 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 5 \%$ of full scale value	
Pressure resistance	PN 200 bar (with optional display $\mathrm{O} \mathrm{G}^{1} / 4 . . \mathrm{G}^{3} / 4 \mathrm{PN} 90$)	
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water (oils, gases and aggressive media available on request)	
Wiring	transformer no. 0.213	
Switching voltage	max. 250 V AC	
Switching current	max. 1.5 A	
Switching capacity	max. 50 VA	
Protection class	2 - safety insulation	
Ingress protection	IP 65	
Electrical connection	cable 2.5 m (others cable lengths available on request)	
Materials medium-contact	Brass construction: CW614N nickelled, 1.4301, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4305, 1.4571, 1.4301, 1.4310, hard ferrite PTFE-coated, FKM
Non-mediumcontact materials	PA, PVC	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the switching point and range.	

Sensors and Instrumentation

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.

Switching range $\mathrm{I} /$ min $\mathrm{H}_{2} \mathrm{O}$	Optionally Display range $\mathrm{I} / \mathrm{min} \mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss bar at $\mathrm{Q}_{\text {max. }} \mathrm{H}_{2} \mathrm{O}$
$0.4-4$	$0.5-5$	10	0.4
$1.0-10$	$1.0-12$	20	0.9
$5.0-20$	$5.0-25$	30	0.7
$10.0-40$	$5.0-40$	60	1.9
$20.0-60$	$20.0-60$	80	1.6

Special ranges are available.

Dimensions and weights

additional weights for options
Display O1 / Z1 0.04 kg

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Handling and Operation

Note

- Install straight calming section of $5 \times$ DN in inlet and outlet.
- Include a filter if the media are dirty (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

If it is necessary to set the switching value, the switching head can be adjusted lengthways. When the switching value is reached, the switching unit is fixed in place by fastening bolts.

Ordering code

1. Display options

-	no mechanical display
O1-	with measurement display at side O1

2. Nominal width

.		
	008	DN 8-G1/4
	010	DN $10-\mathrm{G}^{3 / 8}$
	015	DN 15-G ${ }^{1 / 2}$
	020	DN $20-\mathrm{G} \frac{1}{4}$
	025	DN 25-G1
3.	Process connection	
	G	female thread
4.	Connection material	
	M	brass
	K	stainless steel
5.	Switching range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow	
	004	0.4-4l/min
	010	1.0-10 $1 / \mathrm{min}$
	020	5.0-20 $\mathrm{l} / \mathrm{min}$
	040	10.0-40 $\mathrm{l} / \mathrm{min}$
	060	20.0-60 $1 / \mathrm{min}$

MRO1-

Options

- Switching values for oil or gas
- Special values
- Connection for round plug connector M12×1
- Additional switching head
- Damping for gas monitoring
- Rhodium contact $250 \mathrm{~V} \mathrm{AC}, 0.5 \mathrm{~A}, 30 \mathrm{VA}$

Ordering information

- Specify direction of flow, medium, and switching range.
- For viscous media specify viscosity, temperature, and medium (e.g. ISO VG 68) (enquire about switching range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request switching range).

GHD-HONSBERG

Product Information

Flow Switch MI-...GM / GK

- an adjusted switch-on value
- for media with ferritic components
- repeatability

Characteristics

Mechanical flow switch, for fluid or gaseous media, with spring-supported piston for driving an inductive proximity switch for signal transmission. For media with ferritic abrasions. Robust construction in brass or stainless steel.

Technical data

Switch	inductive proximity switch	
Nominal width	DN 8.. 25	
Process connection	female thread G1/4..G1	
Switching range	0,4..60 l/min	for details see table "Ranges"
$\mathbf{Q m a x}$	bis $80 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 5 \%$ minimal $0,2 \mathrm{l} / \mathrm{min}$	
Pressure resistance	PN 16 bar	
Media temperature	$-20 . .+60^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+60^{\circ} \mathrm{C}$	
Media	Water, Oils, gases (Stainless steel version MI ... GK for aggressive media)	
voltage range	10..30 V DC	
power input	$<10 \mathrm{~mA}$	
Max. load current	100 mA	
voltage drop	$<3 \mathrm{~V}$	
Protection class	IP 67	
cable length	2 m	
Materials medium-contact	Brass construction: CW614N, hard ferrite,1.4310, SnBz8	Stainless steel construction: 1.4305, hard ferrite, 1.4310, SnBz8
Non-mediumcontact materials	PVDF	
Weight	see table "Dimensions and weights"	
Installation location	Installation position may influence the switching value.	

Wiring

wiring diagram 0.319

Optional
NPN

+
output
0 V

Ranges

The information in the table correspond to horizontal flow to shift ranges with decreasing flow rate and with scale ranges of horizontal flow and increasing flow rate.

Type	Nominal width	Switching range I/min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ rec. $\mathrm{I} / \mathrm{min} \mathrm{H}_{2} \mathrm{O}$
MI-008GM004.	DN 8-G1/4	0,4-4	6
MI-010GM010.	DN 10-G3/8	1,0-10	15
MI-015GM012.	DN 15-G1/2	2,0-12	20
MI-020GM020.	DN $20-\mathrm{G}^{3} / 4$	4,0-20	40
MI-025GM060.	DN 25-G1	20,0-60	80
MI-008GK004.	DN 8-G1/4	0,4-4	6
MI-010GK010.	DN $10-\mathrm{G}^{3} / 8$	1,0-10	15
MI-015GK012.	DN 15-G1/2	2,0-12	20
MI-020GK020.	DN $20-\mathrm{G}^{3} / 4$	4,0-20	40
MI-025GK060.	DN 25-G1	20,0-60	80

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Dimensions and weights

Type	$\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$	SW mm	$\underset{\mathrm{mm}}{\mathbf{X}}$	Weight kg
MI-008GM004.	109	36	13	0,90
MI-010GM010.				0,85
MI-015GM012.			12	80
MI-020GM020.			13	0,80
MI-025GM060.	135	40	15	1,50
MI-008GK004.	109	36	13	0,90
MI-010GK010.				0,85
MI-015GK012.			12	0,80
MI-020GK020.			13	
MI-025GK060.	135	41	15	1,50

Handling and Operation

Note

- Install straight calming section of $5 \times$ DN in inlet and outlet.
- Include a filter if the media are dirty (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Ordering code

Attachments

- Connection for round plug connector M12×1, 4-polig

Options

- Adjustment in oil or gas

Ordering information

- Specify direction of flow, medium, and switching range.
- For oils. Viscosity, specify temperature and descriptions (z.B. ISO VG 68) (enquire about switching range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request switching range).

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Flow Switch MR1K-

- High switching power
- Compact design

Characteristics

Mechanical flow switch, for fluid or gaseous media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data

Switch	reed switch
Nominal width	DN $8 . .25$
Process connection	female thread G $1 / 4$...G 1 (further process connections available on request)
Switching range	0.4..60 $/ \mathrm{min}$ for details see
Pressure loss	0.4..1.4 bar at $\mathrm{Q}_{\text {max. }}$ (table "Ranges"
$\mathbf{Q m a x}_{\text {m }}$	to $80 \mathrm{l} / \mathrm{min}$ 隹
Tolerance	$\pm 5 \%$ of full scale value
Pressure resistance	PN 200 bar optionally PN 500 bar
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$ optionally -20.. $+150{ }^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Media	water (oils, gases and aggressive media available on request)
Wiring	changeover no. 0.213
	optionally changeover no. 0.282
	optionally red or red / green diode in the DIN 43650-A plug
Switching voltage	max. 250 V AC
Switching current	max. 1.5 A
Switching capacity	max. 50 VA
Protection class	2 - safety insulation
Ingress protection	IP 65
Electrical connection	plug DIN 43650-A / ISO 4400, optionally round plug connector M12x1, 4-pole

Sensors and Instrumentation

Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, FKM
Non-mediumcontact materials	PA, CW614N, NBR	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the switching point and range.	

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.

Switching range $1 /$ min $\mathrm{H}_{2} \mathrm{O}$	Display range $\mathrm{I} /$ min $\mathrm{H}_{2} \mathrm{O}$		$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss bar at $\mathrm{Q}_{\text {max. }} \mathrm{H}_{2} \mathrm{O}$
$0.4-4$	$0.5-5$	$0.4-4$	10	0.6
$1.0-10$	$1.0-12$	$1.0-10$	20	
$2.0-20$	$2.0-23$	$2.0-20$	30	0.4
$3.0-30$	$3.0-34$	$3.0-30$	40	
$4.0-40$	$4.0-45$	$4.0-40$	60	0.8
$6.0-60$	$6.0-65$	$6.0-60$	80	1.4

Special ranges are available.

Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$	MR1K-008GM	40	15	1.3
	G $3 / 8$	MR1K-010GM			
	G $1 / 2$	MR1K-015GM			
	G $3 / 4$	MR1K-020GM		18	1.2
	G 1	MR1K-025GM			1.1
Stainless steel	G $1 / 4$	MR1K-008GK	41	15	1.2
	G $3 / 8$	MR1K-010GK			
	G $1 / 2$	MR1K-015GK			
	G $3 / 4$	MR1K-020GK		18	1.1
	G 1	MR1K-025GK			

Additional weights for options

Additional switching head Display O1	0.09 kg	Display O	0.09 kg
	0.04 kg	Display J	0.02 kg

GHD-HONSEERG

Product Information

Handling and Operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet - Include a filter if the media are dirty (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

If it is necessary to set the switching value, the switching head can be adjusted lengthways. When the switching value is reached, the switching unit is fixed in place by fastening bolts.

Ordering code

1. Display options
\qquad
no mechanical display with measurement display at side $\overline{\mathrm{O} 1}$ with measurement display at side O
2. Nominal width

MR1KO1

008	DN $8-\mathrm{G}^{1} / 4$
010	DN $10-\mathrm{G}^{3 / 8}$
015	DN $15-\mathrm{G}^{1 / 2}$
020	DN $20-\mathrm{G}^{3 / 4}$
025	DN $25-\mathrm{G} 1$

3. Process connection

G female thread
4. Connection material

M brass

K stainless steel

5.	Switching range $\mathrm{H}_{2} \mathbf{O}$ for horizontal inwards flow	
	004	
$0.4-4 \mathrm{I} / \mathrm{min}$		
	010	
	$1.0-10 \mathrm{I} / \mathrm{min}$	
	020	
	$2.0-20 \mathrm{I} / \mathrm{min}$	
	030	
	$3.0-30 \mathrm{I} / \mathrm{min}$	
	060	

Options

- Signal lamp red or red / green in the plug DIN 43650-A
- Connection for round plug connector M12×1
- Reinforced piston
- Additional switching head
- High pressure model PN 500 (only if made of brass)
- Damping for gas monitoring
- Rhodium contact 250 V AC, $0.5 \mathrm{~A}, 30 \mathrm{VA}$
- Switching values for oil or gas
- Special values
- Temperature display $0 . .120^{\circ} \mathrm{C}$

Ordering information

- Specify direction of flow, medium, and switching range.
- For viscous media specify viscosity, temperature, and medium (e.g. ISO VG 68) (enquire about switching range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request switching range).

GHM-HONSEERG

Product Information

Flow Switch HD1F

- High switching power
- Compact design

Characteristics

Mechanical flow switch, for fluid or gaseous media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data

Switch	reed switch
Nominal width	DN $8 . .25$
Process connection	female thread G $1 / 4$..G 1 (further process connections available on request)
Switching range	0.1..80 $\mathrm{l} / \mathrm{min}$ for details see
Pressure loss	0.4.1.6 bar at $\mathrm{Q}_{\text {max. }} \quad$ table "Ranges"
$\mathbf{Q m a x}_{\text {ma }}$	
Tolerance	± 5 \% of full scale value
Pressure resistance	PN 200 bar optionally PN 500 bar
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$ with display $\mathrm{Z}-20 . .+70^{\circ} \mathrm{C}$ optionally $-20 . .+150^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Media	water, oil (gases and aggressive media available on request)
Wiring	changeover No. 0.213
	optionally changeover No. 0.282
	optionally red or red / green diode in the plug DIN 43650-A / ISO 4400
Switching voltage	max. 250 V AC
Switching current	max. 1.5 A
Switching capacity	max. 50 VA
Protection class	2 - safety insulation
Ingress protection	IP 65
Electrical connection	plug DIN 43650-A / ISO 4400 optionally for round plug connector M12x1, 4-pole

Sensors and Instrumentation

Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, $1.4404,1.4310$, hard ferrite PTFE-coated, FKM
Non-medium- contact materials	PA, CW614N, NBR	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the switching point and range.	

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.

Standard type HD1F

Switching range l/min $\mathrm{H}_{2} \mathrm{O}$	optionally Display range //min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recom- mended	Pressure loss bar at $\mathrm{Q}_{\text {max. }} \mathrm{H}_{2} \mathrm{O}$
$0.1-1.0$	$0.1-1.2$	6	0.4
$0.5-5.0$	$0.5-6.0$	10	0.5
$1.0-10.0$	$1.0-12.0$	20	0.6
$2.0-20.0$	$2.0-23.0$	30	0.4
$3.0-30.0$	$3.0-34.0$	40	
$4.0-40.0$	$4.0-45.0$	60	0.8
$6.0-60.0$	$6.0-65.0$	80	1.4
$20.0-80.0$	$20.0-85.0$	100	1.6

Special ranges are available.

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 - 42897 Remscheid • Germany
Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de • info@honsberg.com
Product Information

GHD-HONSBERG

Dimensions and weights

Brass	G	Types	SW	X	Weight kg
	G $1 / 4$	HD.F-008GM	40	15	1.4
	G $3 / 8$	HD.F-010GM			
	G $1 / 2$	HD.F-015GM			1.3
	G $3 / 4$	HD.F-020GM		18	
	G 1	HD.F-025GM			1.2
Stainless steel	G $1 / 4$	HD.F-008GK	41	15	1.3
	G $3 / 8$	HD.F-010GK			
	G $1 / 2$	HD.F-015GK			
	G $3 / 4$	HD.F-020GK		18	1.2
	G 1	HD.F-025GK			1.1

additional weights for options
additional switching head 0.10 kg Display O/Z 0.10 kg Display O1 / Z1 0.05 kg

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

If it is necessary to set the switching value, the switching head can be adjusted lengthways. When the switching value is reached, the switching unit is fixed in place by fastening bolts.

Sensors and Instrumentation

Ordering code

1. Display options

	-	no mechanical display
	O1-	with measurement display at side O1
	O-	with measurement display at side O
	Z1-	with frontal measurement display Z1
	Z-	with frontal measurement display Z

HD.FO1-

2. Nominal width

008	DN 8-G 1_{4}	HD.FO-
010	DN $10-\mathrm{G}$ ¹/8	
015	DN 15-G 1/2	
020	DN $20-\mathrm{G} \frac{3}{4}$	

3.

Pess connection
HD.FZ1-
4. C fennection material

| M | brass |
| :--- | :--- | :--- |
| K | stainless steel |

5. HD1F - switching range $\mathrm{H}_{2} \mathrm{O}$ for
6. horizontal inwards flow

001	0.1-11/min	
005	0.5-5 $/ / \mathrm{min}$	
010	1.0-10 $1 / \mathrm{min}$	(\%)
020	2.0-20 $1 / \mathrm{min}$	
030	3.0-30 $1 / \mathrm{min}$	
040	4.0-40 $1 / \mathrm{min}$	
060	6.0-60 l/min	Temperature-
080	20.0-80 $1 / \mathrm{min}$	display

Options

- Signal lamp red or red / green in the plug DIN 43650-A
- Rhodium contact (250 VAC, 0,5 A, 30 VA)
- Temperature resistant up to $150^{\circ} \mathrm{C}$
- Reinforced piston (only if made of brass)
- Additional switching head
- Connection for round plug connector M12x1
- High pressure model PN 500 (only if made of brass)
- Switching values for oil or gas
- Special values
- Temperature display $0 . .120^{\circ} \mathrm{C}$

Ordering information

- Specify direction of flow, medium, and switching range.
- For viscous media specify viscosity, temperature, and medium (e.g. ISO VG 68) (enquire about switching range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request switching range).

GHM-HONSEERG

Product Information

Sensors and Instrumentation

Flow Switch

HD2F

- High switching power
- Compact design
- viscosity-stabilized

Characteristics

Mechanical flow switch, for fluid or gaseous media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data	
Switch	reed switch
Nominal width	DN $8 . .25$
Process connection	female thread G $1 / 4$..G 1 (further process connections available on request)
Switching range	0.5..60 $/ / \mathrm{min}$ for details
Pressure loss	1.1.3.5 bar at $\mathrm{Q}_{\text {max. }}$. for details see table "Ranges"
$\mathbf{Q m a x}_{\text {m }}$	to $80 \mathrm{l} / \mathrm{min}$ a
Tolerance	± 5 \% of full scale value
Pressure resistance	PN 200 bar optionally PN 500 bar
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$ with display $\mathrm{Z}-20 . .+70^{\circ} \mathrm{C}$ optionally $-20 . .+150^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Media	oil
Wiring	changeover No. 0.213
	optionally changeover No. 0.282 optionally red or red / green diode in the plug DIN 43650-A / ISO 4400
Switching voltage	max. 250 V AC
Switching current	max. 1.5 A
Switching capacity	max. 50 VA
Protection class	2 - safety insulation
Ingress protection	IP 65

Electrical connection	plug DIN 43650-A / ISO 4400 optionally for round plug connector M12x1, 4-pole				
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, $1.4404,1.4310, ~ h a r d ~$ ferrite PTFE-coated, FKM			
Non-medium- contact materials	PA, CW614N, NBR				
Weight	see table "Dimensions and weights"		$	$	Standard: horizontal inwards flow from the
:---					
Ieft; other installation positions are possible;					
Ine installation position affects the switching					
point and range.					

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.
Viscosity compensated type HD2F

Switching range	Optionally Display range	$\underset{\text { recommended }}{\mathbf{Q}_{\text {max. }}}$	Pressure loss bar at $\mathrm{Q}_{\text {max. }}$ oil $\mathrm{mm}^{2} / \mathrm{s}$					Viscosity stability
$\begin{gathered} 1 / \mathrm{min} \text { oil } \\ 30 . .330 \mathrm{~mm}^{2} / \mathrm{s} \end{gathered}$			30	60	100	205	330	$\pm 8 \%,$
0.5-8	0.5-10	12	1.1	1.4	1.6	2.8	3.5	± 0.3 1/min
1.5-15	1.5-20	22	2.2	2.3	2.4			± 0.5 $1 / \mathrm{min}$
2.5-25	2.5-30	35	1.9	2.0	2.1	2.3	2.9	$\begin{aligned} & \pm 0.8 \\ & 1 / \mathrm{min} \end{aligned}$
6.0-40	6.0-45	60					2.6	$\begin{aligned} & \pm 2.7 \\ & 1 / \mathrm{min} \end{aligned}$
12.0-60	12.0-65	80	2.1	2.3	2.4	2.6	2.8	$\begin{gathered} \pm 3 \\ 1 / \mathrm{min} \end{gathered}$

Special ranges are available.

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 • Fax -40
www.ghm-messtechnik.de - info@honsberg.com
Product Information

GHD-HONSBERG

Dimensions and weights

Brass	G	Types	SW	X	Weight kg
	G ${ }^{1 / 4}$	HD.F-008GM	40	15	1.4
	G ${ }^{3} / 8$	HD.F-010GM			
	G $1 / 2$	HD.F-015GM			1.3
	G ${ }^{3} / 4$	HD.F-020GM		18	
	G 1	HD.F-025GM			1.2
Stainless steel	G $1 / 4$	HD.F-008GK	41	15	1.3
	G 318	HD.F-010GK			
	G $1 / 2$	HD.F-015GK			
	G ${ }^{3 / 4}$	HD.F-020GK		18	1.2
	G 1	HD.F-025GK			1.1

additional weights for options

additional switching head 0.10 kg Display O / Z 0.10 kg Display O1 / Z1 0.05 kg

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter
(use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

If it is necessary to set the switching value, the switching head can be adjusted lengthways. When the switching value is reached, the switching unit is fixed in place by fastening bolts.

Sensors and Instrumentation

Ordering code

1. Display options

	-	no mechanical display
	O1-	with measurement display at side O1
	O-	with measurement display at side O
	Z1-	with frontal measurement display Z1
	Z-	with frontal measurement display Z

2. Nominal width

| 008 | DN 8-G $1 / 4$ |
| :--- | :--- | :--- |
| 010 | DN 10-G ${ }^{3 / 8}$ |
| 015 | DN 15-G $1 / 2$ |
| 020 | DN 20-G ${ }^{3 / 4}$ |
| 025 | DN $25-G 1$ |

HD.FO1-

HD.FO-

HD.FZ1-
3. Process connection

G female thread

4. Connection material

M	brass
K	stainless steel

5. HD2F - switching range oil $30 . .330 \mathrm{~mm}^{2} / \mathrm{s}$ for horizontal inwards flow

Temperaturedisplay

	008	$0.5-8 \mathrm{l} / \mathrm{min}$
015	$1.5-15 \mathrm{l} / \mathrm{min}$	
	025	$2.5-25 \mathrm{l} / \mathrm{min}$
	040	$6.0-40 \mathrm{l} / \mathrm{min}$
	060	$12.0-60 \mathrm{l} / \mathrm{min}$

Options

- Signal lamp red or red / green in the plug DIN 43650-A
- Rhodium contact (250 VAC, $0,5 \mathrm{~A}, 30 \mathrm{VA}$)
- Temperature resistant up to $150^{\circ} \mathrm{C}$
- Additional switching head
- Connection for round plug connector M12x1
- High pressure model PN 500 (only if made of brass)
- Special values
- Temperature display $0 . .120^{\circ} \mathrm{C}$

Ordering information

- Specify direction of flow, medium, and switching range.
- For viscous media specify viscosity, temperature, and medium (e.g. ISO VG 68) (enquire about switching range).

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 • Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Flow Switch

HM1K

- High switching power
- Compact design

Characteristics

Mechanical flow switch, for fluid or gaseous media, with spring-supported piston and magnetic triggering of a microswitch. Robust construction in brass or stainless steel.

Technical data

Switch	microswitch
Nominal width	DN 8.. 25
Process connection	female thread G 1_{4}.G 1 (further process connections available on request)
Switching range	0.1..74 $/$ /min for details see
Pressure loss	0.4..1.6 bar at $\mathrm{Q}_{\text {max. }}$ table "Ranges"
$\mathrm{Q}_{\text {max }}$.	
Tolerance	± 5 \% of full scale value
Pressure resistance	PN 200 bar
Media temperature	$-20 . .+70^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Media	water, oil (gases and aggressive media available on request)
Wiring	changeover No. 0.371
	optionally changeover No. 0.282
Switching voltage	max. 250 V AC
Switching current	max. 5 A (round plug connector max. 4A)
Protection class	2 - safety insulation
Ingress protection	IP 65
Electrical connection	plug DIN 43650-A / ISO 4400 optionally for round plug connector M12x1, 4 -pole

GHM-HONSEERC

Sensors and Instrumentation

Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, FKM
Non-medium- contact materials	PA, CW614N, NBR	
Weight	see table "Dimensions and weights"	
Installation location	horizontal inwards flow; switching head on top.	

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.
Standard type HM1K

Switching range I/min $\mathrm{H}_{2} \mathrm{O}$	Optionally Display range I/min $\mathrm{H}_{2} \mathrm{O}$	Q $_{\text {max. }}$ recommended	Pressure loss bar at $\mathrm{Q}_{\text {max. }} \mathrm{H}_{2} \mathrm{O}$
$0.1-0.8$	$0.1-1.2$	6	0,4
$0.5-4.0$	$0.5-6.0$	10	0,5
$1.0-8.0$	$1.0-12.0$	20	0,6
$2.0-16.0$	$2.0-23.0$	30	0,4
$3.0-26.0$	$3.0-34.0$	40	
$4.0-36.0$	$4.0-45.0$	60	0,8
$6.0-55.0$	$6.0-65.0$	80	1,4
$20.0-74.0$	$20.0-85.0$	100	1,6

Special ranges are available.

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 • Fax -40
www.ghm-messtechnik.de - info@honsberg.com
Product Information

GHM-HONSBERG

Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$...-008GM	40	15	1.4
	G ${ }^{3} / 8$...-010GM			
	G $1 / 2$...-015GM			1.3
	$\mathrm{G}^{3 / 4}$...-020GM		18	
	G 1	...-025GM			1.2
Stainless steel	G $1 / 4$...-008GK	41	15	1.4
	G $3 / 8$...-010GK			
	G $1 / 2$...-015GK			1.3
	G $3 / 4$...-020GK		18	
	G 1	...-025GK			1.2

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive and inductive loads must be operated using a protective circuit.

Adjustment

If it is necessary to set the switching value, the switching head can be adjusted by adjustment of a pinion. When the switching value is reached, the switching unit is fixed in place by a

Ordering code

$\mid l$	
Display options	
-	no mechanical display
O1-	with measurement display at side O1
O-	with measurement display at side O

2. Nominal width

	008
	DN $8-G^{1} / 4$
	010
DN $10-G^{3} / 8$	
	015
	DN $15-G^{1} / 2$
	020
DN $20-G^{3} / 4$	
3.	DN $25-G 1$

3. Process connection G female thread

HM.KO1-

HM.KO-
4. Connection material

| M | brass |
| :--- | :--- | :--- |
| K | stainless steel |

5. HM1K - switching range $\mathrm{H}_{2} \mathrm{O}$
6. for horizontal inwards flow

for horizontal inwards flow	
001	$0.1-0.8 \mathrm{I} / \mathrm{min}$
004	$0.5-4.0 \mathrm{I} / \mathrm{min}$
	008
$1.0-8.0 \mathrm{I} / \mathrm{min}$	
016	$2.0-16.0 \mathrm{I} / \mathrm{min}$
026	$3.0-26.0 \mathrm{I} / \mathrm{min}$
036	$4.0-36.0 \mathrm{I} / \mathrm{min}$
055	$6.0-55.0 \mathrm{I} / \mathrm{min}$
074	$20.0-74.0 \mathrm{I} / \mathrm{min}$

Options

- Signal lamp red or red / green in the plug DIN 43650-A
- Gold contact
- Reinforced piston (only if made of brass)
- Connection for round plug connector M12x1
- Switching head with metal cap
- Adjustment scale with markings in $1 / m i n$
- Switching values for oil or gas
- Special values
- Temperature display $0 . .120^{\circ} \mathrm{C}$

Ordering information

- Specify direction of flow, medium, and switching range.
- For viscous media specify viscosity, temperature, and medium (e.g. ISO VG 68) (enquire about switching range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request switching range).

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Flow Switch

HM2K

- High switching power
- Compact design

Characteristics

Mechanical flow switch, for fluid or gaseous media, with spring-supported piston and magnetic triggering of a microswitch. Robust construction in brass or stainless steel.

Technical data

Switch	microswitch
Nominal width	DN 8.. 25
Process connection	female thread G 1_{4}..G 1 (further process connections available on request)
Switching range	0.5..55 $/ \mathrm{min}$ for details see
Pressure loss	1.1.3.5 bar at $\mathrm{Q}_{\text {max. }}$ table "Ranges"
$\mathrm{Q}_{\text {max. }}$	to $80 \mathrm{l} / \mathrm{min}$ 隹
Tolerance	$\pm 5 \%$ of full scale value
Pressure resistance	PN 200 bar
Media temperature	$-20 . .+70^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Media	oil
Wiring	changeover No. 0.371
	optionally changeover No. 0.282
Switching voltage	max. 250 V AC
Switching current	max. 5 A (round plug connector max. 4A)
Protection class	2 - safety insulation
Ingress protection	IP 65
Electrical connection	plug DIN 43650-A / ISO 4400 optionally for round plug connector M12x1, 4 -pole

GHM-HONSEERG

Sensors and Instrumentation

Materials		
medium-contact	Brass construction: CW614N nickelled, CW61N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, 1.4444, 1.4310, hard ferrite PTFE-coated, FKM
Non-medium- contact materials	PA, CW614N, NBR	
Weight	see table "Dimensions and weights"	
Installation location	horizontal inwards flow; switching head on top.	

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.

Viscosity compensated HM2K

Switching range	Optionally Display range	$\underset{\substack{\text { recommende }}}{\mathbf{Q}_{\text {max. }}}$	Pressure loss bar at $\mathrm{Q}_{\text {max. }}$ oil $\mathrm{mm}^{2} / \mathrm{s}$					Viscosity stability
$\begin{gathered} 1 / \mathrm{min} \text { oil } \\ 30 . .330 \mathrm{~mm}^{2} / \mathrm{s} \end{gathered}$			30	60	100	205	330	$\begin{gathered} \pm 8 \% \\ \text { min. } \end{gathered}$
0.5-0.6	0.5-10	12	1.1	1.4	1.6	2.8	3.5	$\begin{aligned} & \pm 0.3 \\ & \mathrm{I} / \mathrm{min} \end{aligned}$
1.5-12.0	1.5-20	22	2.2	2.3	2.4			$\begin{aligned} & \pm 0.5 \\ & \mathrm{I} / \mathrm{min} \end{aligned}$
2.5-22.0	2.5-30	35	1.9	2.0	2.1	2.3	2.9	± 0.8 1/min
6.0-36.0	6.0-45	60					2.6	$\begin{aligned} & \pm 2.7 \\ & \mathrm{I} / \mathrm{min} \end{aligned}$
12.0-55.0	12.0-65	80	2.1	2.3	2.4	2.6	2.8	$\begin{gathered} \pm 3 \\ \mathrm{I} / \mathrm{min} \end{gathered}$

Special ranges are available.

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 • Fax -40
www.ghm-messtechnik.de - info@honsberg.com

GHD-HONSBERG

Product Information
Sensors and Instrumentation

Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$...-008GM	40	15	1.4
	G ${ }^{3 / 8}$...-010GM			
	G $1 / 2$...-015GM			1.3
	G ${ }^{3 / 4}$...-020GM		18	
	G 1	...-025GM			1.2
Stainless steel	G $1 / 4$...-008GK	41	15	1.4
	G $3 / 8$...-010GK			
	G $1 / 2$...-015GK			1.3
	G $3 / 4$...-020GK		18	
	G 1	...-025GK			1.2

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter
(use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive and inductive loads must be operated using a protective circuit.

Adjustment

If it is necessary to set the switching value, the switching head can be adjusted by adjustment of a pinion. When the switching value is reached, the switching unit is fixed in place by a

Ordering code

1. Display options

| - | no mechanical display |
| :--- | :--- | :--- |
| O1- | with measurement display at side O1 |

2. Nominal width

	008	DN 8-G ${ }^{1 / 4}$	HM.KO1-
	010	DN $10-\mathrm{G}$ ¹/8	
	015	DN 15-G 1/2	
	020	DN $20-\mathrm{G} \frac{1}{4}$	
	025	DN 25-G1	
3.	Process connection		
	G	female thread	HM.KO-

4. Connection material

M	brass
K	stainless steel

5. HM2K - switching range oil $30 . .330 \mathrm{~mm}^{2} / \mathrm{s}$ for horizontal inwards flow

	006	$0.5-6.0 \mathrm{I} / \mathrm{min}$
	$1.5-12.0 \mathrm{I} / \mathrm{min}$	-
	012	$1.5-122$

Options

- Signal lamp red or red / green in the plug DIN 43650-A
- Gold contact
- Connection for round plug connector M12x1
- Switching head with metal cap
- Adjustment scale with markings in I/min
- Special values
- Temperature display $0 . .120^{\circ} \mathrm{C}$

Ordering information

- Specify direction of flow, medium, and switching range.
- For viscous media specify viscosity, temperature, and medium (e.g. ISO VG 68) (enquire about switching range).

GHM-HONSEERG

Product Information

Flow Switch HD1K

- High switching power
- Compact design

Characteristics

Mechanical flow switch, for fluid or gaseous media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data

Switch	reed switch
Nominal width	DN $8 . .25$
Process connection	female thread G $1 / 4$..G 1 (further process connections available on request)
Switching range	0.1..80 $/ \mathrm{min}$ for details see
Pressure loss	0.4.1.6 bar at $\mathrm{Q}_{\text {max. }} \quad \begin{aligned} & \text { for details see } \\ & \text { table "Ranges" }\end{aligned}$
$\mathbf{Q m a x}_{\text {ma }}$	to $100 \mathrm{l} / \mathrm{min}$ 隹
Tolerance	$\pm 5 \%$ of full scale value
Pressure resistance	PN 200 bar optionally PN 500 bar
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$ with display $\mathrm{Z}-20 . .+70^{\circ} \mathrm{C}$ optionally $-20 . .+150^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$
Media	water, oil (gases and aggressive media available on request)
Wiring	changeover No. 0.213
	optionally changeover No. 0.282 optionally red or red / green diode in the DIN 43650-A plug
Switching voltage	max. 250 V AC
Switching current	max. 1.5 A
Switching capacity	max. 50 VA
Protection class	2 - Safety insulation
Ingress protection	IP 65

Sensors and Instrumentation

Electrical connection	plug DIN 43650-A / ISO 4400 Optionally for round plug connector M12x1, 4-pole	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, $1.4404, ~ 1.4310, ~ h a r d ~$ ferrite PTFE-coated, FKM
Non-medium- contact materials	PA, CW614N, NBR	
Weight	see table "Dimensions and weights"	
Installation Iocation	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the switching point and range.	

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.

Standard type HD1K

Switching range I/min $\mathrm{H}_{2} \mathrm{O}$	Optionally Display range I/min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss bar at $\mathrm{Q}_{\text {max. }}$ $\mathrm{H}_{2} \mathrm{O}$
$0.1-1.0$	$0.1-1.2$	6	0.4
$0.5-5.0$	$0.5-6.0$	10	0.5
$1.0-10.0$	$1.0-12.0$	20	0.6
$2.0-20.0$	$2.0-23.0$	30	0.4
$3.0-30.0$	$3.0-34.0$	40	
$4.0-40.0$	$4.0-45.0$	60	0.8
$6.0-60.0$	$6.0-65.0$	80	1.4
$20.0-80.0$	$20.0-85.0$	100	1.6

Special ranges are available.

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de • info@honsberg.com
Product Information

GHD-HONSEERG

Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$	HD.K-008GM	40	15	1.4
	G $3 / 8$	HD.K-010GM			
	G $1 / 2$	HD.K-015GM			1.3
	G ${ }^{3 / 4}$	HD.K-020GM		18	
	G 1	HD.K-025GM			1.2
Stainless steel	G $1 / 4$	HD.K-008GK	41	15	1.3
	G $3 / 8$	HD.K-010GK			
	G $1 / 2$	HD.K-015GK			
	G $3 / 4$	HD.K-020GK		18	1.2
	G 1	HD.K-025GK			1.1

additional weights for options

```
additional switching head 0.10 kg Display O / Z 0.10 kg
Display O1 / Z1
\[
0.05 \mathrm{~kg}
\]
```


Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

If it is necessary to set the switching value, the switching head can be adjusted by adjustment of a pinion. When the switching value is reached, the switching unit is fixed in place by a fastening bolt (SW 8).

Options

- Signal lamp red or red / green in the plug DIN 43650-A
- Rhodium contact (250 VAC, $0,5 \mathrm{~A}, 30 \mathrm{VA}$)
- Temperature resistant up to $150^{\circ} \mathrm{C}$
- Reinforced piston (only if made of brass)
- Additional switching head
- Connection for round plug connector M12x1
- High pressure model PN 500 (only if made of brass)
- Adjustment scale with markings in I/min
- Temperature monitoring
- Damping for gas monitoring (only for standard version)
- Switching values for oil or gas
- Special values
- Temperature display $0 . .120^{\circ} \mathrm{C}$
- Switching head made of metal

Ordering information

- Specify direction of flow, medium, and switching range.
- For viscous media specify viscosity, temperature, and medium (e.g. ISO VG 68) (enquire about switching range)
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request switching range).

GHM-HONSEERG

Product Information

Sensors and Instrumentation

Flow Switch HD2K

- High switching power
- Compact design
- viscosity stabilized

Characteristics

Mechanical flow switch, for fluid or gaseous media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

| plug DIN 43650-A / ISO 4400 |
| :--- | :--- |
| Optionally for round plug connector M12×1, |
| 4-pole |

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.
Viscosity compensated type HD2K

Switching range	Optionally Display range	$\underset{\substack{\text { recommende }}}{\mathbf{Q}_{\text {max. }}}$	Pressure loss bar at $\mathrm{Q}_{\text {max }}$ oil $\mathrm{mm}^{2} / \mathrm{s}$					Viscosity stability
$\begin{gathered} \text { l/min oil } \\ 30 . .330 \mathrm{~mm}^{2} / \mathrm{s} \end{gathered}$			30	60	100	205	330	$\pm 8 \% \text {, }$
0.5-8	0.5-10	12	1.1	1.4	1.6	2.8	3.5	$\pm 0.3 \mathrm{l} / \mathrm{min}$
1.5-15	1.5-20	22	2.2	2.3	2.4			$\pm 0.5 \mathrm{l} / \mathrm{min}$
2.5-25	2.5-30	35	1.9	2.0	2.1	2.3	2.9	$\pm 0.8 \mathrm{l} / \mathrm{min}$
6.0-40	6.0-45	60					2.6	$\pm 2.7 \mathrm{l} / \mathrm{min}$
12.0-60	12.0-65	80	2.1	2.3	2.4	2.6	2.8	$\pm 3 \mathrm{l} / \mathrm{min}$

Special ranges are available.

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de • info@honsberg.com
Product Information

GHD-HONSEERG

Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$	HD.K-008GM	40	15	1.4
	G $3 / 8$	HD.K-010GM			
	G $1 / 2$	HD.K-015GM			1.3
	G ${ }^{3} 4$	HD.K-020GM		18	
	G 1	HD.K-025GM			1.2
Stainless steel	G $1 / 4$	HD.K-008GK	41	15	1.3
	G $3 / 8$	HD.K-010GK			
	G $1 / 2$	HD.K-015GK			
	G $3 / 4$	HD.K-020GK		18	1.2
	G 1	HD.K-025GK			1.1

additional weights for options

```
additional switching head 0.10 kg Display O / Z 0.10 kg
Display O1 / Z1
\[
0.05 \mathrm{~kg}
\]
```


Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switch on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive inductive and lamp loads must be operated using a protective circuit.
Ordering code
HD2K

1. Display options

	-	no mechanical display
	O1-	with measurement display at side O1
	O-	with measurement display at side O
Z1-	with frontal measurement display Z1	

HD.KO1-
2. Nominal width

008	DN 8-G1/4
010	DN $10-\mathrm{G}^{3} / 8$
015	DN 15-G 1/2
020	DN $20-\mathrm{G}^{3 / 4}$
025	DN 25-G 1

HD.KO-

HD.KZ1-

HD.KZ-

Temperaturedisplay

Options

- Signal lamp red or red / green in the plug DIN 43650-A
- Rhodium contact (250 VAC, $0,5 \mathrm{~A}, 30 \mathrm{VA}$)
- Temperature resistant up to $150^{\circ} \mathrm{C}$
- Additional switching head
- Connection for round plug connector M12×1
- High pressure model PN 500 (only if made of brass)
- Adjustment scale with markings in I/min
- Temperature monitoring
- Damping for gas monitoring (only for standard version)
- Special values
- Temperature display $0 . .120^{\circ} \mathrm{C}$
- Switching head made of metal

Adjustment

If it is necessary to set the switching value, the switching head can be adjusted by adjustment of a pinion. When the switching value is reached, the switching unit is fixed in place by a fastening bolt (SW 8).

Ordering information

- Specify direction of flow, medium, and switching range.
- For viscous media specify viscosity, temperature, and medium (e.g. ISO VG 68) (enquire about switching range).

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de - info@honsberg.com
Product Information

Switching head A-H1.1

For devices

- I M1 Ex ia I Ma
- II 1G Ex ia IIC T4 Ga
- II 1D Ex ia IIIC $\mathrm{T}_{135}{ }^{\circ} \mathrm{C}$ Da

Characteristics

Intrinsically safe switching head with reed switch and ATEX approval, for the HD range of devices, for use in intrinsically safe power circuits.

Technical data

Switch	reed switch
Medium temperature	$-20 . .+120^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+50{ }^{\circ} \mathrm{C}$
Weight	0.5 kg additionally
without signal lamp	
Wiring	transformer No. 0.213
Switching voltage	max. 30 V
Switching current	max. 1.5 A
Switch performance	max. 50 W
with signal lamp	
Wiring	Transformer with signal lamp No. 0.208
Switching voltage	max. $15 \mathrm{~V}, 28 \mathrm{~V}$ or 36 V
Switching current	max. 1.5 A
Switch performance	max. 50 W
Protection class	3 - Protective extra low voltage
Ingress protection	IP 65
Electrical connection	cable 2.5 m , other cable lengths up to max. 5 m are optionally available

GHD-HONSBERG

Sensors and Instrumentation

Dimensions

Handling and operation

Note

All

- For use only in intrinsically safe power circuits provide a suitable isolating amplifier.
- Cable lengths max. 5 m .
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switched on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.
HD1KO- I HD2KO-
- Display with plastic parts - do not open in an explosive atmosphere.

Adjustment

If it is necessary to set the switching value, the switching head can be adjusted lengthways. When the switching value is reached, the switching unit is fixed in place by a fastening bolt.

Ordering code

The basic device is ordered e.g. HD1K-015GM005A with Switching head e.g. A-H1.1-1.

A-H1.1 - ${ }^{-}$

1. Wiring - switching voltage

1.	Wiring - switching voltage	
	1	wiring no. $0.213-30 \mathrm{~V}$
	2	wiring no. $0.208-15 \mathrm{~V}$
	3	wiring no. $0.208-28 \mathrm{~V}$
	4	wiring no. $0.208-36 \mathrm{~V}$

GHD-HONSBERG

Product Information

Switching Head A-H2.1

For devices HD1K- HD2K-HD1KO- HD2KO-

- I M1 Exial Ma
- II 1G Ex ia IIC T4 Ga
- II 1D Ex ia IIIB T135 ${ }^{\circ} \mathrm{C}$ Da

Characteristics

Intrinsically safe switching head with reed switch and ATEX approval, for the HD range of devices, for use in intrinsically safe power circuits.

Technical data

Switch	reed switch
Temperature	T_{u} max. $50{ }^{\circ} \mathrm{C}$
Weight	0.35 kg additionally
Switch	reed switch
Wiring	changeover no. 0.282
Switching voltage	max. 30 V
Switching current	max. 1.5 A
Switching capacity	max. 50 W
Ingress protection	IP 65
Protection class	3 - protective extra low voltage
Electrical connection	cable screw gland M20×1.5 for cable diameter 7-13 mm corresponding to DIN EN 60079-14, VDE 0165 part 1, blade cross-section max. $1.5 \mathrm{~mm}^{2}$

Dimensions

Handling and operation

Note

All

- For use only in intrinsically safe power circuits Provide a suitable isolating amplifier.
- Cable lengths max. 5 m .
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switched on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

HD1KO- I HD2KO-

- Display with plastic parts - do not open in an explosive atmosphere.

Adjustment

If it is necessary to set the switching value, the switching head can be adjusted lengthways. When the switching value is reached, the switching unit is fixed in place by a fastening bolt.

Ordering code

The basic device is ordered e.g. HD1K-015GM005A with Switching head A-H2.1

GHM-HONSEERG

Product Information

Sensors and Instrumentation

Flow switch HR2K1

- Optimized for use with water
- Low pressure loss
- Solid construction

Characteristics

Mechanical flow switch for fluid media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data		
Switch	reed switch	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{1 / 4}$..G 2 (further process connections available on request)	
Switching range	10.. $150 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	~ 1 bar at $\mathrm{Q}_{\text {max }}$	
$\mathbf{Q m a x}_{\text {m }}$	up to $300 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 10 \%$ of full scale value	
Pressure resistance	PS 200 bar	
Media temperature	$-20 . .+120{ }^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water	
Wiring	transformer No. 0.213	
	optionally transformer No. 0.282	
	optionally red or red/green signal lamp in the plug DIN 43650-A / ISO 4400	
Switching voltage	max. 250 V AC	
Switching current	max. 1.5 A	
Switch performance	max. 50 VA	
Protection class	2 - Safety insulation	
Ingress protection	IP 65	

Electrical connection	plug DIN 43650-A / ISO 44000, optionally round plug connector M12x1, 4-pole
Materials medium-contact	Brass construction: Stainless steel CW614N nickelled, construction: CW614N, $1.4571,1,4310$, $1.4305,1.4310$, hard ferrite hard ferrite
Non-mediumcontact materials	CW614N nickelled, PC, PA, NBR, 1.4301, CW508L nickelled,
Weight	see table "Dimensions and weights"
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the switching point and range.

plug DIN 43650-A / ISO 44000, optionally round plug connector M12x1, 4-pole CW614N nickelled, construction: CW614N, 1.4571, 1,4310, hard ferrite
1.4305, 1.4310,

Non-mediumcontact materials

Weight

Installation location

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.

Switching range I/min $\mathrm{H}_{2} \mathrm{O}$	Display range I/min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended
$10-40$	$10-60$	300
$15-60$	$15-100$	300
$20-90$	$20-200$	300
$25-150$	$30-300$	300

Special ranges are available.

Dimensions and weights

DN	G	Types	L	ØD	SW	Ød	\mathbf{X}	Weight kg
32	G 1¹/4	HR2K1-032GM	130	65	60	51	23	2.6
40	G 1¹/2	HR2K1-040GM	170			56	24	3.2
50	G 2	HR2K1-050GM	185	80	75	70	26	5.3

additional weights for options
Display O1 / Z1 $\quad 0.05 \mathrm{~kg}$

GHM-HONSBERG

Product Information

Sensors and Instrumentation

Handling and Operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switched on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

If it is necessary to set the switching value, the switching head can be adjusted lengthways. When the switching value is reached, the switching unit is fixed in place by fastening bolts.

Ordering code

1. Display options

-	no mechanical display
O1-	with measurement display at side O1
Z1-	with frontal measurement display Z1

2. Nominal width

032 DN 32 - G 1 $1 / 4$
040 DN $40-\mathrm{G} 1 \frac{1}{2}$
050 DN 50-G 2
3. Process connection

G female thread
4. Connection material

M \quad brass
K stainless steel
HR2K1Z1-
5.

Switching range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow

	040	$10-40 \mathrm{I} / \mathrm{min}$
	060	$15-60 \mathrm{I} / \mathrm{min}$
	090	$20-90 \mathrm{l} / \mathrm{min}$
	150	$25-150 \mathrm{l} / \mathrm{min}$

Options

- Special values
- Signal lamp red or red/green
- Connection for round plug connector M12x1
- Rhodium contact 250 V AC, $0.5 \mathrm{~A}, 30 \mathrm{VA}$
- Two to four switching heads

Ordering information

- Specify direction of flow, medium, and switching range.

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Flow switch HR2K2

- Low pressure loss
- Solid construction

Characteristics

Mechanical flow switch for fluid media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data

Switch	reed switch	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{1 / 4}$..G 2 (further process connections available on request)	
Switching range	15.. $80 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	~ 1 bar at $\mathrm{Q}_{\text {max }}$	
$\mathbf{Q}_{\text {max. }}$	up to $300 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 10 \%$ of full scale value	
Pressure resistance	PS 200 bar	
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	Water	
Wiring		
Switching voltage	max. 230 V AC	
Switching current	max. 0.5 A	
Switch performance	max. 50 VA	
Protection class	2 - Safety insulation	
Ingress protection	IP 67	
Electrical connection	for round plug connector M12x1, 4-pole	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite	Stainless steel construction: 1.4571, 1,4310, hard ferrite

GHM-HONSEERG

Non-medium- contact materials	CW614N nickelled, PC,1.4301,
Weight	see table "Dimensions and weights"
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the switching point and range.

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.

Switching range I/min $\mathrm{H}_{2} \mathrm{O}$	Display range //min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended
$15-30$	$10-60$	300
$20-40$	$15-100$	300
$25-50$	$20-200$	300
$30-80$	$30-300$	300

Special ranges are available.

Dimensions and weights

DN	G	Types	L	ØD	SW	Ød	X	Weight kg
32	$\mathrm{G} 1^{1} / 4$	HR2K2-032GM	130	65	60	51	23	2.6
40	G $1^{1} / 2$	HR2K2-040GM	170			56	24	3.2
50	G 2	HR2K2-050GM	185	80	75	70	26	5.3

additional weights for options
Display O1 / Z1 $\quad 0.05$ kg

GHM-HONSBERG

Product Information

Sensors and Instrumentation

Handling and Operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet - If the media are dirty, install a filter
(use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switched on, a load must be connected in series.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

If it is necessary to adjust the switching value, the switching head can be adjusted lengthways.
When the switching value is reached, the switching unit is fixed in place by a fastening bolt.

Ordering code

1. Display options

-	no mechanical display
O1-	with measurement display at side O1

2. Nominal width
032 DN $32-\mathrm{G} 1^{1 / 4} 4$ HR2K2O1-

040 DN $40-\mathrm{G} 1^{1} /{ }^{2}$
-

050 DN 50-G 2

4. Connection material

M \quad brass
K stainless steel
HR2K2Z1-
5. Switching range $\mathrm{H}_{2} \mathrm{O}$ for horizontal
5. inwards flow

030	$15-30 \mathrm{l} / \mathrm{min}$
040	$20-40 \mathrm{l} / \mathrm{min}$
050	$25-50 \mathrm{l} / \mathrm{min}$
080	$30-80 \mathrm{l} / \mathrm{min}$

Options

- Special values
- two to four switching heads

Ordering information

- Specify direction of flow, medium, and switching range.

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Flow switch HR2Z1

- Low pressure loss
- Individually calibrated display
- Compact design

Characteristics

Mechanical flow switch for fluid media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data

Switch	without	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{1} / 4$..G 2 (further process connections available on request)	
Display range	$10 . .300 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	~ 1 bar at $\mathrm{Q}_{\text {max }}$	
$\mathbf{Q m a x}_{\text {ma }}$	up to $300 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 10 \%$ of full scale value	
Pressure resistance	PS 200 bar	
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$	
Media	water	
Electrical connection	none	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite	Stainless steel construction: 1.4571, 1,4310, hard ferrite
Non-mediumcontact materials	CW614N nickelled, PC, acrylic	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the switching point and range.	

GHD-HONSBERG

Sensors and Instrumentation

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Display range I/min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended
$10-60$	300
$15-100$	300
$20-200$	300
$30-300$	300

Special ranges are available.
Dimensions and weights

DN	G	Types	L	ØD	SW	$\boldsymbol{\varnothing d}$	\mathbf{X}	Weight kg
32	G 1¹/4	HR2Z1-032GM	130	65	60	51	23	2.5
40	G 1¹/2	HR2Z1-040GM	170			56	24	3.1
50	G 2	HR2Z1-050GM	185	80	75	70	26	5.2

SWI AF

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components).

Product Information

Ordering code

	1.	2.	3.	4.
		\mathbf{G}	\square	\square

1.	Nominal width	
	032	DN 32-G 11/4
	040	DN 40-G 11/2
	050	DN 50-G 2

2. Process connection

G female thread
3. Connection material

M brass
K stainless steel
4. Display range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow

	040
	$10-60 \mathrm{I} / \mathrm{min}$
	060
090	$15-100 \mathrm{I} / \mathrm{min}$
	$20-200 \mathrm{I} / \mathrm{min}$
	150

Options

- Special values

Ordering information

- Specify direction of flow, medium, and display range.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Flow switch HR2O1

- Low pressure loss
- Individually calibrated display
- Compact design

Characteristics

Mechanical flow switch for fluid media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data		
Switch	without	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{1} / 4$. $G 2$ (further process connections available on request)	
Display range	$10 . .300 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	~ 1 bar at $\mathrm{Q}_{\text {max }}$	
$\mathbf{Q m a x}_{\text {ma }}$	up to $300 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 10 \%$ of full scale value	
Pressure resistance	PS 200 bar	
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water	
Electrical connection	none	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite	Stainless steel construction: 1.4571, 1,4310, hard ferrite
Non-mediumcontact materials	CW614N nickelled, PC, acrylic	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the switching point and range.	

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Display range I/min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended
$10-60$	300
$15-100$	300
$20-200$	300
$30-300$	300

Special ranges are available
Dimensions and weights

DN	G	Types	L	ØD	SW	Ød	X	Weight kg
32	G 1¹/4	HR2O1-032GM	130	65	60	51	23	2.5
40	G 1¹/2	HR2O1-040GM	170			56	24	3.1
50	G 2	HR2O1-050GM	185	80	75	70	26	5.2

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components).

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de - info@honsberg.com

GHD-HONSEERG

Product Information

Ordering code

1. Nominal width

032	DN $32-\mathrm{G} 1^{1 / 4}$
040	$\mathrm{DN} 40-\mathrm{G} 1^{1 / 2}$
050	$\mathrm{DN} \mathrm{50-G} \mathrm{2}$

2. Process connection

G female thread
3. Connection material

M brass
K stainless steel
4. Display range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow

040	$10-60 \mathrm{I} / \mathrm{min}$
060	$15-100 \mathrm{I} / \mathrm{min}$
090	$20-200 \mathrm{I} / \mathrm{min}$
150	$30-300 \mathrm{I} / \mathrm{min}$

Options

- Special values

Ordering information

- Specify direction of flow, medium, and display range.

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de • info@honsberg.com

GHD-HONSBERG

Product Information

Flow switch HR2VK1

- Optimized for use with oil
- Viscosity stabilised
- Solid construction

Characteristics

Mechanical flow switch for fluid media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data	
Switch	reed switch
Nominal width	DN 32 / 40 / 50
Process connection	female thread G $1^{1 / 4}$..G 2 (further process connections available on request)
Switching range	$10.120 \mathrm{l} / \mathrm{min}$ for details see
Pressure loss	~ 4.7 bar at $Q_{\text {max }} \quad \begin{aligned} & \text { for details see } \\ & \text { table "Ranges" }\end{aligned}$
$\mathbf{Q m a x}_{\text {ma }}$	up to $160 \mathrm{l} / \mathrm{min}$ (
Tolerance	$\pm 10 \%$ of full scale value at constant viscosity
Viscositystability	mean deviation $\pm 7 \%$, max. 18% ($20-330 \mathrm{~mm}^{2} / \mathrm{s}$) of full scale value
Pressure resistance	PS 200 bar
Media temperature	$-20 . .+120{ }^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Media	oil

Sensors and Instrumentation

Wiring	transformer No. 0.213 optionally transformer No. 0.282 optionally red or red/ the plug DIN 43650-A	reen signal lamp in / ISO 4400
Switching voltage	max. 250 V AC	
Switching current	max. 1.5 A	
Switch performance	max. 50 VA	
Protection class	2 - Safety insulation	
Ingress protection	IP 65	
Electrical connection	plug DIN 43650-A / ISO 44000, optionally round plug connector M12x1, 4-pole	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite	Stainless steel construction: 1.4571, 1,4310, hard ferrite
Non-mediumcontact materials	CW614N nickelled, PC, PA, NBR, 1.4301, CW508L nickelled,	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the switching point and range.	

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.

Switching range I/min oil $20-330 \mathrm{~mm}^{2} / \mathrm{s}$	Display range I/min oil $20-330 \mathrm{~mm}^{2} / \mathrm{s}$	Q $_{\text {max. }}$ Recom- mended I/min	Pressure loss bar at Qmax. oil
$10-40$	$10-60$	100	4
$15-55$	$20-100$	120	5
$40-90$	$40-120$	140	5
$50-120$	$50-150$	160	7

Special ranges are available.

GHM-HONSBERG

Product Information

Sensors and Instrumentation

Dimensions and weights

DN	G	Types	L	ØD	SW	Ød	X	Weight kg
32	G $1^{1 / 4}$	HR2VK1-032GM	130	65	60	51	23	2.6
40	G $1^{1} / 2$	HR2VK1-040GM	170			56	24	3.2
50	G 2	HR2VK1-050GM	185	80	75	70	26	5.3

additional weights for options
Display O1 / Z1
0.05 kg

Handling and Operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switched on, a load must be connected in series.
- Under unfavorable pressure conditions, e.g. with a free outlet, there is a risk of cavitation.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

If it is necessary to set the switching value, the switching head can be adjusted lengthways. When the switching value is reached, the switching unit is fixed in place by fastening bolts.

Ordering code

1. Display options

-	no mechanical display
O1-	with measurement display at side O1
Z1-	with frontal measurement display Z1

2. Nominal width

	032	DN 32-G 11/4	HR2VK1O1-
	040	DN 40-G 11/2	
	050	DN 50-G 2	
3.	Process connection		
	G	female thread	
4.	Con	ction material	

4.	Connection material	
	M	brass
	HR2VK1Z1-	
		stainless steel

5. Switching range $\mathbf{H}_{2} \mathrm{O}$ for horizontal
6. inwards flow

	040
	$10-40 \mathrm{I} / \mathrm{min}$
	095
	$15-55 \mathrm{I} / \mathrm{min}$
	120

Options

- Special values
- Signal lamp red or red/green
- Connection for round plug connector M12x1
- Rhodium contact 250 V AC, $0.5 \mathrm{~A}, 30 \mathrm{VA}$
- Two to four switching heads

Ordering information

- Specify direction of flow, medium, and switching range.

GHM-HONSBERG

Product Information

Flow switch

 HR2VK2

- Optimized for use with oil
- Viscosity stabilised
- Solid construction

Characteristics

Mechanical flow switch for fluid media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data	
Switch	reed switch
Nominal width	DN 32 / 40 / 50
Process connection	female thread G $1^{1 / 4 . . G} 2$ (further process connections available on request)
Switching range	$10.100 \mathrm{l} / \mathrm{min}$ for details see
Pressure loss	$\sim 4 . .7$ bar at $\mathrm{Q}_{\max } \quad \begin{aligned} & \text { for details see } \\ & \text { table "Ranges" }\end{aligned}$
$\mathbf{Q m a x}$. $^{\text {a }}$	
Tolerance	$\pm 10 \%$ of full scale value at constant viscosity
Viscositystability	mean deviation $\pm 7 \%$, max. 18 \% ($20-330 \mathrm{~mm}^{2} / \mathrm{s}$) of full scale value
Pressure resistance	PS 200 bar
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Media	oil
Wiring	
Switching voltage	max. 230 V AC
Switching current	max. 0.5 A
Switch performance	max. 50 VA
Protection class	2 - Safety insulation
Ingress protection	IP 67
Electrical connection	for round plug connector M12x1, 4-pole

Sensors and Instrumentation
$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Materials } \\ \text { medium-contact }\end{array} & \begin{array}{l}\text { Brass construction: } \\ \text { CW614N nickelled, }\end{array} & \begin{array}{l}\text { Stainless steel } \\ \text { construction: } \\ \text { CW614N, } \\ 1.451,1,1,4310,\end{array} \\ \text { 1.4305, 1.4310, } \\ \text { hard ferrite }\end{array}\right]$

Ranges

For switching ranges, the details in the table correspond to horizontal inwards flow and decreasing flow rate; for display ranges they correspond to horizontal inwards flow and increasing flow rate.

Switching range I/min oil $20-330 \mathrm{~mm}^{2} / \mathrm{s}$	Display range I/min oil $20-330 \mathrm{~mm}^{2} / \mathrm{s}$	$\mathbf{Q}_{\text {max. }}$ Recom- mended I/min	Pressure loss bar at Qmax. oil
$10-25$	$10-60$	100	4
$15-40$	$20-100$	120	5
$40-70$	$40-120$	140	5
$50-100$	$50-150$	160	7

Special ranges are available.

Switching spaces of the flow switch HR2VK1

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Dimensions and weights

DN	G	Types	L	ØD	SW	Ød	X	Weight kg
32	G $1^{1 / 4}$	HR2VK2-032GM	130	65	60	51	23	2.6
40	G $1^{1 / 2}$	HR2VK2-040GM	170			56	24	3.2
50	G 2	HR2VK2-050GM	185	80	75	70	26	5.3

additional weights for options
Display O1 / Z1 $\quad 0.05$ kg

Handling and Operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- It must be ensured that the values given for voltage, current, and power are not exceeded.
- When switched on, a load must be connected in series.
- Under unfavorable pressure conditions, e.g. with a free outlet, there is a risk of cavitation.
- The electrical details apply to ohmic loads. Capacitive, inductive and lamp loads must be operated using a protective circuit.

Adjustment

If it is necessary to adjust the switching value, the switching head can be adjusted lengthways. When the switching value is reached, the switching unit is fixed in place by a fastening bolt.

Ordering code

1. Display options

-	no mechanical display
O1-	with measurement display at side O1

2. Nominal width

032	DN 32-G 11/4	HR2VK2O1-
040	DN 40-G $1^{1} / 2$	
050	DN 50-G 2	
Process connection		
G	female thread	
Con	ction material	

4. Connection material

M \quad brass
HR2VK2Z1-
5. Switching range $\mathbf{H}_{2} \mathrm{O}$ for horizontal
5. inwards flow

025	$10-25 \mathrm{I} / \mathrm{min}$
040	$15-40 \mathrm{I} / \mathrm{min}$
070	$40-70 \mathrm{I} / \mathrm{min}$
100	$50-100 \mathrm{I} / \mathrm{min}$

Options

- Special values
- two to four switching heads

Ordering information

- Specify direction of flow, medium, and switching range.

GHD-HONSBERG

Product Information
Sensors and Instrumentation

Flow switch HR2VZ1

- Viscosity stabilised
- Individually calibrated display
- Compact design

Characteristics

Mechanical flow switch for fluid media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data

Switch	without	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{1} / 4$..G 2 (further process connections available on request)	
Display range	$10 . .150 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	~ $4 . .7$ bar at $Q_{\text {max }}$	
$\mathrm{Q}_{\text {max. }}$	up to $160 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 10 \%$ of full scale value at constant viscosity	
Viscositystability	mean deviation $\pm 7 \%$, max. 18 \% ($20-330 \mathrm{~mm}^{2} / \mathrm{s}$) of full scale value	
Pressure resistance	PS 200 bar	
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	oil	
Electrical connection	none	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite	Stainless steel construction: 1.4571, 1,4310, hard ferrite
Non-mediumcontact materials	CW614N nickelled, PC, acrylic	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the switching point and range.	

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Display range $\mathrm{I} / \mathrm{min}$ oil $20-330 \mathrm{~mm}^{2} / \mathrm{s}$	Qmax. $^{\text {Recom- }}$ mended $\mathrm{I} / \mathrm{min}$	Pressure loss bar at Qmax. oil
$10-60$	100	4
$20-100$	120	5
$40-120$	140	5
$50-150$	160	7

Special ranges are available.

Display spaces of the flow switch HR2VK1

Dimensions and weights

DN	G	Types	L	ØD	SW	Ød	\mathbf{X}	Weight kg
32	G 1¼	HR2VZ1-032GM	130	65	60	51	23	2.5
40	G 11⁄2	HR2VZ1-040GM	170			56	24	3.1
50	G 2	HR2VZ1-050GM	185	80	75	70	26	5.2

SWI AF

Product Information

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components).
- Under unfavorable pressure conditions, e.g. with a free outlet, there is a risk of cavitation.

Ordering code

1. Nominal width

032	DN $32-\mathrm{G} 1^{1 / 4}$
040	DN $40-\mathrm{G} 1^{1 / 2}$
050	DN $50-\mathrm{G} 2$

2. Process connection

G female thread
3. Connection material
\square
M brass
K stainless steel
4. Display range $\mathbf{H}_{2} \mathbf{O}$ for horizontal inwards flow

060	$10-60 \mathrm{I} / \mathrm{min}$
100	$15-100 \mathrm{I} / \mathrm{min}$
120	$40-120 \mathrm{I} / \mathrm{min}$
150	$50-150 \mathrm{I} / \mathrm{min}$

Options

- Special values

Ordering information

- Specify direction of flow, medium, and display range.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Flow switch HR2VO1

- Viscosity stabilised
- Individually calibrated display
- Compact design

Characteristics

Mechanical flow switch for fluid media, with spring-supported piston and magnetic triggering of a reed switch. Robust construction in brass or stainless steel.

Technical data

Switch	without	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{1 / 4}$. .G 2 (further process connections available on request)	
Display range	$10 . .150 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	~ 4.7 bar at $\mathrm{Q}_{\text {max }}$	
$\mathrm{Q}_{\text {max. }}$	up to $160 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 10 \%$ of full scale value at constant viscosity	
Viscositystability	mean deviation $\pm 7 \%$, max. 18% ($20-330 \mathrm{~mm}^{2} / \mathrm{s}$) of full scale value	
Pressure resistance	PS 200 bar	
Media temperature	$-20 . .+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$	
Media	oil	
Electrical connection	none	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite	Stainless steel construction: 1.4571, 1,4310, hard ferrite
Non-mediumcontact materials	CW614N nickelled, PC, acrylic	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow from the left; other installation positions are possible; the installation position affects the switching point and range.	

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Display range $\mathrm{I} / \mathrm{min}$ oil $20-330 \mathrm{~mm}^{2} / \mathrm{s}$	Q $_{\text {max. }}$ Recom- mended I/min	Pressure loss bar at $\mathrm{Q}_{\text {max. oil }}$
$10-60$	100	4
$20-100$	120	5
$40-120$	140	5
$50-150$	160	7

Special ranges are available.

Display spaces of the flow switch HR2VK1
Dimensions and weights

DN	\mathbf{G}	Types	\mathbf{L}	$\boldsymbol{\varnothing D}$	SW	Ød	\mathbf{X}	Weight kg
32	$\mathrm{G} 1^{1} / 4$	HR2VO1-032GM	130	65	60	51	23	2.5
40	$\mathrm{G} \mathrm{1} 1^{1} / \mathbf{2}$	HR2VO1-040GM	170			56	24	3.1
50	G 2	HR2VO1-050GM	185	80	75	70	26	5.2

Product Information

Handling and operation

Note

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet
- If the media are dirty, install a filter
(use magnetic filter for ferritic components).
- Under unfavorable pressure conditions, e.g. with a free outlet, there is a risk of cavitation.

Ordering code

	1.	2.	3.	4.
HR2VO1 -		\mathbf{G}	\square	\square

1. Nominal width

032 DN 32 - G 1 $1 / 4$
040 DN 40-G $1^{1} /{ }_{2}$
050 DN 50-G 2
2. Process connection

G female thread
3. Connection material

M	brass
K	stainless steel

4. Display range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow

060	$10-60 \mathrm{I} / \mathrm{min}$
100	$15-100 \mathrm{l} / \mathrm{min}$
120	$40-120 \mathrm{l} / \mathrm{min}$
150	$50-150 \mathrm{I} / \mathrm{min}$

Options

- Special values

Ordering information

- Specify direction of flow, medium, and display range.

GHM-HONSEERG

Product Information
Sensors and Instrumentation

Flow Transmitter/Switch LABO-HD1K-S

- Switching output push-pull (small hysteresis possible)
- Programmable through teaching
- LED for status display
- All metal housing
- Fully potted IP 67
- All parameters programmable via USB interface ECI-1

Characteristics

Mechanical flow switch, for fluid media, with spring-supported piston and magnetic triggering of Hall sensors. Robust construction in brass or stainless steel.

The LABO electronics fitted to the device make available an electronic switching output (Push-Pull) with adjustable characteristics (minimum/maximum) and hysteresis, which responds when an adjustable limit is fallen short of or exceeded.

If desired, the switching value can be set to the currently existing flow using "teaching". Models with analog or pulse output are also available (see separate data sheets).

In contrast to electromechanical switches (Reed contacts or microswitches), electronic switches are insensitive to impact and wear.

There is no galvanic separation from the supply circuit.

Technical data

Sensor	analog Hall sensors	
Nominal width	DN 8.. 25	
Process connection	female thread G $1 / 4$. .G 1	
Metering range	0.1.80 $1 / \mathrm{min}$	for details see see table "Ranges"
Pressure loss	0.4..1.6 bar at $\mathrm{Q}_{\max }$	
$\mathrm{Q}_{\text {max. }}$	to $100 \mathrm{l} / \mathrm{min}$	
Tolerance	± 3 \% of full scale value	
Pressure resistance	PN 200 bar, optionally PN 500 bar	
Media temperature	$-20 . .+85{ }^{\circ} \mathrm{C}$ optionally $-20 . .+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water, oils (gases and aggressive media available on request)	
Wiring	see section "Wiring"	
Supply voltage	18..30 V DC	
Power consumption	< 1 W	
Outputs	transistor output "push-pull" (resistant to short circuits, and reversal polarity protected) $\mathrm{I}_{\text {out }}=100 \mathrm{~mA}$ max.	
Display	yellow LED (On = Normal / Off = Alarm / rapid flashing $=$ Programming)	
Ingress protection	IP 67	
Electrical connection	for round plug connector M12x1, 4-pole	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, FKM
Non-mediumcontact materials	CW614N nickelled	
Weight	see table "Dimensions and weights"	
Conformity	CE	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the metering and switching range.	

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Ranges

Details in the table apply to horizontal inwards flow with increasing flow rate.

Standard type LABO-HD1K

Metering range $\mathrm{I} / \mathrm{min} \mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss bar at $\mathrm{Q}_{\text {max. }} \mathrm{H}_{2} \mathrm{O}$
$0.1-1$	6	0.4
$0.5-5$	10	0.5
$1.0-10$	20	0.6
$2.0-20$	30	0.4
$3.0-30$	40	
$4.0-40$	60	0.8
$6.0-60$	80	1.4
$20.0-80$	100	1.6

Special ranges are available.

Wiring

Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.
The push-Pull output can as desired be switched as a PNP or an NPN output.

Dimensions and weights

Including LABO electronics

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$...-008GM	40	15	1.5
	G $3 / 8$...-010GM			
	G $1 / 2$...-015GM			1.4
	G ${ }^{1 / 4}$...-020GM		18	
	G 1	...-025GM			1.3
Stainless	G $1 / 4$...-008GK	41	15	1.5
steel	G $3 / 8$...-010GK			
	G $1 / 2$...-015GK			1.4
	G $3 / 4$...-020GK		18	
	G 1	...-025GK			1.3

Handling and operation

Note

The switching value can be programmed by the user via "teaching". If desired, programmability can be blocked by the manufacturer.

The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet.
- Include a filter if the media are dirty (use magnetic filter for ferritic components)
- In case of unfavourable pressure conditions, for example at atmospheric pressure, may occur cavitation.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Operation and programming

The switching value is set as follows:

- Apply the flow rate to be set to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V , so as to prevent unintended programming.

The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.
To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset value is added to the currently measured value before saving.
Example: The end of the metering range should be set to 80%. However, only 60% can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of $+20 \%$.. At a flow rate of 60% in the process, teaching would then store a value of 80%.

The LABO-HD1K-S limit switch can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

A switchover delay time ($t_{D S}$) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.
In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V , so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V , and in the alarm state it is at the level of the supply voltage.

A Power-On-Delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Ordering code

The basic device is ordered e.g. HD1K-015GM005E with electronics e.g. LABO-HD1K-SPLOS

1. Nominal width

	008	DN 8-G1/4
	010	DN $10-\mathrm{G}^{3 / 8}$
	015	DN $15-\mathrm{G}^{1 / 2}$
	020	DN $20-\mathrm{G} \frac{3}{4}$
	025	DN 25-G 1
2.	Process connection	
	G	female thread
3.	Connection material	
	M	brass
	K	stainless steel
4.	HD1K - Metering range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow	
	001	0.1-11/min
	005	0.5-5 $/ / \mathrm{min}$
	010	1.0-10 $1 / \mathrm{min}$
	020	2.0-20 $1 / \mathrm{min}$
	030	3.0-30 $1 / \mathrm{min}$
	040	4.0-40 $1 / \mathrm{min}$
	060	6.0-60 $1 / \mathrm{min}$
	080	20.0-80 $1 / \mathrm{min}$

5. Connection for

E electronics
6. Switching output (Limit switch)

S	Push-Pull (compatible with PNP and NPN)

7. Programming

P programmable (teaching possible)
$\mathrm{N} \quad \mathrm{O}$ cannot be programmed (no teaching)
8. Switching function

L minimum-switch
H maximum-switch
9. Switching output level

O standard
I O inverted
10. Electrical connection

S for round plug connector M12x1, 4-pole
11. Optional

D O $\begin{aligned} & \text { mediua temperature up to } 120^{\circ} \mathrm{C} \\ & \text { (with spacers) }\end{aligned}$

Options for LABO:

Switching delay period (0.0..99.9 s) \square s
(from Normal to Alarm)
Switch-back delay period (0.0..99.9 s)
 s
(from Alarm to Normal)

Power-On delay period (0..99 s)
(After connecting the supply, time during which the switching output is not activated)

Switching output fixed at

Switching hysteresis

Standard $=2 \%$ of the metering range

Teach-offset

(in percent of the metering range)
Standard = 0 \%

If the fields are not completed, the standard setting is selected automatically.

Options HD1K

- Special ranges

Further options available on request.

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Converter OMNI-TA
- Device configurator ECI-1

GHM-HONSEERG

Product Information

Sensors and Instrumentation

Flow Transmitter/Switch LABO-HD1K-I/U/F/C

- $\quad 4 . .20 \mathrm{~mA}$ output linearised
- 0..10V output linearised
- Frequency output proportional, linear
- Programmable through teaching
- LED for status display
- All metal housing
- Fully potted IP 67
- All parameters programmable via USB interface ECI-1

Characteristics

Mechanical flow switch, for fluid media, with spring-supported piston and magnetic triggering of Hall sensors. Robust construction in brass or stainless steel.

The LABO electronics make various output signals available:

- Analog signal 0/4... 20 mA (LABO-HD1K-...I)
- Analog signal 0/2..10 V (LABO-HD1K-...U)
- Frequency signal (LABO-HD1K-...F) or
- A value signal Pulse / x Litres (LABO-HD1K-...C)

A model with switching output is also available.
If desired, the range end value can be set to the currently existing flow using "teaching".

Technical data

Sensor	analog Hall sensors	
Nominal width	DN $8 . .25$	
Process connection	female thread G $1 / 4$..G 1 (further process connections available on request)	
Metering range	0.1.. $80 \mathrm{l} / \mathrm{min}$	for details see see table "Ranges"
Pressure loss	0.4..1.6 bar at $\mathrm{Q}_{\max \text {. }}$	
$\mathrm{Q}_{\text {max. }}$	to $100 \mathrm{l} / \mathrm{min}$	
Tolerance	± 3 \% of full scale value	
Pressure resistance	PN 200 bar, optionally PN 500 bar	
Media temperature	$-20 . .+85{ }^{\circ} \mathrm{C}$ optionally -20.. $+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water, oils (gases and aggressive media available on request)	
Wiring	see section "Wiring"	
Supply voltage	18..30 V DC	
Power consumption	< 1 W	
Outputs	LABO-...I: current output $4 . .20 \mathrm{~mA}$ (alternatively $0 . .20 \mathrm{~mA}$) max. load 500 Ohm	
	LABO-...U: voltage output $0 . .10 \mathrm{~V}$ (alternatively $2 . .10 \mathrm{~V}$) load min. 1 kOhm	
	LABO-...F: frequency output transistor output "push-pull" (resistant to short circuits, and reversal polarity protected) $I_{\text {out }}=100 \mathrm{~mA}$ max. selectable frequency, max. 2 kHz	
	LABO-...C: Transistor output "Push-Pull" $\mathrm{I}_{\text {out }}=100 \mathrm{~mA}$ max. Pulse width 50 ms Pulse/Value is to be specified when ordering	
Display	yellow LED (On = Normal / Off = Alarm / rapid flashing = Programming)	
Ingress protection	IP 67	
Electrical connection	for round plug connector M12x1, 4-pole	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, FKM
Non-mediumcontact materials	CW614N nickelled	
Weight	see table "Dimensions and weights"	
Conformity	CE	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the metering and switching range.	

Product Information
Sensors and Instrumentation

Signal output curves

Value $x=$ Begin of the specified range
$=$ not specified range
Current output
Voltage output

Frequency output

$\mathrm{f}_{\text {max }}$ selectable in the range of up to 2000 Hz

Other characters on request.

Ranges

Details in the table apply to horizontal inwards flow with increasing flow rate.

Standard type LABO-HD1K

Metering range I/min $\mathrm{H}_{2} \mathrm{O}$	Q $_{\text {max. }}$ recommended	Pressure loss bar at $\mathrm{Q}_{\text {max }} \mathrm{H}_{2} \mathrm{O}$
$0.1-1$	6	0.4
$0.5-5$	10	0.5
$1.0-10$	20	0.6
$2.0-20$	30	0.4
$3.0-30$	40	
$4.0-40$	60	0.8
$6.0-60$	80	1.4
$20.0-80$	100	1.6

Special ranges are available.

Wiring

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.
The push-Pull output can as desired be switched as a PNP or an NPN output.

Dimensions and weights

Including LABO electronics					
	G	Types	SW	X	Weight kg
Brass	G $1 / 4$...-008GM	40	15	1.5
	G $3 / 8$...-010GM			
	G $1 / 2$...-015GM			1.4
	G $3 / 4$...-020GM		18	
	G 1	...-025GM			1.3
Stainless steel	G $1 / 4$...-008GK	41	15	1.5
	G $3 / 8$...-010GK			
	G $1 / 2$...-015GK			1.4
	G $3 / 4$...-020GK		18	
	G 1	...-025GK			1.3

Product Information

Handling and operation

Note
The metering range end value can be programmed by the user via "teaching". Requirement for programmability must be stated when ordering, otherwise the device cannot be programmed. The ECl-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.
The teaching option is not available for LABO-HD1K-C.

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet.
- Include a filter if the media are dirty (use magnetic filter for ferritic components)
- In case of unfavourable pressure conditions, for example at atmospheric pressure, may occur cavitation.

Programming

The teaching process can be carried out by the user as follows:

- The flow rate to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When teaching has been successfully completed, pin 2 should be connected to 0 V , so as to prevent unintended programming

The devices have a yellow LED which flashes during the programming pulse. During operation, the LED serves as a display for operating voltage (for analog output) or of switching status (for frequency or pulse output).
To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset value is added to the currently measured value before saving. The offset value can be positive or negative.
Example: The end of the metering range should be set to 80%. However, only 60% can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of $+20^{\circ} \%$.. At a flow rate of 60% in the process, teaching would then store a value of 80%.

There are many more parameters which can be programmed by the ECI-1 device configurator if necessary.

Ordering code

The basic device is ordered e.g. HD1K-015GM005E with electronics e.g. LABO-HD1K-INS

HD1K

1. Nominal width

008	DN $8-G^{1} / 4$
010	DN $10-G^{3 / 8}$
015	DN $15-G^{1 / 2}$
020	DN $20-G^{3 / 4}$
025	DN $25-G 1$

2. Process connection

G female thread
3. Connection material

M	brass
K	stainless steel

4. HD1K - Metering range $\mathrm{H}_{2} \mathrm{O}$ for horizonta inwards flow

	001	$0.1-1 \mathrm{I} / \mathrm{min}$
	005	$0.5-5 \mathrm{I} / \mathrm{min}$
	010	$1.0-10 \mathrm{I} / \mathrm{min}$
	020	$2.0-20 \mathrm{I} / \mathrm{min}$
	030	$3.0-30 \mathrm{I} / \mathrm{min}$
040	$4.0-40 \mathrm{I} / \mathrm{min}$	
	060	$6.0-60 \mathrm{I} / \mathrm{min}$
	080	$20.0-80 \mathrm{I} / \mathrm{min}$

5. Connection for

E electronics
6. Analog output

	I	current output $4 . .20 \mathrm{~mA}$
	U	voltage output $0 . .10 \mathrm{~V}$
	F	frequency output
	C	pulse output

7. Programming
$\mathrm{N} \quad$ cannot be programmed (no teaching)
P O full scale value can be programmed
8. Electrical connection

S for round plug connector M12x1, 4-pole
9. Optional

D O $\begin{aligned} & \text { medium temperature up to } 120^{\circ} \mathrm{C} \\ & \text { (with spacers) }\end{aligned}$

Required ordering information

For LABO-HD1K-F:
Output frequency at full scale $\quad \square \quad \mid \quad \mathrm{Hz}$
Maximum value: 2000 Hz

For LABO-HD1K-C

The volume must be specified for the pulse output version (with numerical value and unit) which will correspond to one pulse.
Volume per pulse (numerical value)

Product Information

LABO options

Special range for analog output: \square $1 /$ min
<= Metering range
(Standard=Metering range)

Special range for frequency output:

<= Metering range
(Standard=Metering range)
Power-On delay period ($0 . .99 \mathrm{~s}$) \square s
(time after applying power during which the outputs are not activated or set to defined values)

Teach-offset

\square
\%
(in percent of the metering range)
Standard $=0 \%$

HD1K options

- Special ranges

Further options available on request.

Accessories

- Cable/round plug connector (KB...)
see additional information "Accessories"
- Converter OMNI-TA
- Device configurator ECI-1

GHM-HONSEERG

Product Information

Sensors and Instrumentation

Flow Transmitter/Switch LABO-HD2K-S

- viscosity stabilized
- Switching output push-pull (small hysteresis possible)
- Programmable through teaching
- LED for status display
- All metal housing
- Fully potted IP 67
- All parameters programmable via USB interface ECI-1

Characteristics

Mechanical flow switch, for oil, with spring-supported piston and magnetic triggering of Hall sensors. Robust construction in brass or stainless steel.

The LABO electronics fitted to the device make available an electronic switching output (Push-Pull) with adjustable characteristics (minimum/maximum) and hysteresis, which responds when an adjustable limit is fallen short of or exceeded.

If desired, the switching value can be set to the currently existing flow using "teaching". Models with analog or pulse output are also available (see separate data sheets).

In contrast to electromechanical switches (Reed contacts or microswitches), electronic switches are insensitive to impact and wear.

There is no galvanic separation from the supply circuit.

Technical data

Sensor	analog Hall sensors	
Nominal width	DN $8 . .25$	
Process connection	female thread G $1 / 4 . . \mathrm{G} 1$	
Metering range	0.5..60 $1 / \mathrm{min}$	for details see see table "Ranges"
Pressure loss	1.1.3.5 bar at $\mathrm{Q}_{\text {max }}$	
$\mathrm{Q}_{\text {max. }}$	to $80 \mathrm{l} / \mathrm{min}$	
Tolerance	± 3 \% of full scale value	
Pressure resistance	PN 200 bar, optionally PN 500 bar	
Media temperature	$-20 . .+85{ }^{\circ} \mathrm{C}$ optionally $-20 . .+150{ }^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	oils	
Wiring	see section "Wiring"	
Supply voltage	18..30 V DC	
Power consumption	< 1 W	
Outputs	transistor output "push-pull" (resistant to short circuits, and reversal polarity protected) $I_{\text {out }}=100 \mathrm{~mA}$ max.	
Display	yellow LED (On = Normal / Off = Alarm / rapid flashing = Programming)	
Ingress protection	IP 67	
Electrical connection	for round plug connector M12x1, 4-pole	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, FKM
Non-mediumcontact materials	CW614N nickelled	
Weight	see table "Dimensions and weights"	
Conformity	CE	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the metering and switching range.	

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de •info@honsberg.com

Product Information

Ranges

Details in the table apply to horizontal inwards flow with increasing flow rate.

Viscosity compensated type LABO-HD2K

Metering range l/min oil 30.330	Qmax. recommended						Pressure loss bar at Qmax. oil $\mathrm{mm}^{2} / \mathrm{s}$						Viscosity stability
$0.5-8$	12	1.1	1.4	1.6	2.8	3.5	$\pm 0.3 \mathrm{l} / \mathrm{min}$						
$1.5-15$	22	2.2	2.3	2.4			$\pm 0.5 \mathrm{l} / \mathrm{min}$						
$2.5-25$	35	1.9	2.0	2.1	2.3	2.9	$\pm 0.8 \mathrm{l} / \mathrm{min}$						
$6.0-40$	60					2.6	$\pm 2.7 \mathrm{l} / \mathrm{min}$						
$12.0-60$	80	2.1	2.3	2.4	2.6	2.8	$\pm 3.0 \mathrm{l} / \mathrm{min}$						

Special ranges are available.

Wiring

Z=Load

Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.
The push-Pull output can as desired be switched as a PNP or an NPN output.

Sensors and Instrumentation
Dimensions and weights
Including LABO electronics

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$...-008GM	40	15	1.5
	G $3 / 8$...-010GM			
	G $1 / 2$...-015GM			1.4
	G ${ }^{1 / 4}$...-020GM		18	
	G 1	...-025GM			1.3
Stainless	G $1 / 4$...-008GK	41	15	1.5
steel	G $3 / 8$...-010GK			
	G $1 / 2$...-015GK			1.4
	G $3 / 4$...-020GK		18	
	G 1	...-025GK			1.3

Handling and operation

Note

The switching value can be programmed by the user via "teaching". If desired, programmability can be blocked by the manufacturer.

The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet.
- Include a filter if the media are dirty (use magnetic filter for ferritic components)
- In case of unfavourable pressure conditions, for example at atmospheric pressure, may occur cavitation.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Operation and programming

The switching value is set as follows:

- Apply the flow rate to be set to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V , so as to prevent unintended programming.

The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.
To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset value is added to the currently measured value before saving.
Example: The end of the metering range should be set to 80%. However, only 60% can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of +20 \%.. At a flow rate of 60% in the process, teaching would then store a value of 80%.

The LABO-HD2K-S limit switch can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

A switchover delay time ($t_{D S}$) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.
In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V , so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V , and in the alarm state it is at the level of the supply voltage.

A Power-On-Delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

GHD-HONSBERG

Sensors and Instrumentation

Product Information

Ordering code

The basic device is ordered e.g. HD2K-015GM005E with electronics e.g. LABO-HD2K-SPLOS

1. Nominal width

008	DN $8-G^{1 / 4}$
010	DN $10-G^{3 / 8}$
015	DN $15-G^{1 / 2}$
020	DN $20-G^{3 / 4}$
025	DN $25-G 1$

2. Process connection

G female thread
3. Connection material

M	brass
K	stainless steel

4. HD2K - metering range oil $30 . .330 \mathrm{~mm}^{2} / \mathrm{s}$
for horizontal inwards flow

for horizontal inwards flow	
008	$0.5-8 \mathrm{I} / \mathrm{min}$
015	$1.5-15 \mathrm{I} / \mathrm{min}$
025	$2.5-25 \mathrm{I} / \mathrm{min}$
040	$6.0-40 \mathrm{I} / \mathrm{min}$
	060

5. Connection for

E electronics
6. Switching output (Limit switch)

S	Push-Pull (compatible with PNP and NPN)

7. Programming

P programmable (teaching possible)
$\mathrm{N} \quad \mathrm{O}$ cannot be programmed (no teaching)
8. Switching function

L	minimum-switch
H	maximum-switch

9. Switching output level

O standard
I O inverted
10. Electrical connection

S \quad for round plug connector M12x1, 4-pole
11. Optional

D O $\begin{aligned} & \text { medium temperature up to } 120^{\circ} \mathrm{C} \\ & \text { (with spacers) }\end{aligned}$

Options for LABO:

Switching delay period (0.0..99.9 s)
(from Normal to Alarm)
Switch-back delay period (0.0..99.9 s)

(from Alarm to Normal)
Power-On delay period ($0 . .99 \mathrm{~s}$)s
(After connecting the supply, time during which the switching output is not activated)

Switching output fixed at

Switching hysteresis

Standard $=2 \%$ of the metering range

Teach-offset

(in percent of the metering range)
Standard $=0$ \%
If the fields are not completed, the standard setting is selected automatically.

Options HD2K

- Special ranges

Further options available on request.

Accessories

- Cable/round plug connector (KB...)
see additional information "Accessories"
- Converter OMNI-TA
- Device configurator ECI-1

GHM-HONSEERG

Product Information

Sensors and Instrumentation

Flow Transmitter/Switch LABO-HD2K-I/U/F/C

- $\quad 4 . .20 \mathrm{~mA}$ output linearised
- 0..10V output linearised
- Frequency output proportional, linear
- Programmable through teaching
- LED for status display
- All metal housing
- Fully potted IP 67
- All parameters programmable via USB interface ECI-1

Characteristics

Mechanical flow switch, for oil, with spring-supported piston and magnetic triggering of Hall sensors. Robust construction in brass or stainless steel.

The LABO electronics make various output signals available:

- Analog signal 0/4... 20 mA (LABO-HD2K-...I)
- Analog signal 0/2.. 10 V (LABO-HD2K-...U)
- Frequency signal (LABO-HD2K-...F) or
- A value signal Pulse / x Litres (LABO-HD2K-...C)

A model with switching output is also available.
If desired, the range end value can be set to the currently existing flow using "teaching".

Technical data

Sensor	analog Hall sensors	
Nominal width	DN $8 . .25$	
Process connection	female thread G $1 / 4 . . \mathrm{G} 1$	
Metering range	0.5..60 $1 / \mathrm{min}$	for details see see table "Ranges"
Pressure loss	1.1..3.5 bar at $\mathrm{Q}_{\text {max }}$.	
$\mathbf{Q m a x}_{\text {m }}$	To $80 \mathrm{l} / \mathrm{min}$	
Tolerance	± 3 \% of full scale value	
Pressure resistance	PN 200 bar, optionally PN 500 bar	
Media temperature	$-20 . .+85^{\circ} \mathrm{C}$ optionally $-20 . .+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$	
Media	oils	
Wiring	see section "Wiring"	
Supply voltage	18..30 V DC	
Power consumption	< 1 W	
Outputs	LABO-...I: current output $4 . .20 \mathrm{~mA}$ (alternatively $0 . .20 \mathrm{~mA}$) max. load 500 Ohm	
	LABO-...U: voltage output $0 . .10 \mathrm{~V}$ (alternatively 2.. 10 V) load min. 1 kOhm	
	LABO-....F: frequency output transistor output "push-pull" (resistant to short circuits, and reversal polarity protected) $l_{\text {out }}=100 \mathrm{~mA}$ max. selectable frequency, max. 2 kHz	
	LABO-...C: Transistor output "Push-Pull" $\mathrm{l}_{\text {out }}=100 \mathrm{~mA} \text { max. }$ Pulse width 50 ms Pulse/Value is to be specified when ordering	
Display	yellow LED (On = Normal / Off = Alarm / rapid flashing = Programming)	
Ingress protection	IP 67	
Electrical connection	for round plug connector M12x1, 4-pole	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, FKM
Non-mediumcontact materials	CW614N nickelled	
Weight	see table "Dimensions and weights"	
Conformity	CE	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the metering and switching range.	

Product Information
Sensors and Instrumentation

Signal output curves

Value $x=$ Begin of the specified range
$=$ not specified range
Current output
Voltage output

Frequency output

$\mathrm{f}_{\text {max }}$ selectable in the range of up to 2000 Hz

Other characters on request.

Ranges

Details in the table apply to horizontal inwards flow with increasing flow rate.

Viscosity compensated type LABO-HD2K

Metering range //min oil	$\mathbf{Q}_{\text {max }}$. recommended	Pressure loss bar at $\mathrm{Q}_{\text {max. }}$ oil $\mathrm{mm}^{2} / \mathrm{s}$					Viscosity stability
$\begin{gathered} 30 . .330 \\ \mathrm{~mm}^{2} / \mathrm{s} \end{gathered}$		30	60	100	205	330	$\pm 8 \%$, min.
0.5-8	12	1.1	1.4	1.6	2.8	3.5	$\pm 0.3 \mathrm{l} / \mathrm{min}$
1.5-15	22	2.2	2.3	2.4			$\pm 0.5 \mathrm{l} / \mathrm{min}$
2.5-25	35	1.9	2.0	2.1	2.3	2.9	$\pm 0.8 \mathrm{l} / \mathrm{min}$
6.0-40	60					2.6	$\pm 2.71 / \mathrm{min}$
12.0-60	80	2.1	2.3	2.4	2.6	2.8	$\pm 3.0 \mathrm{l} / \mathrm{min}$

Wiring

Connection example: PNP NPN

Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G ${ }_{1 / 4}$...-008GM	40	15	1.5
	G ${ }^{1 / 8}$...-010GM			
	G $1 / 2$...-015GM			1.4
	G ${ }^{3 / 4}$...-020GM		18	
	G 1	...-025GM			1.3
Stainless steel	G $1 / 4$...-008GK	41	15	1.5
	G ${ }^{1 / 8}$...-010GK			
	G $1 / 2$...-015GK			1.4
	G ${ }^{1 / 4}$...-020GK		18	
	G 1	...-025GK			1.3

Product Information

Handling and operation

Note
The metering range end value can be programmed by the user via "teaching". Requirement for programmability must be stated when ordering, otherwise the device cannot be programmed. The ECl-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.
The teaching option is not available for LABO-HD2K-C.

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet.
- Include a filter if the media are dirty (use magnetic filter for ferritic components)
- In case of unfavourable pressure conditions, for example at atmospheric pressure, may occur cavitation.

Programming

The teaching process can be carried out by the user as follows:

- The flow rate to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When teaching has been successfully completed, pin 2 should be connected to 0 V , so as to prevent unintended programming

The devices have a yellow LED which flashes during the programming pulse. During operation, the LED serves as a display for operating voltage (for analog output) or of switching status (for frequency or pulse output).
To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset value is added to the currently measured value before saving. The offset value can be positive or negative.
Example: The end of the metering range should be set to 80%. However, only 60% can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of $+20^{\circ}$ $\%$. At a flow rate of 60% in the process, teaching would then store a value of 80 \%.

There are many more parameters which can be programmed by the ECI-1 device configurator if necessary.

Ordering code

The basic device is ordered e.g. HD2K-015GM005E with electronics e.g. LABO-HD2K-INS

1. Nominal width

008	DN $8-G^{1 / 4}$
010	DN $10-G^{3 / 8}$
015	DN $15-G^{1 / 2}$
020	DN $20-G^{3 / 4}$
025	DN $25-G 1$

2. Process connection

G female thread
3. Connection material

M	brass
K	stainless steel

4. HD2K - metering range oil $30 . .330 \mathrm{~mm}^{2} / \mathrm{s}$ for horizontal inwards flow

	008	$0.5-8 \mathrm{I} / \mathrm{min}$
	015	$1.5-15 \mathrm{I} / \mathrm{min}$
	025	$2.5-25 \mathrm{I} / \mathrm{min}$
	040	$6.0-40 \mathrm{I} / \mathrm{min}$
	060	$12.0-60 \mathrm{I} / \mathrm{min}$

5. Connection for

$$
\text { E } \quad \text { electronics }
$$

6. Analog output

	I	current output $4 . .20 \mathrm{~mA}$
	U	voltage output $0 . .10 \mathrm{~V}$
	F	frequency output
	C	pulse output

7. Programming
$\mathrm{N} \quad$ cannot be programmed (no teaching)
P O full scale value can be programmed
8. Electrical connection

S for round plug connector M12×1, 4-pole
9. Optional

D O $\begin{aligned} & \text { medium temperature up to } 120^{\circ} \mathrm{C} \\ & \text { (with spacers) }\end{aligned}$

Required ordering information

For LABO-HD2K-F:

Output frequency at full scale \quad		
$H z$		

Maximum value: 2000 Hz

For LABO-HD2K-C

The volume must be specified for the pulse output version (with numerical value and unit) which will correspond to one pulse.
Volume per pulse (numerical value)
Volume per pulse (unit)

Product Information

LABO options

Special range for analog output:

\square $1 /$ min
<= Metering range
(Standard=Metering range)
Special range for frequency output: \square $1 /$ min
<= Metering range
(Standard=Metering range)
Power-On delay period ($0 . .99 \mathrm{~s}$)
(time after applying power during which the outputs are not activated or set to defined values)

Teach-offset
(in percent of the metering range)
Standard $=0$ \%

HD2K options

- Special values

Further options available on request.

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Converter OMNI-TA
- Device configurator ECI-1

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 - 42897 Remscheid • Germany
Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Flow switch

LABO-HR2E-S

- Optimized for use with water
- Versatile, configurable switching output in Push-Pull model (small hysteresis possible)
- Programmable through teaching
- LED for status display
- All metal housing
- Fully potted IP 67
- All parameters programmable via USB interface ECI-1

Characteristics

Mechanical flow switch, for fluid media, with spring-supported piston and magnetic triggering of Hall sensors. Robust construction in brass or stainless steel.

The LABO electronics fitted to the device make available an electronic switching output (Push-Pull) with adjustable characteristics (minimum/maximum) and hysteresis, which responds when an adjustable limit is fallen short of or exceeded.

If desired, the switching value can be set to the currently existing flow using "teaching". Models with analog or pulse output are also available (see separate data sheets).

In contrast to electromechanical switches (Reed contacts or microswitches), electronic switches are insensitive to impact and wear.

There is no galvanic separation from the supply circuit.

GHM-HONSEERG

Sensors and Instrumentation

Technical data

Sensor	analog Hall sensors	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{11 / 4}$..G 2 (further process connections available on request)	
Metering range	$5 . .300 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	~ 1 bar at $\mathrm{Q}_{\text {max }}$	
$\mathbf{Q m a x}_{\text {m }}$	up to $300 \mathrm{l} / \mathrm{min}$	
Measurement accuracy	$\pm 8 \%$ of full scale value	
Pressure resistance	PS 200 bar	
Medium temperature	$-20 . .+85^{\circ} \mathrm{C}$, optionally -20.. $+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$	
Media	water	
Wiring	see section "Wiring"	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite	Stainless steel construction: 1.4571, 1.4310, hard ferrite
Non-mediumcontact materials	CW614N nickelled	
Supply voltage	18..30 V DC	
Power consumption	< 1 W	
Switching output	transistor output "Push-Pull" (resistant to short circuits and reversed polarity protected) $l_{\text {out }}=100 \mathrm{~mA}$ max.	
Electrical connection	for round plug connector M12×1, 4-pole	
Display	yellow LED (On = Normal / Off = Alarm / rapid flashing = Programming)	
Ingress protection	IP 67	
Weight	see table "Dimensions and weights"	
Conformity	CE	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the metering and switching range.	

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Ranges

For metering ranges, the details in the table correspond to horizontal inwards flow with increasing flow rate.

Standard type LABO-HR2E

Metering range $\mathrm{I} /$ min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended
$5-60$	$300 \mathrm{I} / \mathrm{min}$
$10-100$	$300 \mathrm{I} / \mathrm{min}$
$15-200$	$300 \mathrm{I} / \mathrm{min}$
$25-300$	$300 \mathrm{I} / \mathrm{min}$

Special ranges are available.

Wiring

Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.
The Push-Pull output can as desired be switched as a PNP or an NPN output.

Dimensions and weights
..including LABO electronics

DN	G	Types	L	$\varnothing \mathrm{D}$	SW	Ød	X	Weight kg
32	G $1^{1} / 4$	HR2E -032GM	130	65	60	51	23	2.6
40	G $1^{1} / 2$	HR2E -040GM	170	65	60	56	24	3.2
50	G 2	HR2E -050GM	185	80	75	70	26	5.3

High temperature

Handling and operation

Note

The switching value can be programmed by the user via "teaching". If desired, programmability can be blocked by the manufacturer.

The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet.
- Include a filter if the media are dirty (use magnetic filter for ferritic components)

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Operation and programming

The switching value is set as follows:

- Apply the flow rate to be set to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V , so as to prevent unintended programming.

The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.
To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving.
Example: The end of the metering range should be set to 80%. However, only 60% can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of $+20 \%$.. At a flow rate of 60% in the process, teaching would then store a value of 80%.

The LABO-HR2E-S limit switch can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

A switchover delay time ($t_{D S}$) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.
In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V , so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V , and in the alarm state it is at the level of the supply voltage.

A Power-On-Delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Ordering code

The basic device is ordered e.g. HR2E-032GM100 with electronics e.g. LABO-HR2E-SPLISD

O=Option

1.	Nominal width		
	032	DN $32-\mathrm{G} 1^{11} / 4$	
	040	DN $40-\mathrm{G} 1^{1} / 2$	
	050	DN $50-\mathrm{G} 2$	

2. Process connection

G female thread
3. Connection material

M brass
K stainless steel
4. HR2E - Metering range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow

	060
100	$5-60 \mathrm{I} / \mathrm{min}$
	$10-100 \mathrm{I} / \mathrm{min}$
	300
	$15-200 \mathrm{I} / \mathrm{min}$

5. Switching output (Limit switch)

S Push-Pull (compatible with PNP and NPN)
6. Programming

P programmable (teaching possible)
N O cannot be programmed (no teaching)
7. Switching function

L	minimum-switch
H	maximum-switch

8. Switching signal

O standard
I O inverted
9. Electrical connection

S for round plug connector M12x1, 4-pole
10. Optional

D medium temperature up to $120^{\circ} \mathrm{C}$
D (with spacers)

LABO options

Switching delay period (0.0..99.9 s)
(from Normal to Alarm)

Switch-back delay period (0.0..99.9 s)
(from Alarm to Normal)

Power-On delay period ($0 . .99 \mathrm{~s}$)
\square
. S
(After connecting the supply, time during which the switching output is not activated)

Switching output fixed at

Switching hysteresis

Standard $=2 \%$ of the metering range

Teach-offset

(in percent of the metering range)
Standard $=0$ \%
Further options available on request.

HR2E options

- Special values

Further options available on request.

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Converter OMNI-TA
- Device configurator ECI-1

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Flow transmitter

LABO-HR2E-I / U / F / C

- Optimised for use with water
- $4 . .20 \mathrm{~mA}$ output linearised
- 0..10V output linearised
- Frequency output proportional, linear
- Programmable through teaching
- LED for status display
- All metal housing
- Fully potted IP 67
- All parameters programmable via USB interface ECI-1

Characteristics

Mechanical flow switch, for fluid media, with spring-supported pis ton and magnetic triggering of Hall sensors. Robust construction in brass or stainless steel.

The LABO electronics make various output signals available:

- Analog signal 0/4... 20 mA (LABO-HR2E-...I)
- Analog signal 0/2..10 V (LABO-HR2E-..U)
- Frequency signal (LABO-HR2E-...F) or
- A value signal Pulse / x Litres (LABO-HR2E-...C)

A model with switching output is also available.
If desired, the range end value can be set to the currently existing flow using "teaching".

GHM-HONSEERG

Sensors and Instrumentation

Technical data

Sensor	analog Hall sensors	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{11} 4$..G 2 (further process connections available on request)	
Metering range	$5 . .3001 / \mathrm{min}$	For details see table "Ranges"
Pressure loss	~ 1 bar at $\mathrm{Q}_{\text {max }}$	
$\mathrm{Q}_{\text {max. }}$	up to $300 \mathrm{l} / \mathrm{min}$	
Measurement accuracy	$\pm 8 \%$ of full scale value	
Pressure resistance	PS 200 bar	
Medium temperature	$-20 . .+85^{\circ} \mathrm{C}$, optionally -20.. $+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$	
Media	water	
Wiring	see section "Wiring"	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite	Stainless steel construction: 1.4571, 1.4310, hard ferrite
Non-mediumcontact materials	CW614N nickelled	
Power supply	18..30 V DC	
Power consumption	< 1 W	
Outputs	LABO-...I: Current output $4 . .20 \mathrm{~mA}$ (alternatively $0 . .20 \mathrm{~mA}$) Max. load 500 Ohm	
	LABO-....U: Voltage output $0 . .10 \mathrm{~V}$ (alternatively $2 . .10 \mathrm{~V}$) Load min. 1 kOhm	
	LABO-....F: Frequency output Transistor output "Push-Pull" (resistant to short circuits, and reversed polarity protected) $I_{\text {out }}=100 \mathrm{~mA}$ max. Selectable frequency, max. 2 kHz	
	LABO-....C: Transistor output "Push-Pull" $\mathrm{I}_{\text {out }}=100 \mathrm{~mA}$ max. Pulse width 50 ms Pulse/Value is to be specified when ordering	
Electrical connection	for round plug connector M12x1, 4-pole	
Display	yellow LED (On = Normal / Off = Alarm / rapid flashing = Programming)	
Ingress protection	IP 67	
Weight	see table "Dimensions and weights"	
Conformity	CE	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the metering and switching range.	

GHD-HONSEERG

Product Information

Sensors and Instrumentation

Signal output curves

Value $x=$ Begin of the specified range $=$ not specified range

Current output

Frequency output

$\mathrm{f}_{\text {max }}$ selectable in the range of up to 2000 Hz

Other characters on request.

Ranges

Details in the table correspond to metering ranges with horizontal inwards flow and increasing flow rate.

Standard type LABO-HR2E

Metering range $\mathrm{I} /$ min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended
$5-60$	$300 \mathrm{I} / \mathrm{min}$
$10-100$	$300 \mathrm{I} / \mathrm{min}$
$15-200$	$300 \mathrm{I} / \mathrm{min}$
$25-300$	$300 \mathrm{I} / \mathrm{min}$

Wiring

Z=Load

Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.
The Push-Pull output can as desired be switched as a PNP or an NPN output.

Dimensions and weights

..including LABO electronics

DN	G	Types	L	ØD	SW	Ød	\mathbf{X}	Weight kg
32	G 1¼	HR2E -032GM	130	65	60	51	23	2.6
40	G 1½	HR2E -040GM	170	65	60	56	24	3.2
50	G 2	HR2E -050GM	185	80	75	70	26	5.3

High temperature

Handling and operation

Note

The metering range end value can be programmed by the user via "teaching". Requirement for programmability must be stated when ordering, otherwise the device cannot be programmed.
The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.
The teaching option is not available for LABO-HR2E-C.

- Include straight calming section of $5 \times$ DN in inlet and outlet.
- Include a filter if the media are dirty (use magnetic filter for ferritic components)

Operation and programming

The teaching process can be carried out by the user as follows:

- The flow rate to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When teaching has been successfully completed, pin 2 should be connected to 0 V , so as to prevent unintended programming.

The devices have a yellow LED which flashes during the program-

GHD-HONSEERG

Sensors and Instrumentation

ming pulse. During operation, the LED serves as a display for operating voltage (for analog output) or of switching status (for frequency or pulse output).
To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.
Example: The end of the metering range should be set to 80%. However, only 60% can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of $+20^{\circ} \%$. At a flow rate of 60% in the process, teaching would then store a value of 80%.

There are many more parameters which can be programmed by the $\mathrm{ECl}-1$ device configurator if necessary.

Ordering code

The basic device is ordered e.g. HR2E-032GM100 with electronics e.g. LABO-HR2E-CPSD

HR2E -

O=Option

1.	Nominal width	
	032	DN 32-G 11/4
	040	DN 40-G 11/2
	050	DN 50-G 2
2.	Process connection	
	G	female thread
3.	Connection material	
	M	brass
	K	stainless steel
4.	HR2E - Metering range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow	
	060	5-60 l/min
	100	10-100 $/ / \mathrm{min}$
	200	15-200 I/min
	300	25-300 1/min
5.	Signal output	
	1	current output $4 . .20 \mathrm{~mA}$
	U	voltage output $0 . .10 \mathrm{~V}$
	F	frequency output
	C	pulse output
6.	Programming	
	N	cannot be programmed (no teaching)
	P O	full scale value can be programmed (teaching possible)
7.	Electrical connection	
	S	for round plug connector M12x1, 4-pole
8.	Optional	
	D O	medium temperature up to $120^{\circ} \mathrm{C}$ (with spacers)

Required ordering information

For LABO-HR2E-...F:
Output frequency at full scale

Maximum value: 2000 Hz
For LABO-HR2E-...C:
The volume must be specified for the pulse output version (with numerical value and unit) which will correspond to one pulse.

Volume per pulse (numerical value)

Volume per pulse (unit)

LABO options

Special range for analog output:

<= Metering range
(Standard=Metering range)
Special range for frequency output: \square
<= Metering range
(Standard=Metering range)
Power-On delay period ($0 . .99 \mathrm{~s}$)
(time after applying power during which the outputs are not activated or set to defined values)

Teach-offset

(in percent of the metering range)
Standard = 0 \%

HR2E options

- Special values

Further options available on request.

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Converter OMNI-TA
- Device configurator ECI-1

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 - 42897 Remscheid • Germany
Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Flow switch

LABO-HR2VE-S

- Optimized for use with oil
- Versatile, configurable switching output in Push-Pull model (small hysteresis possible)
- Programmable through teaching
- LED for status display
- All metal housing
- Fully potted IP 67
- All parameters programmable via USB interface ECI-1

Characteristics

Mechanical flow switch, for oil, with spring-supported piston and magnetic triggering of Hall sensors. Robust construction in brass or stainless steel.

The LABO electronics fitted to the device make available an electronic switching output (Push-Pull) with adjustable characteristics (minimum/maximum) and hysteresis, which responds when an adjustable limit is fallen short of or exceeded.

If desired, the switching value can be set to the currently existing flow using "teaching". Models with analog or pulse output are also available (see separate data sheets).

In contrast to electromechanical switches (Reed contacts or microswitches), electronic switches are insensitive to impact and wear.

There is no galvanic separation from the supply circuit.

GHM-HONSEERG

Sensors and Instrumentation

Technical data

Sensor	analog Hall sensors	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{11 / 4}$..G 2 (further process connections available on request)	
Metering range	10..160 $1 / \mathrm{min}$	for details see table "Ranges"
Pressure loss	~ 4.7 bar at $\mathrm{Q}_{\text {max }}$	
$\mathrm{Q}_{\text {max. }}$	up to $160 \mathrm{l} / \mathrm{min}$	
Measurement accuracy	$\pm 5 \%$ of full scale value at constant viscosity	
Viscositystability	$\pm 10 \%$ of full scale value ($20-330 \mathrm{~mm}^{2} / \mathrm{s}$)	
Pressure resistance	PS 200 bar	
Medium temperature	$-20 . .+85^{\circ} \mathrm{C}$, optionally -20.. $+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	oil	
Wiring	see section "Wiring"	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite	Stainless steel construction: 1.4571, 1.4310, hard ferrite
Non-mediumcontact materials	CW614N nickelled	
Supply voltage	18..30 V DC	
Power consumption	< 1 W	
Switching output	transistor output "Push-Pull" (resistant to short circuits and reversed polarity protected) $l_{\text {out }}=100 \mathrm{~mA}$ max.	
Electrical connection	for round plug connector M12x1, 4-pole	
Display	yellow LED (On = Normal / Off = Alarm / rapid flashing $=$ Programming)	
Ingress protection	IP 67	
Weight	see table "Dimensions and weights"	
Conformity	CE	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the metering and switching range.	

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 • Fax -40
www.ghm-messtechnik.de • info@honsberg.com
Product Information

GHD-HONSEERG

Ranges

For metering ranges, the details in the table correspond to horizontal inwards flow with increasing flow rate.

Standard type LABO-HR2VE

Switching range $\mathrm{I} / \mathrm{min}$ oil $20-330 \mathrm{~mm}^{2} / \mathrm{s}$	$\mathbf{Q}_{\text {max. }}$ Recommended $\mathrm{I} / \mathrm{min}$	Pressure Ioss bar at Qmax. oil
$10-80$	100	4
$20-120$	120	5
$30-140$	140	5
$50-160$	160	7

Special ranges are available.

Switching spaces of the flow switch HR2VK1

Wiring

Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.
The Push-Pull output can as desired be switched as a PNP or an NPN output.

Sensors and Instrumentation
Dimensions and weights
..including LABO-electronics

DN	G	Types	L	ØD	SW	Ød	\mathbf{X}	Weight kg
32	G 1¼	HRVE-032GM	130	65	60	51	23	2.6
40	G 1½	HRVE-040GM	170	65	60	56	24	3.2
50	G 2	HRVE-050GM	185	80	75	70	26	5.3

High temperature

Handling and operation

Note

The switching value can be programmed by the user via "teaching". If desired, programmability can be blocked by the manufacturer.

The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.

- Include straight calming section of $5 \times$ DN in inlet and outlet.
- Include a filter if the media are dirty (use magnetic filter for ferritic components)
- Under unfavorable pressure conditions, e.g. with a free outlet, there is a risk of cavitation.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Operation and programming

The switching value is set as follows:

- Apply the flow rate to be set to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V , so as to prevent unintended programming.

The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.
To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving.
Example: The end of the metering range should be set to 80%. However, only 60% can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of $+20^{\circ} \%$.. At a flow rate of 60% in the process, teaching would then store a value of 80%.

The LABO-HR2VE-S limit switch can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

A switchover delay time ($t_{D S}$) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.
In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V , so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V , and in the alarm state it is at the level of the supply voltage.

A Power-On-Delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Ordering code

The basic device is ordered e.g. HR2VE-032GM100 with electronics e.g. LABO-HR2VE-SPLISD

LABO - HR2VE -	5.	6.	7.	8.	9.	10.
\mathbf{S}		\square		\mathbf{S}	\mathbf{D}	

O=Option

1.	Nominal width	
	032	DN $32-\mathrm{G} 1^{11 / 4}$
	040	DN $40-\mathrm{G} 1^{11 / 2}$
	050	DN $50-\mathrm{G} 2$

2. Process connection

G female thread
3. Connection material

M brass
K stainless steel
4. HR2VE - Metering range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow

	080	$10 . .80 \mathrm{I} / \mathrm{min}$
120	$20 . .120 \mathrm{I} / \mathrm{min}$	
	140	$30 . .140 \mathrm{I} / \mathrm{min}$
	160	$50 . .160 \mathrm{I} / \mathrm{min}$

5. Switching output (Limit switch)

S Push-Pull (compatible with PNP and NPN)
6. Programming

P programmable (teaching possible)
N O cannot be programmed (no teaching)
7. Switching function

L	minimum-switch
H	maximum-switch

8. Switching signal

O standard
I O inverted
9. Electrical connection

S for round plug connector M12x1, 4-pole
10. Optional

D medium temperature up to $120^{\circ} \mathrm{C}$
D (with spacers)

Options LABO

Switching delay period (0.0..99.9 s)
(from Normal to Alarm)

Switch-back delay period (0.0..99.9 s)
(from Alarm to Normal)

Power-On delay period ($0 . .99 \mathrm{~s}$)
\qquad s
(After connecting the supply, time during which the switching output is not activated)

Switching output fixed at

Switching hysteresis

Standard $=2 \%$ of the metering range

Teach-offset

(in percent of the metering range)
Standard $=0$ \%
Further options available on request.

Options HR2VE

- Special values

Further options available on request.

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Converter OMNI-TA
- Device configurator ECI-1

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Flow transmitter

LABO-HR2VE-I / U / F / C

- Optimised for use with oil
- $4 . .20 \mathrm{~mA}$ output linearised
- 0..10V output linearised
- Frequency output proportional, linear
- Programmable through teaching
- LED for status display
- All metal housing
- Fully potted IP 67
- All parameters programmable via USB interface ECI-1

Characteristics

Mechanical flow switch, for fluid media, with spring-supported pis ton and magnetic triggering of Hall sensors. Robust construction in brass or stainless steel.

The LABO electronics make various output signals available:

- Analog signal 0/4... 20 mA (LABO-HR2VE-...I)
- Analog signal 0/2..10 V (LABO-HR2VE-...U)
- Frequency signal (LABO-HR2VE-..F) or
- A value signal Pulse / x Litres (LABO-HR2VE-...C)

A model with switching output is also available.
If desired, the range end value can be set to the currently existing flow using "teaching".

GHM-HONSEERG

Sensors and Instrumentation

Technical data

Sensor	analog Hall sensors	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{11} 4$..G 2 (further process connections available on request)	
Metering range	$10 . .160 \mathrm{l} / \mathrm{min}$	For details see table "Ranges"
Pressure loss	$\sim 4 . .7$ bar at $Q_{\text {max }}$	
$\mathrm{Q}_{\text {max. }}$	up to $160 \mathrm{l} / \mathrm{min}$	
Tolerance	$\pm 10 \%$ of full scale value at constant viscosity	
Viscositystability	mean deviation $\pm 7 \%$, max. 18% (20-330 $\mathrm{mm}^{2} / \mathrm{s}$) of full scale value	
Pressure resistance	PS 200 bar	
Medium temperature	$-20 . .+85^{\circ} \mathrm{C}$, optionally -20.. $+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$	
Media	oil	
Wiring	see section "Wiring"	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite	Stainless steel construction: 1.4571, 1.4310, hard ferrite
Non-mediumcontact materials	CW614N nickelled	
Power supply	18..30 V DC	
Power consumption	< 1 W	
Outputs	LABO-...I: Current output $4 . .20 \mathrm{~mA}$ (alternatively $0 . .20 \mathrm{~mA}$) Max. load 500 Ohm	
	LABO-...U: Voltage output 0.10 V (alternatively $2 . .10 \mathrm{~V}$) Load min. 1 kOhm	
	LABO-...F: Frequency output Transistor output "Push-Pull" (resistant to short circuits, and reversed polarity protected) $I_{\text {out }}=100 \mathrm{~mA}$ max. Selectable frequency, max. 2 kHz	
	LABO-....C: Transistor output "Push-Pull" $\mathrm{I}_{\text {out }}=100 \mathrm{~mA}$ max. Pulse width 50 ms Pulse/Value is to be specified when ordering	
Electrical connection	for round plug connector M12x1, 4-pole	
Display	yellow LED (On = Normal / Off = Alarm / rapid flashing $=$ Programming)	
Ingress protection	IP 67	
Weight	see table "Dimensions and weights"	
Conformity	CE	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the metering and switching range.	

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 - 42897 Remscheid • Germany
Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de • info@honsberg.com
Product Information

GHD-HONSBERG

Sensors and Instrumentation

Signal output curves

Value $x=$ Begin of the specified range $=$ not specified range

Current output
Voltage output

Frequency output

$\mathrm{f}_{\text {max }}$ selectable in the range of up to 2000 Hz

Other characters on request.

Ranges

Details in the table correspond to metering ranges with horizontal inwards flow and increasing flow rate.

Standard type LABO-HR2VE

Metering range I/min oil $20-330 \mathrm{~mm}^{2} / \mathrm{s}$	$\mathbf{Q}_{\text {max. }}$ Recommended $\mathrm{I} / \mathrm{min}$	Pressure Ioss bar at Qmax. oil
$10-80$	100	4
$20-120$	120	5
$30-140$	140	5
$50-160$	160	7

Special ranges are available.

Metering spaces of the flow switch HR2VK1

Wiring

Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.
The Push-Pull output can as desired be switched as a PNP or an NPN output.

Dimensions and weights

..including LABO-electronics

DN	G	Types	L	ØD	SW	Ød	X	Weight kg
32	G 1¹⁄4	HR2VE-032GM	130	65	60	51	23	2.6
40	G 1¹⁄2	HR2VE-040GM	170	65	60	56	24	3.2
50	G 2	HR2VE-050GM	185	80	75	70	26	5.3

High temperature

Product Information

Sensors and Instrumentation

Handling and operation

Note

The metering range end value can be programmed by the user via "teaching". Requirement for programmability must be stated when ordering, otherwise the device cannot be programmed.
The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.
The teaching option is not available for LABO-HR2VE-C.

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet.
- Include a filter if the media are dirty (use magnetic filter for ferritic components)
- Under unfavorable pressure conditions, e.g. with a free outlet, there is a risk of cavitation.

Operation and programming

The teaching process can be carried out by the user as follows:

- The flow rate to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When teaching has been successfully completed, pin 2 should be connected to 0 V , so as to prevent unintended programming.

The devices have a yellow LED which flashes during the programming pulse. During operation, the LED serves as a display for operating voltage (for analog output) or of switching status (for frequency or pulse output).
To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.
Example: The end of the metering range should be set to 80%. However, only 60% can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of $+20^{\circ} \%$.. At a flow rate of 60% in the process, teaching would then store a value of 80%.

There are many more parameters which can be programmed by the ECI-1 device configurator if necessary.

Ordering code

The basic device is ordered e.g. HR2VE-032GM100 with electronics e.g. LABO-HR2VE-CPSD

HR2VE -

$\mathrm{O}=$ Option

1.	Nominal width	
	032	DN $32-\mathrm{G} \mathrm{1} 1^{1 / 4}$
	040	DN $40-\mathrm{G} \mathrm{1}{ }^{1 / 2}$
	050	DN $50-\mathrm{G} 2$
2.	Process connection	
	G	female thread
3.	Connection material	
	M	brass
	K	stainless steel

4. HR2VE - Metering range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow

	080	$10 . .80 \mathrm{I} / \mathrm{min}$
	120	$20 . .120 \mathrm{I} / \mathrm{min}$
	140	$30.140 \mathrm{I} / \mathrm{min}$
	160	$50 . .160 \mathrm{I} / \mathrm{min}$

5. Signal output

5.	Signal output		
	I	current output $4 . .20 \mathrm{~mA}$	
	U	voltage output $0 . .10 \mathrm{~V}$	
	F	frequency output	
	C	pulse output	
6.	Programming		
	N	cannot be programmed (no teaching)	
	P \quad O	full scale value can be programmed (teaching possible)	
7.	Electrical connection		
	S	for round plug connector M12x1, 4-pole	
8.	Optional		
	D	medium temperature up to $120^{\circ} \mathrm{C}$ (with spacers)	

Required ordering information

For LABO-HR2VE-...F:
Output frequency at full scale

Maximum value: 2000 Hz
For LABO-HR2VE-...C:
The volume must be specified for the pulse output version (with numerical value and unit) which will correspond to one pulse.

Volume per pulse (numerical value)
Volume per pulse (unit)

Options LABO

Special range for analog output:

<= Metering range
(Standard=Metering range)

Special range for frequency output: \quad		

<= Metering range
(Standard=Metering range)
Power-On delay period ($0 . .99 \mathrm{~s}$)

(time after applying power during which the outputs are not activated or set to defined values)

Teach-offset

(in percent of the metering range)
Standard $=0$ \%

Options HR2VE

- Special values

Further options available on request.

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Converter OMNI-TA
- Device configurator ECI-1

GHM-HONSEERG

Product Information

Flow Meter / Monitor FLEX-HD1K

- $4 . .20 \mathrm{~mA}$ or $0 . .10 \mathrm{~V}$ output signal
- $1 \times$ programmable switch or frequency output
- Programmable switching value, full scale, or zero point via magnet clip
- Programming protection by removal of the clip
- Polished metal housing
- Rotatable electronic head for alignment of the 90° cable outlet
- LED for switching value display

Characteristics

The sensors work with a 16-bit processor, a 12-bit A/D and a 12-bit D/A converter. Linearisations and calibrations are carried out automatically. The Flash memory guarantees the exchangeability of all programs.
There is a choice between a switch with transistor output (push-pull) or a frequency output. The analog output $4 . .20 \mathrm{~mA}$ or $0 . .10 \mathrm{~V}$ can be used at the same time. Many options are available for the switching outputs.

- variable ranges for the analog outputs
- variable hystereses
- Minimum or maximum switch
- Inversion of the outputs
- Window function
- Delay after switching voltage on
- Switching delays (On, Off)

Technical data

Sensor	analog hall sensor
Nominal width	DN $8 . .25$
Process connection	female thread G $1 / 4$..G 1 (further process connections available on request)
Metering range	0.1.80 $1 / \mathrm{min}$ for details see
Pressure loss	
$\mathbf{Q}_{\text {max }}$	to $100 \mathrm{l} / \mathrm{min}$ 隹
Tolerance	± 3 \% of full scale value
Pressure resistance	PN 200 bar optionally PN 500 bar
Media temperature	$-20 . .+85{ }^{\circ} \mathrm{C}$ optionally -20.. $+150^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$

Sensors and Instrumentation

Media	water, oils (gases and aggressive media available on request)
Wiring	see section "Wiring"
Supply voltage	18..30 V DC
Power consumption	<1 W
Analog output	$4 . .20 \mathrm{~mA} / \operatorname{load} 500 \Omega$ max. or $0 . .10 \mathrm{~V} /$ load $\min .1 \mathrm{k} \Omega$
Switching output	transistor output "push-pull", (resistant to short circuits, and reversal polarity protected) $l_{\text {out }}=100 \mathrm{~mA}$ max.
Display (only with switching output)	yellow LED (On = OK / Off = Alarm)
Ingress protection	IP 67
Electrical connection	for round plug connector M12x1, 4-pole
Materials medium-contact	Brass construction: Stainless steel CW614N nickelled, construction: 1.4571, CW614N, 1.4310, $1.4404,1.4310$, hard hard ferrite, NBR ferrite PTFE-coated, FKM
Non-mediumcontact materials	CW614N, PPS
Weight	see table "Dimensions and weights"
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the metering and switching range.

Signal output curves

Value $x=$ Begin of the specified range

$$
=\text { not specified range }
$$

Current output

Frequency output

$\mathrm{f}_{\text {max }}$ selectable in the range of up to 2000 Hz

Other characters on request.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Metering range $\mathbf{l} /$ min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss bar at $\mathbf{Q m a x} \mathrm{H}_{2} \mathrm{O}$
$0.1-1$	6	0.4
$0.5-5$	10	0.5
$1.0-10$	20	0.6
$2.0-20$	30	0.4
$3.0-30$	40	
$4.0-40$	60	0.8
$6.0-60$	80	1.4
$20.0-80$	100	1.6

Special ranges are available.

Wiring

Connection example: PNP NPN

Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$...-008GM	40	15	1.5
	G ${ }^{1 / 8}$...-010GM			
	G $1 / 2$...-015GM			1.4
	G ${ }^{3} / 4$...-020GM		18	
	G 1	...-025GM			1.3
Stainless steel	G $1 / 4$...-008GK	41	15	1.5
	G $3 / 8$...-010GK			
	G $1 / 2$...-015GK			1.4
	G $3 / 4$...-020GK		18	
	G 1	...-025GK			1.3

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- Include a filter if the media are dirty (use magnetic filter for ferritic components)

The electronics housing is permanently connected to the primary sensor. There is no electrical connection between the electronics and the piston device. After installation, the electronic head can be turned to align the cable outlet.
It should be noted that the piston device and the FLEX electronics are appropriately matched to each other.

GHO-HONSEERG

Sensors and Instrumentation

Product Information

Programming

The electronics contain a magnetic contact, with the aid of which different parameters can be programmed. Programming takes place when a magnet clip is applied for a period between 0.5 and 2 seconds to the marking located on the label. If the contact time is longer or shorter than this, no programming takes place (protection against external magnetic fields).

After the programming ("teaching"), the clip can either be left on the device, or removed to protect data.
The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.
In order to avoid the need to transit to an undesired operating status during "teaching", the device can be provided ex-works with a "teach-offset". The "teach-offset" value is added to the currently measured value before saving (or is subtracted if a negative value is entered).

Example: The switching value is to be set to 70% of the metering range, because at this flow rate a critical process status is to be notified. However, only 50\% can be achieved without danger. In this case, the device would be ordered with a "teach-offset" of $+20 \%$. At 50% in the process, a switching value of 70% would then be stored during "teaching".

Normally, programming is used to set the limit switch. However, if desired, other parameters such as the end value of the analog or frequency output may also be set.

The limit switch can be used to monitor minimal or maximal.
With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is again exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

A switchover delay time (t_{DS}) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.
In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V , so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V , and in the alarm state it is at the level of the supply voltage.

A Power-On delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon $+49-2191-9672-0 \bullet$ Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

GHD-HONSEERG

Sensors and Instrumentation

Ordering code

The base device e.g. HD1K-015GM005E is ordered with electronics e.g. FLEX-HD1KIULO

1.	Nominal width	
	008	DN $8-G^{11 / 4}$
	010	DN $10-G^{3} / 8$
	015	DN $15-G^{11 / 2}$
	020	DN $20-G^{3} / 4$
	025	DN $25-G 1$

2. Process connection

G female thread
3. Connection material

M	brass
K	stainless steel

4. Metering range $\mathbf{H}_{2} \mathrm{O}$ for horizontal

Inwards flow

001	$0.1-1 \mathrm{l} / \mathrm{min}$
005	$0.5-5 \mathrm{l} / \mathrm{min}$
010	$1.0-10 \mathrm{l} / \mathrm{min}$
020	$2.0-20 \mathrm{l} / \mathrm{min}$
030	$3.0-30 \mathrm{l} / \mathrm{min}$
040	$4.0-40 \mathrm{l} / \mathrm{min}$
060	$6.0-60 \mathrm{l} / \mathrm{min}$
080	$20.0-80 \mathrm{l} / \mathrm{min}$

5. Connection for

E
electronics
6. Analog output

I	current output $4 . .20 \mathrm{~mA}$
U	voltage output $0 . .10 \mathrm{~V}$
K	no analog output

7. Switching output

T push-pull (compatible with PNP and NPN)
K no switching output
8. Function set to switching output

L	minimum-switch
H	maximum-switch
R	frequency output
K	no switching output

9. Switching output level

O standard
I inverted

Options for FLEX

Special range for analog output:

<= Metering range (standard=metering range)
Special range for frequency output:

<= Metering range (Standard=Metering range)
End frequency (max. 2000 Hz)
Power-on delay

(from Alarm to OK)
Power-off delay

Power-On delay (0..99 s)
(time after power on, during which the outputs are not actuated)
Switching output fixed
Special hysteresis (standard = 2 \% EW)

(recommended at operating temperatures above $70^{\circ} \mathrm{C}$)

If the field is not completed, the standard setting is selected automatically.

Options

- Measured values for oil or gas
- Special quantities
- Temperature display $0 . .120^{\circ} \mathrm{C}$
- reinforced piston

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"

Ordering information

- Specify direction of flow, medium, and metering range.
- For viscous media specify viscosity, temperature, and medium (e.g. ISO VG 68) (enquire about metering range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request metering range)

Combinations with FLEX

FLEX-converter / counter can be combined with very different types of pickup systems for flow rate, level, temperature, and pressure. This has created a family of sensors with which different types of applications can be supported.

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Flow Meter / Monitor FLEX-HD2K

- viscosity stabilized
- $4 . .20 \mathrm{~mA}$ or $0 . .10 \mathrm{~V}$ output signal
- $1 \times$ programmable switch or frequency output
- Programmable switching value, full scale, or zero point via magnet clip
- Programming protection by removal of the clip
- Polished metal housing
- Rotatable electronic head for alignment of the 90° cable outlet
- LED for switching value display

Characteristics

The sensors work with a 16-bit processor, a 12-bit A/D and a 12-bit D/A converter. Linearisations and calibrations are carried out automatically. The Flash memory guarantees the exchangeability of all programs.
There is a choice between a switch with transistor output (push-pull) or a frequency output. The analog output $4 . .20 \mathrm{~mA}$ or $0 . .10 \mathrm{~V}$ can be used at the same time. Many options are available for the switching outputs.

- variable ranges for the analog outputs
- variable hystereses
- Minimum or maximum switch
- Inversion of the outputs
- Window function
- Delay after switching voltage on
- Switching delays (On, Off)

Technical data	
Sensor	analog hall sensor
Nominal width	DN 8.. 25
Process connection	female thread G $1 / 4$..G 1 (further process connections available on request)
Metering range	0,5..60 l/min for details see
Pressure loss	1,1..3,5 bar bei $\mathrm{Q}_{\text {max. }}$ torle "Ranges"
$\mathbf{Q m a x}_{\text {ma }}$	to $80 \mathrm{l} / \mathrm{min}$ 隹
Tolerance	± 3 \% of full scale value
Media temperature	PN 200 bar optionally PN 500 bar
Media temperature	$-20 . .+85{ }^{\circ} \mathrm{C}$ optionally $-20 . .+150{ }^{\circ} \mathrm{C}$

GHM-HONSEERG

Sensors and Instrumentation

Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Media	oils
Wiring	see section "Wiring"
Supply voltage	18..30 V DC
Power consumption	<1 W
Analog output	$4 . .20 \mathrm{~mA} / \operatorname{load} 500 \Omega$ max. or $0 . .10 \mathrm{~V} /$ load min. $1 \mathrm{k} \Omega$
Switching output	transistor output "push-pull", (resistant to short circuits, and reversal polarity protected) $I_{\text {out }}=100 \mathrm{~mA}$ max.
Display (only with switching output)	yellow LED (On = OK / Off = Alarm)
Ingress protection	IP 67
Electrical connection	for round plug connector M12x1, 4-pole
Materials medium-contact	Brass construction: Stainless steel CW614N nickelled, construction: 1.4571, CW614N, 1.4310, $1.4404,1.4310$, hard hard ferrite, NBR ferrite PTFE-coated, FKM
Non-mediumcontact materials	CW614N, PPS
Weight	see table "Dimensions and weights"
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the metering and switching range.

Signal output curves

Value $x=$ Begin of the specified range
= not specified range

Frequency output

$\mathrm{f}_{\text {max }}$ selectable in the range of up
to 2000 Hz
Other characters on request.

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

Sensors and Instrumentation

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Viscosity compensated type FLEX-HD2K

Metering range 1/min oil	$\mathbf{Q}_{\text {max }}$. recommended	Pressure loss bar at $\mathrm{Q}_{\text {max. }}$ Oil mm²/s				Viscosity stability $\pm 8 \%$, min.
$\begin{gathered} 30 . .330 \\ \mathrm{~mm}^{2} / \mathrm{s} \end{gathered}$		60	100	205	330	
0.5-8	12	1.4	1.6	2.8	3.5	$\pm 0.3 \mathrm{l} / \mathrm{min}$
1.5-15	22	2.3	2.4			$\pm 0.5 \mathrm{l} / \mathrm{min}$
2.5-25	35	2.0	2.1	2.3	2.9	$\pm 0.8 \mathrm{l} / \mathrm{min}$
6.0-40	60				2.6	$\pm 2.7 \mathrm{l} / \mathrm{min}$
12.0-60	80	2.3	2.4	2.6	2.8	$\pm 3.0 \mathrm{l} / \mathrm{min}$

Special ranges are available.

Wiring

Z=Load

Connection example: PNP NPN

Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$...-008GM	40	15	1.5
	G ${ }^{1 / 8}$...-010GM			
	G $1 / 2$...-015GM			1.4
	G $3 / 4$...-020GM		18	
	G 1	...-025GM			1.3
Stainless steel	G $1 / 4$...-008GK	41	15	1.5
	G 318	...-010GK			
	G $1 / 2$...-015GK			1.4
	G $3 / 4$...-020GK		18	
	G 1	...-025GK			1.3

Handling and operation

Note

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet
- Include a filter if the media are dirty (use magnetic filter for ferritic components)

The electronics housing is permanently connected to the primary sensor. There is no electrical connection between the electronics and the piston device. After installation, the electronic head can be turned to align the cable outlet.
It should be noted that the piston device and the FLEX electronics are appropriately matched to each other.

Product Information

Sensors and Instrumentation

Programming

The electronics contain a magnetic contact, with the aid of which different parameters can be programmed. Programming takes place when a magnet clip is applied for a period between 0.5 and 2 seconds to the marking located on the label. If the contact time is longer or shorter than this, no programming takes place (protection against external magnetic fields).

After the programming ("teaching"), the clip can either be left on the device, or removed to protect data.
The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.
In order to avoid the need to transit to an undesired operating status during "teaching", the device can be provided ex-works with a "teach-offset". The "teach-offset" value is added to the currently measured value before saving (or is subtracted if a negative value is entered).

Example: The switching value is to be set to 70% of the metering range, because at this flow rate a critical process status is to be notified. However, only 50\% can be achieved without danger. In this case, the device would be ordered with a "teach-offset" of $+20 \%$. At 50% in the process, a switching value of 70% would then be stored during "teaching".

Normally, programming is used to set the limit switch. However, if desired, other parameters such as the end value of the analog or frequency output may also be set.

The limit switch can be used to monitor minimal or maximal.
With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is again exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

A switchover delay time (t_{DS}) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.
In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V , so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V , and in the alarm state it is at the level of the supply voltage.

GHD-HONSBERG

Product Information
Sensors and Instrumentation

Ordering code

The base device e.g. HD2K-015GM005E is ordered with electronics e.g. FLEX-HD2KIULO

HD2K -

FLEX-HD2K

1. Nominal width

008	DN 8 -G ${ }^{1 / 4}$
010	DN $10-\mathrm{G}$ ¹/8
015	DN 15-G1/2
020	DN $20-\mathrm{G}^{3 / 4}$
025	DN 25-G 1

2. Process connection

> G female thread
3. Connection material
M brass

A Power-On delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

Combinations with FLEX

FLEX-converter / counter can be combined with very different types of pickup systems for flow rate, level, temperature, and pressure. This has created a family of sensors with which different types of applications can be supported.

K stainless steel
4. metering range oil $30 . .330 \mathrm{~mm}^{2} / \mathrm{s}$
4. for horizontal inwards flow

	008	$0,5-8 \mathrm{I} / \mathrm{min}$
	015	$1,5-15 \mathrm{I} / \mathrm{min}$
	025	$2,5-25 \mathrm{I} / \mathrm{min}$
	040	$6,0-40 \mathrm{I} / \mathrm{min}$
	060	$12,0-60 \mathrm{I} / \mathrm{min}$

5. Connection for

E electronics

6.	Analog output	
	I	current output $4 . .20 \mathrm{~mA}$
	U	voltage output $0 . .10 \mathrm{~V}$
	K	no analog output

7. Switching output

T \quad push-pull (compatible with PNP and NPN)
K no switching output
8. Function set to switching output

	L	minimum-switch
	H	maximum-switch
	R	frequency output
	K	no switching output

9. Switching output level

O \quad standard

Product Information

Options for FLEX

Special range for analog output:

$1 /$ min
<= Metering range (standard=metering range)
Special range for frequency output:

<= Metering range (Standard=Metering range)
End frequency (max. 2000 Hz)

Power-on delay

(from Alarm to OK)
Power-off delay
(from OK to Alarm)
Power-On delay (0..99 s)

(time after power on, during which the
outputs are not actuated)

Switching output fixed

Special hysteresis (standard = 2 \% EW)
Gooseneck

(recommended at operating temperatures
above $70^{\circ} \mathrm{C}$)
If the field is not completed, the standard setting is selected automatically.

Options

- Special quantities
- Temperature display $0 . .120^{\circ} \mathrm{C}$

Accessories

- Cable/round plug connector (KB...)
see additional information "Accessories"

Ordering information

- Specify direction of flow, medium, and metering range.
- For viscous media specify viscosity, temperature, and medium (e.g. ISO VG 68) (enquire about metering range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request metering range)

GHM-HONSEERG

Sensors and Instrumentation

Flow transmitter / switch FLEX-HR2E

- Optimised for use with water
- Analog output and switching output
- Designed for industrial use
- Small, compact construction
- Simple installation
- Simple to use
- Cable outlet infinitely rotatable

Characteristics

Mechanical flow switch, for fluid media, with spring-supported piston and magnetic triggering of Hall sensors. Robust construction in brass or stainless steel.

The FLEX transducer on the sensor has an analog output ($4 . .20 \mathrm{~mA}$ or $0 . .10 \mathrm{~V}$) and one switching output, which can be configured as a limit switch for monitoring minimal or maximal, or as a frequency output or a pulse output.

The switching output is designed as a push-pull driver, and can therefore be used both as a PNP or an NPN output. The state of the switching output is signaled with a yellow LED in the switching outlet; the LED has all-round visibility.
The sensor is configured in the factory, or alternatively this can be done with the aid of the optionally available ECI-1 device configurator (USB interface for PC). A selectable parameter can be modified on the device, with the aid of the magnet clip provided. In this case, the present measured value is saved as the parameter value. Examples of these parameters are the switching value or the metering range end value.
The stainless steel electronics housing is rotatable, so it is possible to orient the cable outlet after installation.

Technical data

Sensor	analog Hall sensor	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{11 / 4}$. G 2 (further process connections available on request)	
Metering range	5.. $300 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	-1 bar at $\mathrm{Q}_{\text {max }}$	
$\mathbf{Q m a x}_{\text {ma }}$	Up to 300l/min	
Measurement accuracy	$\pm 8 \%$ of full scale value	
Pressure resistance	PS 200 bar	
Medium temperature	$-20 . .+85^{\circ} \mathrm{C}$, optionally -20.. $+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$	
Media	water	
Wiring	see section "Wiring"	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite,	Stainless steel construction: 1.4571, 1.4310, hard ferrite (on request)
Materials, non-medium-contact	electronic adapter electronics housing	CW614N nickelled Stainless steel 1.4305
Supply voltage	$18 . .30 \mathrm{~V}$ DC	
Power consumption	< 1 W	
Analog output	$4 . .20 \mathrm{~mA} / \mathrm{max}$. load 500Ω or $0 . .10 \mathrm{~V} / \mathrm{min}$. load $1 \mathrm{k} \Omega$	
Switching output	transistor output "Push-Pull" (resistant to short circuits and polarity reversal)$I_{\text {out }}=100 \mathrm{~mA} \text { max. }$	
Hysteresis	adjustable, position of the hysteresis depends on minimum or maximum	
Pulse output	pulse width 50 ms \rightarrow max. output frequency $<20 \mathrm{~Hz}$	
Display (only with switching output)	yellow LED (On = OK / Off = Alarm)	
Electrical connection	for round plug connector M12x1, 5-pole	
Ingress protection	IP 67	
Weight	see table "Dimensions and weights"	
Conformity	CE	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the display, metering and switching range.	

GHD-HONSEERG

Signal output curves

Value $x=$ Begin of the specified range $=$ not specified range

Current output

Frequency output

$\mathrm{f}_{\max }$ selectable in the range of up to 2000 Hz

Other characters on request.

Ranges

Details in the table correspond to metering ranges with horizontal inwards flow and increasing flow rate.

Standard type FLEX-HR2E

Metering range $l /$ min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended
$5-60$	$300 \mathrm{I} / \mathrm{min}$
$10-100$	$300 \mathrm{I} / \mathrm{min}$
$15-200$	$300 \mathrm{I} / \mathrm{min}$
$25-300$	$300 \mathrm{I} / \mathrm{min}$

Special ranges are available.

Wiring

Z=Load

Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.
The Push-Pull output can as desired be switched as a PNP or an NPN output.

Dimensions and weights

DN	G	Types	L	$\varnothing 口$	SW	\emptyset d	X	Weight Kg
32	G $1^{1} / 4$	HR2E -032GM	130	65	60	51	23	2.7
40	G $1^{1} / 2$	HR2E -040GM	170	65	60	56	24	3.2
50	G 2	HR2E -050GM	185	80	75	70	26	5.4

High temperature

Handling and operation

Note

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components)

The electronics housing is permanently connected to the primary sensor. There is no electrical connection between the electronics and the piston device. After installation, the electronic head can be turned to align the cable outlet.
It should be ensured that the piston device and the FLEX electronics are appropriately matched to each other.

GHD-HONSEERG

Product Information

Sensors and Instrumentation

Programming

The FLEX electronics contain a magnetic contact, with the aid of which different parameters can be programmed. Programming takes place when a magnet clip is applied for a period between 0.5 and 2 seconds to the marking located on the label. If the contact time is longer or shorter than this, no programming takes place (protection against external magnetic fields).

After the programming ("teaching"), the clip can either be left on the device, or removed to protect data.
The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.
In order to avoid the need to transit to an undesired operating status during "teaching", the device can be provided ex-works with a "teach-offset". The "teach-offset" value is added to the currently measured value before saving (or is subtracted if a negative value is entered).

Example: The switching value is to be set to 70% of the metering range, because at this flow rate a critical process status is to be notified. However, only 50% can be achieved without danger. In this case, the device would be ordered with a "teach-offset" of +20 \%. At 50% in the process, a switching value of 70% would then be stored during "teaching".

Normally, programming is used to set the limit switch. However, if desired, other parameters such as the end value of the analog or frequency output may also be set.

The limit switch can be used to monitor minimal or maximal.
With a minimum switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

A
switchover delay time (t_{DS}) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.
In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V , so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V , and in the alarm state it is at the level of the supply voltage.

A Power-On delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

GHM-HONSEERG

Product Information

Sensors and Instrumentation

Combinations with FLEX

FLEX-evaluation electronics can be combined with very different types of pickup systems for flow rate, level, temperature, and pressure. This has created a family of sensors with which different types of applications can be supported.

Ordering code

The base device, e.g. HR2E-032GM100 is ordered with electronics e.g. FLEX-HR2E-ITLO

O=Option

1. Nominal width

	032	DN $32-\mathrm{G} 1^{1} / 4$
	040	DN $40-\mathrm{G} \mathrm{1}{ }^{1} / 2$
	050	DN $50-\mathrm{G} 2$

2. Process connection

G female thread
3. Connection material

M	brass
K	stainless steel (on request)

4. HR2E - Metering range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow

060	$5-60 \mathrm{I} / \mathrm{min}$
100	$10-100 \mathrm{I}$ min
200	$15-200 \mathrm{I} / \mathrm{min}$
300	$25-300 \mathrm{I} / \mathrm{min}$

5.	Analog output	
	I	current output $4 . .20 \mathrm{~mA}$
	U	voltage output $0 . .10 \mathrm{~V}$
	K	no analog output
6.	Switching output	
	T	Push-Pull
	M	O
	NPN (open collector)	
	K	no switching output
	R	frequency output
	C	Pulse output
7.	Function set to switching output	
	L	minimum-switch
	H	maximum-switch
	K	no switching output
8.	Switching output level	
	O	standard
	M \quad O	inverted
9.	Optional	
	D	high temperature up to $120^{\circ} \mathrm{C}$
	H	model with gooseneck
	O	O
	tropical model - oil-filled version for	
heavy duty or external use		

Required ordering information

For FLEX-HR2E-C:

For the pulse output version, the volume (with numerical value and unit) which will correspond to one pulse must be stated.

Volume per pulse (numerical value)
Volume per pulse (unit)

Options for FLEX

Special range for analog output:

<= Metering range
(Standard=Metering range)

Special range for frequency output: \quad| |
| :--- |

<= Metering range (Standard=Metering range)
End frequency (max. 2000 Hz)

Switching delay period (0.0..99.9 s)
(from Normal to Alarm)
Switch-back delay period (0.0..99.9 s)
(from Alarm to Normal)
Power-On delay (0.. 99 s)
(After connecting the supply, time during which the switching output is not activated)

Switching output fixed

If the field is not completed, the standard setting is selected automatically.

Options

- Special quantities

Ordering information

- Specify direction of flow, medium, and metering range.

Accessories

- Cable/round plug connector (KB...)
see additional information "Accessories"
- Device configurator ECI-1

Combinations with FLEX

FLEX-converter / counter can be combined with very different types of pickup systems for flow rate, level, temperature, and pressure. This has created a family of sensors with which different types of applications can be supported.

GHM-HONSEERG

Product Information
Sensors and Instrumentation

Flow Transmitter I Switch FLEX-HR2VE

- Optimised for use with oil
- Analog output and switching output
- Designed for industrial use
- Small, compact construction
- Simple installation
- Simple to use
- Cable outlet infinitely rotatable

Characteristics

Mechanical flow switch, for fluid media, with spring-supported piston and magnetic triggering of Hall sensors. Robust construction in brass or stainless steel.

The FLEX transducer on the sensor has an analog output ($4 . .20 \mathrm{~mA}$ or $0 . .10 \mathrm{~V}$) and one switching output, which can be configured as a limit switch for monitoring minimal or maximal, or as a frequency output or a pulse output.

The switching output is designed as a push-pull driver, and can therefore be used both as a PNP or an NPN output. The state of the switching output is signaled with a yellow LED in the switching outlet; the LED has all-round visibility.
The sensor is configured in the factory, or alternatively this can be done with the aid of the optionally available ECI-1 device configurator (USB interface for PC). A selectable parameter can be modified on the device, with the aid of the magnet clip provided. In this case, the present measured value is saved as the parameter value. Examples of these parameters are the switching value or the metering range end value.
The stainless steel electronics housing is rotatable, so it is possible to orient the cable outlet after installation.

Technical data

Sensor	analog Hall sensor	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{11} 4$..G 2 (further process connections available on request)	
Metering range	10..160 $1 / \mathrm{min}$	for details see table "Ranges"
Pressure loss	$\sim 4 . .7$ bar at $Q_{\text {max }}$	
$\mathbf{Q m a x}_{\text {m }}$	up to $160 \mathrm{l} / \mathrm{min}$	
Measurement accuracy	$\pm 5 \%$ of full scale value at constant viscosity	
Viscositystability	$\pm 10 \%$ of full scale value ($20-330 \mathrm{~mm}^{2} / \mathrm{s}$)	
Pressure resistance	PS 200 bar	
Medium temperature	$-20 . .+85^{\circ} \mathrm{C}$, optionally $-20 . .+120^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	oil	
Wiring	see section "Wiring"	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite,	Stainless steel construction: 1.4571, 1.4310, hard ferrite
Materials, non-medium-contact	electronic adapter CW614N nickelled electronics housing Stainless steel 1.4305	
Supply voltage	18..30 V DC	
Power consumption	< 1 W	
Analog output	$4 . .20 \mathrm{~mA} / \mathrm{max}$. load 500Ω or $0 . .10 \mathrm{~V} / \mathrm{min}$. load $1 \mathrm{k} \Omega$	
Switching output	transistor output "Push-Pull" (resistant to short circuits and polarity reversal)$\mathrm{I}_{\text {out }}=100 \mathrm{~mA} \text { max. }$	
Hysteresis	adjustable, position of the hysteresis depends on minimum or maximum	
Pulse output	pulse width 50 ms \rightarrow max. output frequency $<20 \mathrm{~Hz}$	
Display (only with switching output)	yellow LED (On = OK / Off = Alarm)	
Electrical connection	for round plug connector M12x1, 5-pole	
Ingress protection	IP 67	
Weight	see table "Dimensions and weights"	
Conformity	CE	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the display, metering and switching range.	

GHD-HONSEERG

Product Information
Sensors and Instrumentation

Signal output curves

Value $x=$ begin of the specified range

> = not specified range

Current output

Voltage output

Frequency output

$f_{\text {max }}$ selectable in the range of up to 2000 Hz

Other characteristics on request.

Ranges

Details in the table correspond to metering ranges with horizontal inwards flow and increasing flow rate.

Standard type FLEX-HRV2E

Metering range $\mathbf{I} / \mathrm{min}$ oil $20-330 \mathrm{~mm}^{2} / \mathrm{s}$	$\mathbf{Q}_{\text {max. }}$ Recommended $\mathrm{I} / \mathrm{min}$	Pressure loss bar at $Q_{\text {max. }}$ oil
$10-80$	100	4
$20-120$	120	5
$30-140$	140	5
$50-160$	160	7

Special ranges are available.

Reference Data:

Metering spaces of the flow switch HR2VK1

Wiring

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.
The Push-Pull output can as desired be switched as a PNP or an NPN output.

Dimensions and weights

..including FLEX-electronics

DN	G	Types	L	$\varnothing 口$	SW	Ød	X	Weight Kg
32	G $1^{1} / 4$	HR2VE-032GM	130	65	60	51	23	2.7
40	G $1^{1} / 2$	HR2VE-040GM	170	65	60	56	24	3.2
50	G 2	HR2VE-050GM	185	80	75	70	26	5.4

High temperature

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet - If the media are dirty, install a filter (use magnetic filter for ferritic components)
- Under unfavorable pressure conditions, e.g. with a free outlet, there is a risk of cavitation.

The electronics housing is permanently connected to the primary sensor. There is no electrical connection between the electronics and the piston device. After installation, the electronic head can be turned to align the cable outlet.
It should be ensured that the piston device and the FLEX electronics are appropriately matched to each other.

Programming

The FLEX electronics contain a magnetic contact, with the aid of which different parameters can be programmed. Programming takes place when a magnet clip is applied for a period between 0.5 and 2 seconds to the marking located on the label. If the contact time is longer or shorter than this, no programming takes place (protection against external magnetic fields).

After the programming ("teaching"), the clip can either be left on the device, or removed to protect data.
The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.
In order to avoid the need to transit to an undesired operating status during "teaching", the device can be provided ex-works with a "teach-offset". The "teach-offset" value is added to the currently measured value before saving (or is subtracted if a negative value is entered).

Example: The switching value is to be set to 70% of the metering range, because at this flow rate a critical process status is to be notified. However, only 50% can be achieved without danger. In this case, the device would be ordered with a "teach-offset" of +20 \%. At 50% in the process, a switching value of 70% would then be stored during "teaching".

Normally, programming is used to set the limit switch. However, if desired, other parameters such as the end value of the analog or frequency output may also be set.

The limit switch can be used to monitor minimal or maximal.

With a minimum switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

switchover delay time (t_{DS}) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.
In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V , so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V , and in the alarm state it is at the level of the supply voltage.

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de • info@honsberg.com
Product Information

GHD-HONSBERG

Sensors and Instrumentation

A Power-On delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

Combinations with FLEX

FLEX-evaluation electronics can be combined with very different types of pickup systems for flow rate, level, temperature, and pressure. This has created a family of sensors with which different types of applications can be supported.

Ordering code

The base device, e.g. HR2VE-032GM100 is ordered with electronics e.g. FLEX-HR2VE-ITLO

HR2VE -

5. 6.7 .8.

FLEX - HR2VE -
$\mathrm{O}=$ Option

1.	Nominal width	
	032	DN 32-G $1 \frac{1}{4}$
	040	DN 40-G 11/2
	050	DN 50-G 2
2.	Process connection	
	G	female thread
3.	Connection material	
	M	brass
	K	stainless steel
4.	HR2VE - Metering range oil for horizontal inwards flow	
	080	10.. $80 \mathrm{l} / \mathrm{min}$
	120	$20.120 \mathrm{l} / \mathrm{min}$
	140	$30.140 \mathrm{l} / \mathrm{min}$
	160	$50.160 \mathrm{l} / \mathrm{min}$
5.	Analog output	
	1	current output $4 . .20 \mathrm{~mA}$
	U	voltage output $0 . .10 \mathrm{~V}$
	K	no analog output
6.	Switching output	
	T	Push-Pull
	M O	NPN (open collector)

	K	no switching output
7.	Function set to switching output	
	L	minimum-switch
	H	maximum-switch
	R	frequency output
	C	Pulse output
	K	no switching output
8.	Switching output level	
	O	standard
	M	O

Required ordering information

For FLEX-HR2VE-C:
For the pulse output version, the volume (with numerical value and unit) which will correspond to one pulse must be stated.

Volume per pulse (numerical value)

Volume per pulse (unit) \square

Options FLEX

Special range for analog output:

<= Metering range
(Standard=Metering range)
Special range for frequency output: $\square \quad \mid \quad \mathrm{I} / \mathrm{min}$ <= Metering range (Standard=Metering range)
End frequency (max. 2000 Hz)

Switching delay period (0.0..99.9 s)

(from Normal to Alarm)
Switch-back delay period (0.0..99.9 s)
 (from Alarm to Normal)
Power-On delay (0..99 s)

(After connecting the supply, time during
which the switching output is not activated)
Switching output fixed

If the field is not completed, the standard setting is selected automatically.

Options HR2VE

- Special quantities

Ordering information

- Specify direction of flow, medium, and metering range.

Accessoires

- Cable/round plug connector (KB...)
see additional information "Accessories"
- Device configurator ECI-1

GHM-HONSEERG

Product Information

Flow Meter / Monitor FLEX-HR1MV

- Viscosity stabilised from $\mathbf{3 0}$ to $\mathbf{2 0 0} \mathbf{~ m m}^{2} / \mathrm{s}$
- $4 . .20 \mathrm{~mA}$ or $0 . .10 \mathrm{~V}$ output signal
- $1 \times$ programmable switch or frequency output
- Programmable switching value, full scale, or zero point via magnet clip
- Programming protection by removal of the clip
- Polished metal housing
- Rotatable electronic head for alignment of the 90° cable outlet
- LED for switching value display

Characteristics

The sensors work with a 16-bit processor, a 12-bit A/D and a 12-bit D/A converter. Linearisations and calibrations are carried out automatically. The Flash memory guarantees the exchangeability of all programs.
There is a choice between a switch with transistor output (push-pull) or a frequency output. The analog output $4 . .20 \mathrm{~mA}$ or $0 . .10 \mathrm{~V}$ can be used at the same time. Many options are available for the switching outputs.
Options allow:

- Variable ranges for the analog outputs
- Variable hystereses
- Minimum or maximum switch
- Inversion of the outputs
- Window function
- Delay after switching voltage on
- Switching delays (On, Off)

Technical data	
Sensor	analog Hall sensor
Nominal width	DN 32..50
Process connection	female thread G $1^{11 / 4}$..G 2 (further process connections available on request)
Metering range	$2 . .220 \mathrm{l} / \mathrm{min}$ for details see
$\mathbf{Q}_{\text {max }}$.	to $250 \mathrm{l} / \mathrm{min}$ table "Ranges"
Tolerance	$\pm 3 \%$ of the full scale value plus viscosity variation
Pressure resistance	PN 200 bar
Media temperature	$-20 . .+85^{\circ} \mathrm{C}$ optionally $-20 . .+150{ }^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$

Sensors and Instrumentation

Media	water, oils (gases and aggressive media available on request)
Wiring	see section "Wiring"
Power supply	18..30 V DC
Power consumption	<1 W
Analog output	$4 . .20 \mathrm{~mA} / \operatorname{load} 500 \Omega$ max. or $0 . .10 \mathrm{~V} /$ load min. $1 \mathrm{k} \Omega$
Switching output	transistor output "push-pull", (resistant to short circuits, and reversal polarity protected) $l_{\text {out }}=100 \mathrm{~mA}$ max.
Display (only with switching output)	yellow LED (On = OK / Off = Alarm)
Ingress protection	IP 67
Electrical connection	for round plug connector M12x1, 4-pole
Materials medium-contact	Brass construction: Stainless steel CW614N nickelled, construction: 1.4571, CW614N, 1.4310, $1.4404,1.4310$, hard hard ferrite ferrite PTFE-coated, DN 32..40: NBR DN 32..40: FKM
Non-mediumcontact materials	CW614N, PPS
Weight	see table "Dimensions and weights"
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the metering and switching range.

Signal output curves

Value $x=$ Begin of the specified range

$$
=\text { not specified range }
$$

Current output

Frequency output

$\mathrm{f}_{\text {max }}$ selectable in the range of up to 2000 Hz

Other characters on request.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Switching range I/min $\mathrm{H}_{2} \mathrm{O}$ or oil $30 . .200 \mathrm{~mm}^{2} / \mathrm{s}$	Display range $\mathrm{I} / \mathrm{min}$ $\mathrm{H}_{2} \mathrm{O}$ or oil $30 . .200 \mathrm{~mm}^{2} / \mathrm{s}$	$\mathbf{Q}_{\text {max. }}$ recommended
$2-12$	$2-15$	50
$5-20$	$5-25$	60
$10-40$	$10-45$	100
$20-60$	$20-65$	150
$30-100$	$30-110$	200
$50-150$	$50-160$	230
$100-200$	$100-220$	250

Special ranges are available.

Wiring

Z=Load

Connection example: PNP NPN

Dimensions and weights

DN	G	Types	L	SW	\mathbf{X}	Weight kg
32	G 1¼	HR1MV-0032G.E	165	70	29	5.8
40	G 11⁄2	HR1MV-0040G.E	165			5.5
50	G 2	HR1MV-0050G.E	150	-	26	5.0

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- Include a filter if the media are dirty (use magnetic filter for ferritic components)

The electronics housing is permanently connected to the primary sensor. There is no electrical connection between the electronics and the piston device. After installation, the electronic head can be turned to align the cable outlet.
It should be noted that the piston device and the FLEX electronics are appropriately matched to each other.

Programming

The electronics contain a magnetic contact, with the aid of which different parameters can be programmed. Programming takes place when a magnet clip is applied for a period between 0.5 and 2 seconds to the marking located on the label. If the contact time is longer or shorter than this, no programming takes place (protection against external magnetic fields).

After the programming ("teaching"), the clip can either be left on the device, or removed to protect data.
The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.
In order to avoid the need to transit to an undesired operating status during "teaching", the device can be provided ex-works with a "teach-offset". The "teach-offset" value is added to the currently measured value before saving (or is subtracted if a negative value is entered).

Example: The switching value is to be set to 70% of the metering range, because at this flow rate a critical process status is to be notified. However, only 50\% can be achieved without danger. In this case, the device would be ordered with a "teach-offset" of $+20 \%$. At 50% in the process, a switching value of 70% would then be stored during "teaching".

Normally, programming is used to set the limit switch. However, if desired, other parameters such as the end value of the analog or frequency output may also be set.

Product Information

The limit switch can be used to monitor minimal or maximal
With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is again exceeded

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

A switchover delay time ($t_{D s}$) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.
In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V , so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V and in the alarm state it is at the level of the supply voltage.

A Power-On delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

Combinations with FLEX

FLEX-converter / counter can be combined with very different types of pickup systems for flow rate, level, temperature, and pressure. This has created a family of sensors with which different types of applications can be supported.

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 - 42897 Remscheid • Germany
Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de - info@honsberg.com

Product Information

GHD-HONSEERG

Sensors and Instrumentation

Ordering code

The base device, e.g. HR1MV-032GM040E is ordered with electronics e.g. FLEX-HR1MVIULO
\qquad

FLEX-HR1MV

1. Nominal width

| 032 | DN $32-\mathrm{G} 1^{1} \frac{1}{4}$ | |
| :--- | :--- | :--- | :--- |
| | 040 | DN $40-\mathrm{G} 1^{1 / 2}$ |
| 050 | DN $50-\mathrm{G} 2$ | |

2. Process connection

G female thread
3. Connection material

M brass
K stainless steel
4. Metering range $\mathrm{H}_{2} \mathrm{O}$ or oil $30 . .200 \mathrm{~mm}^{2} / \mathrm{s}$ for horizontal inwards flow

多 horizontal invards flow	
012	$2-12 \mathrm{I} / \mathrm{min}$
025	$5-25 \mathrm{I} / \mathrm{min}$
040	$10-40 \mathrm{I} / \mathrm{min}$
060	$20-60 \mathrm{I} / \mathrm{min}$
100	$30-100 \mathrm{I} / \mathrm{min}$
150	$50-150 \mathrm{I} / \mathrm{min}$
200	$100-200 \mathrm{I} / \mathrm{min}$

5. Connection for

E electronics
6. Analog output

1	current output 4.20 mA
U	voltage output $0 . .10 \mathrm{~V}$
K	no analog output

7. Switching output

T	push-pull (compatible with PNP and NPN)

K no switching output
8. Function set to switching output

| | L |
| :--- | :--- |$|$ minimum-switch

9. Switching output level

	O
	I

Options for FLEX

Special range for analog output:

<= Metering range (standard=metering range)
Special range for frequency output:

<= Metering range (Standard=Metering range)
End frequency (max. 2000 Hz)

Power-on delay

(from Alarm to OK)
Power-off delay
(from OK to Alarm)
Power-On delay
(time after power on, during which the outputs are not actuated)
Switching output fixed
Special hysteresis (standard = 2 \% EW)

(recommended at operating temperatures above $70^{\circ} \mathrm{C}$)

If the field is not completed, the standard setting is selected automatically.

Options

- Measured values for oil or gas
- Special quantities
- Temperature display $0 . .120^{\circ} \mathrm{C}$

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"

Ordering information

- Specify direction of flow, medium, and metering range.
- For viscous media specify viscosity, temperature, and medium (e.g. ISO VG 68) (enquire about metering range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request metering range)

GHD-HONSEERG

Product Information

Flow meter / switch / indicator OMNI-HD1K

- 0/4. 20 mA or $0 / 2 . .10 \mathrm{~V}$ output signal
- $2 \times$ programmable switches (push-pull)
- Backlit graphical LCD display (transreflective), can be read in sunlight and in the dark
- Programmable parameters via rotatable, removable ring (programming protection)
- All metal housing with scratch and chemical resistant glass
- Unit is displayed (selectable)
- Rotatable electronic head for best reading position
- Parameter interface

Characteristics

The electronics can be used on the spot to set switching values where process values are exceeded or fallen short of. This setting can be carried out via the display even without a process. The present values or error messages from the measuring point are visible at any time, and all major parameters can be accessed on the spot. The analog current signal can be evaluated from large distances, and the present values can be made available there. If desired, the sensor can be configured at the factory with your parameters. It is therefore ready for immediate use, without programming. If you wish to change parameters, you can set the device directly at the sensor, by means of the programming ring.

The entire family of OMNI sensors is made up in a modular way, by means of a building-block system (hardware and software). A 16-bit microcontroller with a 14-bit A/D converter and a 12-bit D/A converter ensure the necessary processing speed and accuracy. The signal is displayed with the unit of measure by a backlit LCD graphical display, and is converted into a $0 / 4-20 \mathrm{~mA}$ signal. Two switching values with a choice of PNP or NPN output can be programmed across the whole range. The hystereses of the switching values can be set separately in value and direction (min., max. switching value).

Exceeding or falling short of switching values, and error messages, are indicated by a flashing red LED visible from a long distance, together with a message in the display.

Further parameters can be modified by means of a code:
Signal filter, selectable unit ($1 / \mathrm{min}, \mathrm{m}^{3} / \mathrm{h}$, etc.) incl. automatic conversion of the values, selectable output $0 . .20 \mathrm{~mA}, 4.0 .20 \mathrm{~mA}, 0 . .10 \mathrm{~V}$ or $2 . .10 \mathrm{~V}$, value assignment of $0 / 4 . .20 \mathrm{~mA}$ or $0 / 2 . .10 \mathrm{~V}$ (setting of zero point and range).

Sensors and Instrumentation
For commissioning, the sensor supports a simulation mode for the analog output. It is possible to create a programmable mA value at the output (without modifying the process variable). The range is $0 . .20 \mathrm{~mA}$. This allows the wiring run between the sensor and the downstream electronics to be tested during commissioning.

The complete housing can be rotated around the mechanical connection, and so after sealing, the correct position for reading can be set. Operation is through dialog with the display messages. It is possible to reset to the factory settings at any time.

Technical data

Sensor	Analog Hall sensor	
Nominal width	DN 8.. 25	
Process connection	Female thread G ${ }^{1 / 4}$.G 1 (further process connections available on request)	
Metering range	0.1.. $80 \mathrm{l} / \mathrm{min}$	For details see table "Ranges"
Pressure loss	0.4.1.6 bar at $\mathrm{Q}_{\max \text {. }}$	
$\mathbf{Q m a x}_{\text {m }}$	to $100 \mathrm{l} / \mathrm{min}$	
Tolerance	± 3 \% of full scale value	
Pressure resistance	PN 200 optionally PN 500 bar	
Medium temperature	$-20 . .+85^{\circ} \mathrm{C}$ optionally $-20 . .+150^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	Water, oils (Gases and aggressive media available on request)	
Wiring	see section "Wiring"	
Power supply	18..30 V DC	
Power requirement	< 1 W	
Analogue output	$0 / 4.20 \mathrm{~mA}, \quad 0 / 2.10 \mathrm{~V}$ via a 500Ω resistance after 0 V .	
Switching values S1 + S2	PNP or NPN, selectable, 300 mA max. load in total, programmable as min. value or max. value, resistant to short circuits, reversed polarity protected.	
Display	graphical LCD display, extended temperature range $-20 . .+70^{\circ} \mathrm{C}, 32 \times 16$ pixels, Backlite, displays value and unit, flashing LED signal lamp with simultaneous message on the display.	
Ingress protection	IP 67	
Electrical connection	For round plug connector M12x1, 5-pole	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite, NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, FKM
Materials, non-medium-contact	CW614N, PPS, glass	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the display, metering and switching range.	

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 • Fax -40
www.ghm-messtechnik.de - info@honsberg.com

Product Information

GHM-HONSEERG

Signal output characteristic curves

Value $x=$ beginning of the specified metering range $=$ not specified range

Current output Voltage output

Other characteristic curves on request

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Metering range $I /$ min $\mathrm{H}_{2} \mathrm{O}$	Qmax. recom- mended	Pressure Ioss bar at $\mathrm{Qmax} \mathrm{H}_{2} \mathrm{O}$
$0.1-1$	6	0,4
$0.5-5$	10	0,5
$1.0-10$	20	0,6
$2.0-20$	30	0,4
$3.0-30$	40	
$4.0-40$	60	0,8
$6.0-60$	80	1.4
$20.0-80$	100	1,6

Special ranges are available.

Wiring

Connection example: PNP NPN

Plug connector M12x1

Sensors and Instrumentation
Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$	HD1K-008GM	40	15	1,6
	G $3 / 8$	HD1K-010GM			
	G $1 / 2$	HD1K-015GM			1,5
	G ${ }^{3} / 4$	HD1K-020GM		18	
	G 1	HD1K-025GM			1,4
stainless steel	G ${ }^{1 / 4}$	HD1K-008GK	41	15	1,6
	G $3 / 8$	HD1K-010GK			
	G $1 / 2$	HD1K-015GK			1,5
	G ${ }^{1 / 4}$	HD1K-020GK		18	
	G 1	HD1K-025GK			1,4

Handling and operation

Note

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet
- Include a filter if the media are dirty (use magnetic filter for ferritic components)

Programming

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to $1=$ continue
Set to 2 = modify (EDIT)
Neutral position between

The ring can be removed to act as a key, or turned through 180° and replaced to create a programming protector.
Operation is by dialogue with the display messages, which makes its use very simple.
Starting from the normal display (currently measured value with unit), if 1 (STEP) is repeatedly selected, then the display shows the following information in this order:

Display of the parameters, using position 1

- Switching value S1 (switching point 1 in the selected unit)
- Switching characteristics of S1
- (MIN = monitoring of minimum value, hysteresis greater than switching value,
- $M A X=$ monitoring of maximum value, hysteresis less than switching value)
- Hysteresis 1 (hysteresis value of S1 in the set unit)
- Switching value S2

Product Information

- Switching characteristics of S2
- Hysteresis 2
- Code:

After entering the code 111, further parameters can be defined:

- Filter (settling time of the display and output)
- Units: e.g. $1 / \mathrm{min}$ or $\mathrm{m}^{3} / \mathrm{h}$
- Output: $0 . .20 \mathrm{~mA}$ or $4 . .20 \mathrm{~mA}$
- $0 / 4 \mathrm{~mA}$ (flow rate corresponding to $0 / 4 \mathrm{~mA}$)
- 20 mA (flow rate corresponding to 20 mA)

Edit, using position 2

If the currently visible parameter is to be modified:

- Turn the annular gap to position 2, so that a flashing cursor appears which displays the position which can be modified.
- By repeatedly turning to position 2, values are increased; by turning to position 1, the next digit is reached.
- Leave the parameter by turning to position 1 (until the cursor leaves the row); this accepts the modification.
- If there is no action within 30 seconds, the device returns to the normal display range without accepting the modification.

The limit switches S1 and S2 can be used for the monitoring of minima or maxima.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

The change to the alarm state is indicated by the integrated red LED and a cleartext in the display.
While in the normal state the switching outputs are at the level of the supply voltage; in the alarm state they are at 0 V , so that a wire break would also display as an alarm state at the signal receiver. Overload of the switching output is detected, indicated on the display ("Check S1/S2"), and the switching output is switched off.
for the analog output. It is possible to create a programmable value in the range $0 . .21 .0 \mathrm{~mA}$ (and/or 10 V) at the output (without modifying the process variable). This allows the wiring run between the sensor and the downstream electronics to be tested during commissioning. This is mode is accessed by means of code 311.

Overload display

Overload of the switching output is detected, indicated on the display, and the switching output is set to high impedance.

Default setting

After setting the configuration parameters, they can be reset to factory values at any time, by means of code 989.

Starting from the normal display (currently measured value with unit), if 1 (STEP) is selected repeatedly, then the display shows the following information:

Display of the parameters, using position 1

- Switching values S1 and S2: Switching values in the selected unit.
- Hysteresis direction of S1 and S2:

Max = hysteresis below S1 or S2

- Min = hysteresis above S1 or S2
- Hystereses Hyst 1 and Hyst 2:
- Hysteresis values of the switching values in the set unit
- After entering code S111, further parameters can be defined (this should take place only if necessary)
- Filter: Selectable filter constant in seconds (affects display and output)
- Units: e.g. bar or psi ...
- Output: 0.. 20 mA or $4 . .20 \mathrm{~mA}$
- 0/4 mA: Displayed value for 0/4 mA
- 20 mA : Displayed value for 20 mA

Edit, using position 2

- If the visible parameter is to be modified:
- Turn the annular gap to position 2, so that a flashing cursor appears which displays the position which can be modified. By repeatedly turning to position 2, values are increased; by turning to position 1, the next digit is reached. In this way, every digit can be modified. If there is no action within 5 seconds, the device returns to the normal display range without accepting the modification.

Saving the changes using position 1

- After leaving the last value, turn once to position 1; this accepts the modification.

Simulation mode

To simplify commissioning, the sensor supports a simulation mode

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de - info@honsberg.com

Product Information

Ordering code

The basic device is ordered e.g. HD1K-015GM005E with Evaluation electronics, e.g. OMNI-HD1K-S

1. Construction

> | 1 K | standard |
| :--- | :--- |

2. Nominal width

008	DN $8-G^{1} / 4$
010	DN $10-G^{3} / 8$
015	DN $15-\mathrm{G}^{1 / 2}$
020	DN $20-\mathrm{G}^{3} / 4$
025	DN $25-\mathrm{G} 1$

3. Process connection

> | G | Female thread |
| :--- | :--- |

4. Connection material

	M	Brass
	K	stainless steel

5. Display range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow

001	$0.1-1 \mathrm{I} / \mathrm{min}$
005	$0.5-5 \mathrm{I} / \mathrm{min}$
010	$1.0-10 \mathrm{I} / \mathrm{min}$
020	$2.0-20 \mathrm{I} / \mathrm{min}$
030	$3.0-30 \mathrm{I} / \mathrm{min}$
040	$4.0-40 \mathrm{I} / \mathrm{min}$
060	$6.0-60 \mathrm{I} / \mathrm{min}$
080	$20.0-80 \mathrm{I} / \mathrm{min}$

6. Connection for

E Evaluation electronics
7. For base device

1K \quad standard
8. Analog output

I current output 0/4..20 mA
U O voltage output $0 / 2 . .10 \mathrm{~V}$
9. Electrical connection

S \quad For round plug connector M12x1, 5-pole
10. Options 1

H O Model with gooseneck
$\begin{array}{lll}\mathrm{O} & \text { O } \text { Tropical model with oil filling } \\ \mathrm{D} & \text { O } & \text { Spacer }\end{array}$

GHD-HONSEERG
Sensors and Instrumentation

- Tropical model (completely oil-filled for severe external applications or for rapidly changing temperatures. Reliably prevents condensation).
- Measured values for oil or gas
- Special quantities
- Version for $150^{\circ} \mathrm{C}$
- Temperature display $0 . .120^{\circ} \mathrm{C}$
- reinforced piston

Accessories

- Round plug connector / cable (KB...) For additional information, refer to the main directory "Accessories"

Ordering information

- Specify direction of flow, medium, and metering range.
- For viscous media specify viscosity, temperature and medium (e.g. ISO VG 68) (enquire about metering range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request metering range)

GHD-HONSEERG

Flow meter / switch / indicator OMNI-HD2K

- 0/4.. 20 mA or $0 / 2 . .10 \mathrm{~V}$ output signal
- $2 \times$ programmable switches (push-pull)
- Backlit graphical LCD display (transreflective), can be read in sunlight and in the dark
- Programmable parameters via rotatable, removable ring (programming protection)
- All metal housing with scratch and chemical resistant glass
- Unit is displayed (selectable)
- Rotatable electronic head for best reading position
- Parameter interface
- Viscosity stabilised

Characteristics

The electronics can be used on the spot to set switching values where process values are exceeded or fallen short of. This setting can be carried out via the display even without a process. The present values or error messages from the measuring point are visible at any time, and all major parameters can be accessed on the spot. The analog current signal can be evaluated from large distances, and the present values can be made available there. If desired, the sensor can be configured at the factory with your parameters. It is therefore ready for immediate use, without programming. If you wish to change parameters, you can set the device directly at the sensor, by means of the programming ring.

The entire family of OMNI sensors is made up in a modular way, by means of a building-block system (hardware and software). A 16-bit microcontroller with a 14-bit A/D converter and a 12-bit D/A converter ensure the necessary processing speed and accuracy. The signal is displayed with the unit of measure by a backlit LCD graphical display, and is converted into a $0 / 4.20 \mathrm{~mA}$ signal. Two switching values with a choice of PNP or NPN output can be programmed across the whole range. The hystereses of the switching values can be set separately in value and direction (min., max. switching value).

Exceeding or falling short of switching values, and error messages, are indicated by a flashing red LED visible from a long distance, together with a message in the display.

Further parameters can be modified by means of a code:
Signal filter, selectable unit (l/min, $\mathrm{m}^{3} / \mathrm{h}$, etc.) incl. automatic conversion of the values, selectable output $0 . .20 \mathrm{~mA}, 4.0 .20 \mathrm{~mA}, 0 . .10 \mathrm{~V}$ or $2 . .10 \mathrm{~V}$, value assignment of $0 / 4 . .20 \mathrm{~mA}$ or $0 / 2 . .10 \mathrm{~V}$ (setting of zero point and range).

For commissioning, the sensor supports a simulation mode for the analog output. It is possible to create a programmable mA value at the output (without modifying the process variable). The range is $0 . .20 \mathrm{~mA}$. This allows the wiring run between the sensor and the downstream electronics to be tested during commissioning.

The complete housing can be rotated around the mechanical connection, and so after sealing, the correct position for reading can be set. Operation is through dialog with the display messages. It is possible to reset to the factory settings at any time.

Technical data

Sensor	Analog Hall sensor
Nominal width	DN 8.0.25
Process connection	Female thread G ${ }^{1 / 4}$. G 1 (further process connections available on request)
Metering range	
Pressure loss	For details see table "Ranges"
$\mathbf{Q}_{\text {max. }}$	up to $80 \mathrm{l} / \mathrm{min}$ Q
Tolerance	± 3 \% of full scale value
Pressure resistance	PN 200 optionally PN 500 bar
Medium temperature	$-20 . .+85^{\circ} \mathrm{C}$ optionally $-20 . .+150{ }^{\circ} \mathrm{C}$
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$
Media	Oils
Wiring	see section "Wiring"
Power supply	18..30 V DC
Power requirement	< 1 W
Analogue output	$0 / 4 . .20 \mathrm{~mA}, \quad 0 / 2 . .10 \mathrm{~V}$ via a 500Ω resistance after 0 V .
Switching values S1 + S2	PNP or NPN, selectable, 300 mA max. load in total, programmable as min. value or max. value, resistant to short circuits, reversed polarity protected.
Display	graphical LCD display, extended temperature range $-20 . .+70^{\circ} \mathrm{C}, 32 \times 16$ pixels, Backlit, displays value and unit, flashing LED signal lamp with simultaneous message on the display.
Ingress protection	IP 67
Electrical connection	For round plug connector M12x1, 5-pole
Materials medium-contact	Brass construction: Stainless steel con- CW614N nickelled, struction: 1.4571, CW614N, 1.4310, 1.4404, 1.4310, hard hard ferrite, NBR ferrite PTFE-coated, FKM
Materials, non-medium-contact	CW614N, PPS, glass
Weight	see table "Dimensions and weights"
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the display, metering and switching range.

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 • Fax -40
www.ghm-messtechnik.de - info@honsberg.com

Product Information

GHM-HONSEERC

Signal output characteristic curves

Value $x=$ beginning of the specified metering range $=$ not specified range

Other characteristic curves on request

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Metering range I/min oil 30-330 $\mathrm{mm}^{2} / \mathrm{s}$	$\mathbf{Q}_{\text {max }}$ recommende d	Pressure loss bar at $\mathrm{Q}_{\text {max. }}$ oil mm²/s					Viscosity stability $\pm 8 \%$, min.
		30	60	100	205	330	
0.5-8	12	1,1	1,4	1,6	2.8	3.5	$\pm 0.3 \mathrm{l} / \mathrm{min}$
1.5-15	22	2,2	2,3	2,4			$\pm 0.5 \mathrm{l} / \mathrm{min}$
2.5-25	35	1.9	2.0	2.1	2.3	2,9	$\pm 0.8 \mathrm{l} / \mathrm{min}$
6.0-40	60					2,6	$\pm 2.7 \mathrm{l} / \mathrm{min}$
12.0-60	80	2,1	2,3	2,4	2,6	2,8	$\pm 3.0 \mathrm{l} / \mathrm{min}$

Special ranges are available.

Wiring

Connection example: PNP NPN

Plug connector M12x1

Sensors and Instrumentation
Dimensions and weights

	G	Types	SW	X	Weight kg
Brass	G $1 / 4$	HD2K-008GM	40	15	1,6
	G ${ }^{3} / 8$	HD2K-010GM			
	G $1 / 2$	HD2K-015GM			1,5
	G ${ }^{3 / 4}$	HD2K-020GM		18	
	G 1	HD2K-025GM			1,4
stainless steel	$\mathrm{G}^{1 / 4}$	HD2K-008GK	41	15	1,6
	G ${ }^{3} 18$	HD2K-010GK			
	G $1 / 2$	HD2K-015GK			1,5
	G ${ }^{3 / 4}$	HD2K-020GK		18	
	G 1	HD2K-025GK			1,4

Handling and operation

Note

- Include straight calming section of $5 \times \mathrm{DN}$ in inlet and outlet
- Include a filter if the media are dirty (use magnetic filter for ferritic components)

Programming

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to $1=$ continue Set to 2 = modify (EDIT)

Neutral position between 1 and 2

The ring can be removed to act as a key, or turned through 180° and replaced to create a programming protector.
Operation is by dialogue with the display messages, which makes its use very simple.
Starting from the normal display (currently measured value with unit), if 1 (STEP) is repeatedly selected, then the display shows the following information in this order:

Display of the parameters, using position 1

- Switching value S1 (switching point 1 in the selected unit)
- Switching characteristics of S1
- (MIN = monitoring of minimum value, hysteresis greater than switching value,
- $M A X=$ monitoring of maximum value, hysteresis less than switching value)
- Hysteresis 1 (hysteresis value of S1 in the set

Product Information

Sensors and Instrumentation
unit)

- Switching value S2
- Switching characteristics of S2
- Hysteresis 2
- Code:

After entering the code 111, further parameters can be defined:

- Filter (settling time of the display and output)
- Units: e.g. I/min or $\mathrm{m}^{3} / \mathrm{h}$
- Output: $0 . .20 \mathrm{~mA}$ or $4 . .20 \mathrm{~mA}$
- 0/4 mA (flow rate corresponding to 0/4 mA)
- 20 mA (flow rate corresponding to 20 mA)

Edit, using position 2

If the currently visible parameter is to be modified:

- Turn the annular gap to position 2, so that a flashing cursor appears which displays the position which can be modified.
- By repeatedly turning to position 2, values are increased; by turning to position 1, the next digit is reached.
- Leave the parameter by turning to position 1 (until the cursor leaves the row); this accepts the modification.
- If there is no action within 30 seconds, the device returns to the normal display range without accepting the modification.

The limit switches S1 and S2 can be used for the monitoring of minima or maxima.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

The change to the alarm state is indicated by the integrated red LED and a cleartext in the display.
While in the normal state the switching outputs are at the level of the supply voltage; in the alarm state they are at 0 V , so that a wire break would also display as an alarm state at the signal receiver. Overload of the switching output is detected, indicated on the display ("Check S1/S2"), and the switching output is switched off.

Simulation mode

To simplify commissioning, the sensor supports a simulation mode
for the analog output. It is possible to create a programmable value in the range $0 . .26 \mathrm{~mA}$ at the output (without modifying the process variable). This allows the wiring run between the sensor and the downstream electronics to be tested during commissioning. This is mode is accessed by means of code 311.

Overload display

Overload of the switching output is detected, indicated on the display, and the switching output is set to high impedance.

Default setting

After setting the configuration parameters, they can be reset to factory values at any time, by means of code 989.

Starting from the normal display (currently measured value with unit), if 1 (STEP) is selected repeatedly, then the display shows the following information:

Display of the parameters, using position 1

- Switching values S1 and S2: Switching values in the selected unit.
- Hysteresis direction of S1 and S2:

Max = hysteresis below S1 or S2

- Min = hysteresis above S1 or S2
- Hystereses Hyst 1 and Hyst 2:
- Hysteresis values of the switching values in the set unit
- After entering code S111, further parameters can be defined (this should take place only if necessary)
- Filter: Selectable filter constant in seconds (affects display and output)
- Units: e.g. bar or psi ...
- Output: 0.. 20 mA or $4 . .20 \mathrm{~mA}$
- 0/4 mA: Displayed value for 0/4 mA
- 20 mA : Displayed value for 20 mA

Edit, using position 2

- If the visible parameter is to be modified:
- Turn the annular gap to position 2, so that a flashing cursor appears which displays the position which can be modified. By repeatedly turning to position 2 , values are increased; by turning to position 1, the next digit is reached. In this way, every digit can be modified. If there is no action within 5 seconds, the device returns to the normal display range without accepting the modification

Saving the changes using position 1

- After leaving the last value, turn once to position 1; this accepts the modification.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Ordering code

The base device is ordered, e.g. HD2K-015GM005E with Evaluation electronics, e.g. OMNI-HD2K-S

	1.	2.	3.		4.	5.	6.
HD -	2K		G				E
		7.	8.	9.	10.		
OMNI-HD -		2K		S			

1.	Construction	
	2 K	Viscosity com
2.	Nominal width	
	008	DN $8-\mathrm{G}^{1 / 1} 4$
	010	DN $10-\mathrm{G}^{3 / 8}$
	015	$\mathrm{DN} 15-\mathrm{G}^{1 / 2}$
	020	$\mathrm{DN} 20-\mathrm{G}^{3 / 4}$
	025	$\mathrm{DN} 25-\mathrm{G} 1$

3. Process connection

G \quad Female thread
4. Connection material

M	Brass
K	stainless steel

5. Metering range oil $\mathbf{3 0 - 3 3 0} \mathbf{~ m m}^{2} / \mathrm{s}$ for horizontal
inwards flow

008	$0.5-8 \mathrm{I} / \mathrm{min}$
015	$1.5-15 \mathrm{I} / \mathrm{min}$
025	$2.5-25 \mathrm{I} / \mathrm{min}$
040	$6.0-40 \mathrm{I} / \mathrm{min}$
060	$12.0-60 \mathrm{I} / \mathrm{min}$

6. Connection for

E \quad Evaluation electronics
7. For base device

2K \quad Viscosity compensated
8. Analog output

I current output $0 / 4 . .20 \mathrm{~mA}$
U O voltage output 0/2..10 V
9. Electrical connection

S \quad For round plug connector M12×1, 5-pole
10. Options 1

H O Model with gooseneck
O O Tropical model with oil filling
D O Spacer

Options

- Tropical model (completely oil-filled for severe external applications or for rapidly changing temperatures. Reliably prevents condensation).
- Special quantities
- Version for $150^{\circ} \mathrm{C}$
- Temperature display $0 . .120^{\circ} \mathrm{C}$

Accessories

- Round plug connector / cable (KB...)

Ordering information

- Specify direction of flow, medium, and metering range.
- For viscous media specify viscosity, temperature and medium (e.g. ISO VG 68) (enquire about metering range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request metering range)

GHD-HONSBERG

Product Information

Flow transmitter / switch OMNI-HR2E

- Optimized for use with water
- Analog output $4 . .20 \mathrm{~mA}$ or $0 . .10 \mathrm{~V}$
- Two programmable switches
- Graphical LCD display, backlit, can be read in sunlight and in the dark
- Selectable units in the display
- Programmable parameters via rotatable, removable ring (programming protection)
- Electronics housing with non-scratch, chemically resistant glass
- Rotatable electronic housing for best reading position
- Designed for industrial use

Characteristics

Mechanical flow switch, for fluid media, with spring-supported piston and magnetic triggering of Hall sensors. Robust construction in brass or stainless steel.

The OMNI transducer located on the sensor has a backlit graphics LCD display which is very easy to read, both in the dark and in bright sunlight. The graphics display allows the presentation of measured values and parameters in a clearly understandable form. The measured values are displayed to 4 places, together with their physical unit, which may also be modified by the user. The electronics have an analog output ($4 . .20 \mathrm{~mA}$ or $0 . .10 \mathrm{~V}$) and two switching outputs, which can be used as limit switches for monitoring minimal or maximal, or as two-point controllers. The switching outputs are designed as push-pull drivers, and can therefore be used both as PNP and NPN outputs. Exceeding limit values is signaled by a red LED which is visible over a long distance, and by a clear text in the display.

The stainless steel housing has a hardened non-scratch mineral glass pane. It is operated by a programming ring fitted with a magnet, so there is no need to open the operating controls housing, and its leakproofness is permanently ensured.

By turning the ring to left or right, it is simple to
modify the parameters (e.g. switching point, hysteresis...). To protect from unintended programming, it can be removed, turned through 180° and replaced, or completely removed, thus acting as a key.

Technical data		
Sensor	analog Hall sensor	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{11 / 4}$. G 2 (further process connections available on request)	
Metering range	$5 . .300 \mathrm{l} / \mathrm{min}$	for details see table "Ranges"
Pressure loss	$\sim 1 \text { bar at } Q_{\max }$	
$\mathbf{Q}_{\text {max }}$	up to $300 \mathrm{l} / \mathrm{min}$	
Measurement accuracy	$\pm 8 \%$ of full scale value	
Pressure resistance	PS 200 bar	
Medium temperature	$-20 . .+85^{\circ} \mathrm{C}$, optionally -20.. $+100^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water	
Wiring	see section "Wiring"	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite,	Stainless steel construction: 1.4571, 1.4310, hard ferrite
Materials, non-medium-contact	Electronic adapter Electronics housing Glass Magnet Ring	CW614N nickelled Stainless steel 1.4305 Mineral glass, hardened Samarium-Cobalt POM
Supply voltage	18..30 V DC	
Power consumption	<1 W	
Analog output	$4 . .20 \mathrm{~mA} / \mathrm{max}$. load 500Ω or $0 . .10 \mathrm{~V} / \mathrm{min}$. load $1 \mathrm{k} \Omega$	
Switching output	Transistor output "Push-Pull" (resistant to short circuits and polarity reversal)$I_{\text {out }}=100 \mathrm{~mA} \text { max. }$	
Hysteresis	adjustable, position of the hysteresis depends on minimum or maximum	
Display	extendable graphic LCD display Temperature range $-20 . .+70^{\circ} \mathrm{C}$, 32×16 pixels, background illumination, displays value and unit, flashing LED signal lamp with simultaneous message on the display	
Electrical connection	for round plug connector M12x1, 5-pole	
Ingress protection	IP 67 (IP 68 when oil-filled)	
Weight	see table "Dimensions and weights"	
Conformity	CE	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the display, metering and switching range.	

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 \bullet Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

GHD-HONSBERG

Ranges

Details in the table correspond to metering ranges with horizontal inwards flow and increasing flow rate.

Standard type OMNI-HR2E

Metering range $\mathrm{l} /$ min $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{Q}_{\text {max. }}$ recommended
$5-60$	$300 \mathrm{I} / \mathrm{min}$
$10-100$	$300 \mathrm{I} / \mathrm{min}$
$15-200$	$300 \mathrm{I} / \mathrm{min}$
$25-300$	$300 \mathrm{I} / \mathrm{min}$

Special ranges are available.

Wiring

Z=Load

Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.
The Push-Pull output) can as desired be switched as a PNP or an NPN output.

Sensors and Instrumentation
Dimensions and weights
..including OMNI electronics

DN	G	Types	L	ØD	SW	Ød	X	Weight kg
32	G 1¼	HR2E-032GM	130	65	60	51	23	2.8
40	G 1½	HR2E-040GM	170	65	60	56	24	3.3
50	G 2	HR2E-050GM	185	80	75	70	26	5.5

High temperature

Gooseneck option

A gooseneck (optional) between the electronics head and the primary sensor provides freedom in the orientation of the sensor. This option simultaneously provides thermal decoupling between the two units

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components)

The electronics housing is permanently connected to the primary sensor. There is no electrical connection between the electronics and the piston device. After installation, the electronic head can be turned to align the cable outlet.
It should be ensured that the piston device and the OMNI electronics are appropriately matched to each other.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Programming

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to 1 = continue (STEP) Set to 2 = modify (PROG)

Neutral position between 1 and 2

The ring can be removed to act as a key, or turned through 180° and replaced to create a programming protector.
Operation is by dialog with the display messages, which makes its use very simple.
Starting from the normal display (present value and unit), if 1 (STEP) is repeatedly selected, then the display shows the following information in this order:

Display of the parameters, using position 1

- Switching value S1 (switching point 1 in the selected unit)
- Switching characteristic of S1

MIN $=$ Monitoring of minimum value
MAX = Monitoring of maximum value

- Hysteresis 1 (hysteresis value of S1 in the set unit)
- Switching value S2
- Switching characteristic of S2
- Hysteresis 2
- Code

After entering the code 111, further parameters can be defined:

- Filter (settling time of the display and output)
- Physical unit (Units)
- Output: $0 . .20 \mathrm{~mA}$ or $4 . .20 \mathrm{~mA}$
- 0/4 mA (measured value corresponding to 0/4 mA)
- 20 mA (measured value corresponding to 20 mA)

For models with a voltage output, replace 20 mA accordingly with 10 V .

Edit, using position 2

If the currently visible parameter is to be modified:

- Turn the annular gap to position 2, so that a flashing cursor appears which displays the position which can be modified.
- By repeatedly turning to position 2, values are increased; by turning to position 1, the cursor moves to the next digit.
- Leave the parameter by turning to position 1 (until the cursor leaves the row); this accepts the modification.
- If there is no action within 30 seconds, the device returns to the normal display range without accepting the modification.

The limit switches S1 and S2 can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

The change to the alarm state is indicated by the integrated red LED and a clear text in the display.
While in the normal state, the switching outputs are at the level of the supply voltage; in the alarm state they are at 0 V , so that a wire break would also display as an alarm state at the signal receiver.

Overload display

Overload of a switching output is detected and indicated on the display ("Check S1 / S2"), and the switching output is switched off.

Simulation mode

To simplify commissioning, the sensor provides a simulation mode for the analog output. It is possible to create a programmable value in the range $0 . .26 .0 \mathrm{~mA}$ at the output (without modifying the process variable). This allows the wiring run between the sensor and the downstream electronics to be tested during commissioning. This mode is accessed by means of code 311.

Factory settings

After modifying the configuration parameters, it is possible to reset them to the factory settings at any time using Code 989.

GHD-HONSBERG

Product Information

Sensors and Instrumentation

Ordering code

The basic device is ordered e.g. HR2E-032GM100 with electronics e.g. OMNI-HR2E-ISO

HR2E

OMNI - HR2E -

$\mathrm{O}=$ Option

1.	Nominal width	
	032	DN 32-G 11/4
	040	DN 40-G 11/2
	050	DN 50-G 2
2.	Process connection	
	G	female thread
3.	Connection material	
	M	brass
	K	stainless steel
4.	HR2E - Metering range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow	
	060	5-60 $/ / \mathrm{min}$
	100	10-100 $/ / \mathrm{min}$
	200	$15-200 \mathrm{l} / \mathrm{min}$
	300	25-300 1/min
5.	Analog output	
	1	current output 0/4..20 mA
	U O	voltage output 0/2..10 V
6.	Electrical connection	
	S	for round plug connector M12x1, 5-pole
7.	Optional	
	D	high temperature up to $120^{\circ} \mathrm{C}$
	H	model with gooseneck
	$0 \quad 0$	tropical model - oil-filled version for heavy duty or external use

2. Process connection

Connection material

K stainless steel
4. HR2E - Metering range $\mathbf{H}_{2} \mathrm{O}$ for horizontal inwards flow
5. Analog output

U voltage output $0 / 2.10 \mathrm{~V}$

S \quad for round plug connector M12x1, 5-pole
7. Optional

Ordering information

- Specify direction of flow, medium, and metering range.

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Device configurator ECI-1

Options

- Special quantities

GHD-HONSBERG

Product Information

Flow transmitter l-switch OMNI-HR2VE

- Optimized for use with oil
- Analog output $4 . .20 \mathrm{~mA}$ or $0 . .10 \mathrm{~V}$
- Two programmable switches
- Graphical LCD display, backlit, can be read in sunlight and in the dark
- Selectable units in the display
- Programmable parameters via rotatable, removable ring (programming protection)
- Electronics housing with non-scratch, chemically resistant glass
- Rotatable electronic housing for best reading position
- Designed for industrial use

Characteristics

Mechanical flow switch, for fluid media, with spring-supported piston and magnetic triggering of Hall sensors. Robust construction in brass or stainless steel.

The OMNI transducer located on the sensor has a backlit graphics LCD display which is very easy to read, both in the dark and in bright sunlight. The graphics display allows the presentation of measured values and parameters in a clearly understandable form. The measured values are displayed to 4 places, together with their physical unit, which may also be modified by the user. The electronics have an analog output ($4 . .20 \mathrm{~mA}$ or $0 . .10 \mathrm{~V}$) and two switching outputs, which can be used as limit switches for monitoring minimal or maximal, or as two-point controllers. The switching outputs are designed as push-pull drivers, and can therefore be used both as PNP and NPN outputs. Exceeding limit values is signaled by a red LED which is visible over a long distance, and by a clear text in the display.

The stainless steel housing has a hardened non-scratch mineral glass pane. It is operated by a programming ring fitted with a magnet, so there is no need to open the operating controls housing, and its leakproofness is permanently ensured.

By turning the ring to left or right, it is simple to
modify the parameters (e.g. switching point, hysteresis...). To protect from unintended programming, it can be removed, turned through 180° and replaced, or completely removed, thus acting as a key.

Sensors and Instrumentation

Technical data		
Sensor	analog Hall sensor	
Nominal width	DN 32 / 40 / 50	
Process connection	female thread G $1^{11 / 4}$. G 2 (further process connections available on request)	
Metering range	10..160 $/ / \mathrm{min}$	for details see table "Ranges"
Pressure loss	$\sim 4 . .7$ bar at $\mathrm{Q}_{\text {max }}$	
$\mathrm{Q}_{\text {max. }}$	up to $160 \mathrm{l} / \mathrm{min}$	
Measurement accuracy	$\pm 5 \%$ of full scale value at constant viscosity	
Viscositystability	$\pm 10 \%$ of full scale value ($20-330 \mathrm{~mm}^{2} / \mathrm{s}$)	
Pressure resistance	PS 200 bar	
Medium temperature	$-20 . .+85^{\circ} \mathrm{C}$, optionally -20.. $+100{ }^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$	
Media	oil	
Wiring	see section "Wiring"	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4305, 1.4310, hard ferrite,	Stainless steel construction: 1.4571, 1.4310, hard ferrite
Materials, non-medium-contact	Electronic adapter Electronics housing Glass Magnet Ring	CW614N nickelled Stainless steel 1.4305 Mineral glass, hardened Samarium-Cobalt POM
Supply voltage	18..30 V DC	
Power consumption	<1 W	
Analog output	$4 . .20 \mathrm{~mA} / \mathrm{max}$. load 500Ω or $0 . .10 \mathrm{~V} / \mathrm{min}$. load $1 \mathrm{k} \Omega$	
Switching output	Transistor output "Push-Pull" (resistant to short circuits and polarity reversal)$I_{\text {out }}=100 \mathrm{~mA} \text { max. }$	
Hysteresis	adjustable, position of the hysteresis depends on minimum or maximum	
Display	extendable graphic LCD display Temperature range -20.. $+70^{\circ} \mathrm{C}$, 32×16 pixels, background illumination, displays value and unit, flashing LED signal lamp with simultaneous message on the display	
Electrical connection	for round plug connector M12x1, 5-pole	
Ingress protection	IP 67 (IP 68 when oil-filled)	
Weight	see table "Dimensions and weights"	
Conformity	CE	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the display, metering and switching range.	

GHD-HONSEERG

Product Information

Signal output curves

Value $x=$ begin of the specified range
$=$ not specified range
Current output
Voltage output

Other characteristics on request.

Ranges

Details in the table correspond to metering ranges with horizontal inwards flow and increasing flow rate.

Standard type OMNI-HR2VE

Metering range $\mathrm{I} / \mathrm{min}$ oil $20-330 \mathrm{~mm}^{2} / \mathrm{s}$	$\mathbf{Q}_{\text {max. }}$ Recommended $\mathrm{I} / \mathrm{min}$	Pressure loss bar at $\mathrm{Qmax}_{\text {ma }}$ oil
$10-80$	100	4
$20-120$	120	5
$30-140$	140	5
$50-160$	160	7

Special ranges are available.

Reference Data:

Metering spaces of the flow switch HR2VK1

Sensors and Instrumentation

Wiring

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.
The Push-Pull output) can as desired be switched as a PNP or an NPN output.

Dimensions and weights

..including OMNI-electronics

DN	G	Types	L	$\varnothing \mathrm{D}$	SW	Ød	X	Weight kg
32	G 11_{4}	HR2VE-032GM	130	65	60	51	23	2.8
40	G $11 \frac{1}{2}$	HR2VE-040GM	170	65	60	56	24	3.3
50	G 2	HR2VE-050GM	185	80	75	70	26	5.5

High temperature

Gooseneck option

A gooseneck (optional) between the electronics head and the primary sensof=Loaghovides freedbravin the orientation of the
sensor
option sensor \quad This option
simultahiteously provides thermadnalog output decoypling between the two
urats uß̂ts $\quad z \quad z \quad 0 V$
professional Instruments "MADE IN GERMANY"

GHO-HONSEERG

Product Information

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet
- If the media are dirty, install a filter (use magnetic filter for ferritic components)
- Under unfavorable pressure conditions, e.g. with a free outlet, there is a risk of cavitation.

The electronics housing is permanently connected to the primary sensor. There is no electrical connection between the electronics and the piston device. After installation, the electronic head can be turned to align the cable outlet.
It should be ensured that the piston device and the OMNI electronics are appropriately matched to each other.

Programming

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to 1 = continue (STEP) Set to 2 = modify (PROG)

Neutral position between

 1 and 2The ring can be removed to act as a key, or turned through $180{ }^{\circ}$ and replaced to create a programming protector.
Operation is by dialog with the display messages, which makes its use very simple.
Starting from the normal display (present value and unit), if 1
(STEP) is repeatedly selected, then the display shows the following information in this order:

Display of the parameters, using position 1

- Switching value S1 (switching point 1 in the selected unit)
- Switching characteristic of S1

MIN = Monitoring of minimum value
MAX = Monitoring of maximum value

- Hysteresis 1 (hysteresis value of S1 in the set unit)
- Switching value S2
- Switching characteristic of S2
- Hysteresis 2
- Code

After entering the code 111, further parameters can be defined

- Filter (settling time of the display and output)
- Physical unit (Units)
- Output: 0.. 20 mA or $4 . .20 \mathrm{~mA}$
- $0 / 4 \mathrm{~mA}$ (measured value corresponding to $0 / 4 \mathrm{~mA}$)
- 20 mA (measured value corresponding to 20 mA)

For models with a voltage output, replace 20 mA accordingly with 10 V.
Edit, using position 2
If the currently visible parameter is to be modified:

- Turn the annular gap to position 2, so that a flashing cursor appears which displays the position which can be modified.
- By repeatedly turning to position 2, values are increased; by turning to position 1, the cursor moves to the next digit.
- Leave the parameter by turning to position 1 (until the cursor leaves the row); this accepts the modification.
- If there is no action within 30 seconds, the device returns to the normal display range without accepting the modification.

The limit switches S1 and S2 can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

The change to the alarm state is indicated by the integrated red LED and a clear text in the display.
While in the normal state, the switching outputs are at the level of the supply voltage; in the alarm state they are at 0 V , so that a wire break would also display as an alarm state at the signal receiver.

Overload display

Overload of a switching output is detected and indicated on the display ("Check S1 / S2"), and the switching output is switched off.

Simulation mode

To simplify commissioning, the sensor provides a simulation mode for the analog output. It is possible to create a programmable value in the range $0 . .26 .0 \mathrm{~mA}$ at the output (without modifying the process variable). This allows the wiring run between the sensor and the downstream electronics to be tested during commissioning. This mode is accessed by means of code 311.

Factory settings

After modifying the configuration parameters, it is possible to reset them to the factory settings at any time using Code 989.

Ordering code

The basic device is ordered e.g. HR2VE-032GM100 with electronics e.g. OMNI-HR2VE-ISO

$\mathrm{O}=$ Option

1. Nominal width

032	DN $32-\mathrm{G} 1^{1} / 4$
040	DN $40-\mathrm{G} 1^{1 / 1} 2$
050	DN $50-\mathrm{G} 2$

2. Process connection

G \quad female thread
3. Connection material

M	brass
K	stainless steel

4. HR2VE - Metering range $\mathrm{H}_{2} \mathrm{O}$ for horizontal inwards flow

080
10.. $80 \mathrm{l} / \mathrm{min}$
$120 \quad 20 . .120 \mathrm{I} / \mathrm{min}$
$140 \quad 30.140 \mathrm{l} / \mathrm{min}$
160
$50 . .160 \mathrm{I} / \mathrm{min}$
. Analog output
I \quad current output $0 / 4 . .20 \mathrm{~mA}$
$\mathrm{U} \quad \mathrm{O}$ voltage output $0 / 2 . .10 \mathrm{~V}$
6. Electrical connection

S	for round plug connector M12×1, 5-pole

7. Option 1

D	high temperature up to $120^{\circ} \mathrm{C}$	
H	model with gooseneck	
O	O	tropical model - oil-filled version for heavy duty or external use

Options

- Special quantities

Ordering information

- Specify direction of flow, medium, and metering range.

Accessories

- Cable/round plug connector (KB...)
see additional information "Accessories"
- Device configurator ECI-1

GHO-HONSEERG

Flow Meter / Switch / Indicator OMNI-HR1MV

- Viscosity stabilised from $\mathbf{3 0}$ to $\mathbf{2 0 0} \mathbf{~ m m}^{2} / \mathrm{s}$
- 0/4.. 20 mA or $0 / 2 . .10 \mathrm{~V}$ output signal
- $2 \times$ programmable switches (push-pull)
- Backlit graphical LCD-Display (transreflective), can be read in sunlight and in the dark
- Programmable parameters via rotatable, removable ring (programming protection)
- All metal housing with scratch and chemical resistant glass
- Unit is displayed (selectable)
- Rotatable electronic head for best reading position
- Parameter interface

Characteristics

The electronics can be used on the spot to set switching values where process values are exceeded or fallen short of. This setting can be carried out via the display even without a process. The present values or error messages from the measuring point are visible at any time, and all major parameters can be accessed on the spot. The analog current signal can be evaluated from large distances, and the present values can be made available there. If desired, the sensor can be configured at the factory with your parameters. It is therefore ready for immediate use, without programming. If you wish to change parameters, you can set the device directly at the sensor, by means of the programming ring.

The entire family of OMNI sensors is made up in a modular way, by means of a building-block system (hardware and software). A 16-bit microcontroller with a 14-bit A/D converter and a 12-bit D/A converter ensure the necessary processing speed and accuracy. The signal is displayed with the unit of measure by a backlit LCD graphical display, and is converted into a 0/4.. 20 mA signal. Two switching values with a choice of PNP or NPN output can be programmed across the whole range. The hystereses of the switching values can be set separately in value and direction (min., max. switching value).

Exceeding or falling short of switching values, and error messages, are indicated by a flashing red LED visible from a long distance, together with a message in the display.

Further parameters can be modified by means of a code:
Signal filter, selectable unit ($/ / \mathrm{min}, \mathrm{m}^{3} / \mathrm{h} . .$.) incl. automatic conversion of the values, selectable output $0 . .20 \mathrm{~mA}, 4.0 .20 \mathrm{~mA}$, $0 . .10 \mathrm{~V}$ or $2 . .10 \mathrm{~V}$, value assignment of $0 / 4 . .20 \mathrm{~mA}$ or $0 / 2 . .10 \mathrm{~V}$ (setting of zero point and range).

For commissioning, the sensor supports a simulation mode for the analog output. It is possible to create a programmable mA value at the output (without modifying the process variable). The range is $0 . .20 \mathrm{~mA}$. This enables the commissioner to test the run between the sensor and the downstream electronics.

The complete housing can be rotated around the mechanical connection, and so after sealing, the correct position for reading can be set. Operation is through dialog with the display messages. It is possible to reset to the factory settings at any time.

Technical data		
Sensor	analog hall sensor	
Nominal width	DN 32..50	
Process connection	female thread G $1^{1} \frac{1}{4}$..G 2 (further process connections available on request)	
Metering range	$2 . .220 \mathrm{l} / \mathrm{min}$	for details see
$\mathbf{Q m a x}$. $^{\text {m }}$	to $250 \mathrm{l} / \mathrm{min}$	le "Ranges"
Tolerance	± 3 \% of the full scale value plus viscosity variation	
Pressure resistance	PN 200 bar	
Media temperature	$-20 . .+85^{\circ} \mathrm{C}$ optionally $-20 . .+150^{\circ} \mathrm{C}$	
Ambient temperature	$-20 . .+70^{\circ} \mathrm{C}$	
Media	water, oils (gases and aggressive media available on request)	
Wiring	see section "Wiring"	
Supply voltage	18..30 V DC	
Power consumption	< 1 W	
Analog output	$0 / 4 . .20 \mathrm{~mA}, 0 / 2 . .10 \mathrm{~V}$ via a $500 \mathrm{Ohm} \Omega$ resistance after 0 V .	
Switching values S1+S2	PNP or NPN, selectable, 300 mA max. load in total, programmable as min. value or max. value, resistant to short circuits, reversal polarity protected.	
Display	backlit graphical LCD-Display (transreflective), extended temperature range $-20 . .+70^{\circ} \mathrm{C}, 32 \times 16$ pixels, background illumination, displays value and unit, flashing LED signal lamp with simultaneous message on the display.	
Ingress protection	IP 67	
Electrical connection	for round plug connector M12x1, 5-pole	
Materials medium-contact	Brass construction: CW614N nickelled, CW614N, 1.4310, hard ferrite DN 32..40: NBR	Stainless steel construction: 1.4571, 1.4404, 1.4310, hard ferrite PTFE-coated, DN 32..40: FKM
Materials, non-medium-contact	CW614N, PPS, glass	
Weight	see table "Dimensions and weights"	
Installation location	Standard: horizontal inwards flow; other installation positions are possible; the installation position affects the display, metering and switching range.	

GHM Messtechnik GmbH - Location Honsberg
Tenter Weg 2-8 • 42897 Remscheid • Germany
Fon +49-2191-9672-0 • Fax -40
www.ghm-messtechnik.de • info@honsberg.com

Product Information

GBD-HONSEERG

Sensors and Instrumentation

Ranges

Details in the table correspond to horizontal inwards flow with increasing flow rate.

Switching range I/min $\mathrm{H}_{2} \mathrm{O}$ or oil $30 . .200 \mathrm{~mm}^{2} / \mathrm{s}$	Display range I/min $\mathrm{H}_{2} \mathrm{O}$ or oil $30 . .200 \mathrm{~mm}^{2} / \mathrm{s}$	$\mathbf{Q}_{\text {max. }}$ recommended
$2-12$	$2-15$	50
$5-20$	$5-25$	60
$10-40$	$10-45$	100
$20-60$	$20-65$	150
$30-100$	$30-110$	200
$50-150$	$50-160$	230
$100-200$	$100-220$	250

Special ranges are available.

Wiring

Connection example: PNP NPN

connector M12×1

Dimensions and weights

G	DN	Types	L	SW	X	Weight kg
G 11⁄4	32	HR1MV-0032G.E	165	70	29	5.8
G 1 $1 / 2$	40	HR1MV-0040G.E	165			5.5
G 2	50	HR1MV-0050G.E	150	-	26	5.0

Handling and operation

Note

- Include straight calming section of $5 \times$ DN in inlet and outlet.
- If the media are dirty, install a filter (use magnetic filter for ferritic components)

Programming

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to 1 = continue (STEP)
Set to 2 = modify (EDIT)
Neutral position between 1 and 2

The ring can be removed to act as a key, or turned through 180° and replaced to create a programming protector.
Operation is by dialog with the display messages, which makes its use very simple.
Starting from the normal display (currently measured value with unit), if 1 (STEP) is repeatedly selected, then the display shows the following information in this order:

Display of the parameters, using position 1

- Switching value S1 (switching point 1 in the selected unit)
- Switching characteristic of S1

GHM-HONSㄷ쿠든

Product Information

- (MIN = monitoring of minimum value, hysteresis greater than switching value,
- MAX = monitoring of maximum value, hysteresis less than switching value)
- Hysteresis 1 (hysteresis value of S1 in the set unit)
- Switching value S2
- Switching characteristic of S2
- Hysteresis 2
- Code:

After entering the code 111, further parameters can be defined:

- Filter (settling time of the display and output)
- Units: e.g. I/min or $\mathrm{m}^{3} / \mathrm{h}$
- Output: $0 . .20 \mathrm{~mA}$ or $4 . .20 \mathrm{~mA}$
- $0 / 4 \mathrm{~mA}$ (flow rate corresponding to $0 / 4 \mathrm{~mA}$)
- 20 mA (flow rate corresponding to 20 mA)

Edit, using position 2

If the currently visible parameter is to be modified:

- Turn the annular gap to position 2, so that a flashing cursor appears which displays the position which can be modified.
- By repeatedly turning to position 2, values are increased; by turning to position 1, the next digit is reached.
- Leave the parameter by turning to position 1 (until the cursor leaves the row); this accepts the modification.
- If there is no action within 30 seconds, the device returns to the normal display range without accepting the modification.

The limit switches S1 and S2 can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state.
Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

The change to the alarm state is indicated by the integrated red LED and a cleartext in the display.
While in the normal state the switching outputs are at the level of the supply voltage; in the alarm state they are at 0 V , so that a wire break would also display as an alarm state at the signal receiver. Overload of the switching output is detected, indicated on the
display ("Check S1/S2"), and the switching output is switched off.

Simulation mode

To simplify commissioning, the sensor supports a simulation mode for the analog output. It is possible to create a programmable value in the range $0 . .26 \mathrm{~mA}$ at the output (without modifying the process variable). This allows the wiring run between the sensor and the downstream electronics to be tested during commissioning. This is mode is accessed by means of code 311.

Overload display

Overload of the switching output is detected, indicated on the display, and the switching output is set to high impedance.

Default setting

After setting the configuration parameters, they can be reset to factory values at any time, by means of code 989.

Starting from the normal display (currently measured value with unit), if 1 (STEP) is selected repeatedly, then the display shows the following information:

Display of the parameters, using position 1

- Switching values S1 and S2: Switching values in the selected unit.
- Hysteresis direction of S1 and S2:

Max = Hysteresis less than S1 or S2

- Max = Hysteresis greater than S1 or S2
- Hystereses Hyst1 and Hyst2:
- Hysteresis values of the switching values in the set unit
- After entering code 111, further parameters can be defined (this should take place only if necessary)
- Filter: Selectable filter constant in seconds (affects display and output)
- Unit: e.g. bar or psi ..
- Output: 0.. 20 mA or $4 . .20 \mathrm{~mA}$
- 0/4 mA: Displayed value for 0/4 mA
- 20 mA : Displayed value for 20 mA

Edit, using position 2

- If the visible parameter is to be modified:
- Turn the annular gap to position 2, so that a flashing cursor appears which displays the position which can be modified. By repeatedly turning to position 2 , values are increased; by turning to position 1, the next digit is reached. In this way, every digit can be modified. If there is no action within 5 seconds, the device returns to the normal display range without accepting the modification.

Saving the changes using position 1

- After leaving the last value, turn once to position 1; this accepts the modification.

Ordering code

The basic device is ordered e.g. HR1MV-032GM040E with electronics e.g. OMNI-HR1MVS

OMNI-HR1MV \mathbf{S}

1. Nominal width

032	DN $32-\mathrm{G} 1^{1} / 4$
040	DN $40-\mathrm{G} 1^{1} / 2$
050	DN $50-\mathrm{G} 2$

2. Process connection

G female thread
3. Connection material

M brass
K stainless steel
4. Metering range $\mathrm{H}_{2} \mathrm{O}$ or oil $30 . .200 \mathrm{~mm}^{2} / \mathrm{s}$
for horizontal inwards flow

012	$2-12 \mathrm{I} / \mathrm{min}$
025	$5-25 \mathrm{I} / \mathrm{min}$
040	$10-40 \mathrm{I} / \mathrm{min}$
060	$20-60 \mathrm{I} / \mathrm{min}$
100	$30-100 \mathrm{I} / \mathrm{min}$
150	$50-150 \mathrm{I} / \mathrm{min}$
200	$100-200 \mathrm{I} / \mathrm{min}$

5. Connection for

E \quad electronics
6. Electrical connection

S	for round plug connector M12x1, 5-pole

7. Option 1

H O model with gooseneck

	H	O	model with gooseneck
O	O	tropical model - oil-filled version for	
heavy duty or external use			

Options

- Tropical model (completely oil-filled for severe external applications or for rapidly changing temperatures. Reliably prevents condensation).
- Measured values for oil or gas
- Special quantities
- Temperature display $0 . .120^{\circ} \mathrm{C}$
- Reinforced piston

Accessories

- Cable/round plug connector (KB...)
see additional information "Accessories"

Ordering information

- Specify direction of flow, medium, and metering range.
- For viscous media, state viscosity, temperature and medium (e.g. ISO VG 68) (enquire about metering range).
- For gases, state pressure (relative or absolute), temperature and medium (e.g. air) (request metering range)

Combinations with OMNI

OMNI-converter / counter can be combined with very different types of pickup systems for flow rate, level, temperature, and pressure. This has created a family of sensors with which different types of applications can be

professional Instruments ividuE IN GERMANY"

GHM-HONSEERG

Product Information

Momentary value indicator, transmitter and meter OMNI-C1 electronics

- Momentary value indicator and totalisation
- Pulse output with adjustable pulse per volume
- Antivalent outputs
- Analogue output of the momentary value
- Simple guided menu via graphics display

Characteristics

The local OMNI-C1 electronics offers a momentary value indicator and a totalisation of the flow rate quantity.

The momentary value is output at the analogue output as a $4 . .20$ mA signal (or optionally as a $0 . .10 \mathrm{~V}$ signal).
In addition, the electronics has a pulse output, which outputs a pulse after a preset quantity with a duration of 36 ms . The pulse is available at two switching outputs in anitvalent form.

The primary displayed value is the flow rate. Using the programming ring, you can temporarily switch to the totalisation.

The state of the totalisation is indicated in an LCD display with only four digits. Here, the number of decimal places and the unit displayed is continuously matched to the current state of the counter. In this case, the smallest value which can be displayed is $0.001 \mathrm{ml}(=1 \mu \mathrm{l})$, and the largest is $9999 \mathrm{~m}^{3}$. The counter therefore has 13 places, of which the four most significant are displayed at any one time. The display resolution at all times is therefore at least 1 per thousand of the displayed value, or better, and this generally exceeds the accuracy of the connected flow transmitter. The nondisplayed digits of the counter are in that case irrelevant to the accuracy of the measurement.
The automatic dynamic changeover of units in the display in relation to the state of the counter makes the value easy to read in spite of a display with only four digits. In addition, user configuration of the counter is unnecessary.

Counter C:

Instead of the counter option C1 the counter option C is available (see corresponding datasheet). It offers a totalizer with adjustable preset value and external reset. This allows to realize a filling control application for example. Additionally the actual flow rate value can be displayed, however without an analog output.

Technical data

Counter range	0.000 ml to $9999 \mathrm{~m}^{3}$ with automatic setting of the decimal places and of the applicable unit
Pulse outputs (Pin 4 + 5)	$2 \times$ pushpull output, max. 100 mA, resistant to short circuits and polarity reversal, antivalent statuses, pulse width 36 ms

Wiring

Connection example: PNP NPN

Plug connector M12×1
Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.
The use of shielded cabling is recommended.

Product Information

Sensors and Instrumentation

Handling and operation

Installation

For assembly, please observe the handling instructions for the different device versions

After assembly, it is possible to move the sensor head to the most optimal reading position opposite the sensor part using its rotating function.

Programming

The resetting of the meter to zero takes place through the programming.

The stainless steel case has a hardened non-scratch mineral glass pane. It is operated by a programming ring fitted with a magnet, so there is no need to open the operating controls housing, and its leakproofness is permanently ensured.

By turning the ring to right or left, it is simple to modify the parameters (e.g. switching point, hysteresis...). To protect from unintended programming, it can be removed, turned through 180° and replaced, or completely removed, thus acting as a key.

On the display, the meter indicates the current flow rate as a value and unit. For this purpose, no adjustments by the user are necessary.

To use the other functions, configuration may be required. This is carried out using the programming ring located on the device.

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to 1 = continue (STEP) Set to 2 = modify (PROG)

Neutral position between 1 and

 2The ring can be removed to act as a key, or turned through 180° and replaced to create a programming protector.
Operation is by dialogue with the display messages, which makes its use very simple.

Rotating the ring once to Pos. 1 displays the totaliser status. In the process, the unit is automatically set to the quantity already counted.
After 10 seconds, the display automatically returns to the momentary value mode.
If the ring is turned to position 1 again while the totaliser status is shown, the code input is reached.
The code gives access to various input levels into which parameters can be changed (so that this does not occur inadvertently, the code must be entered!).

Code 100:
Reset for totaliser

Code 111:

Filter	Enables the input of a filter time in multiple levels
PIsUnit	The filter time describes the time after which a volatile change in flow occurs until the display value has adopted the new value
PIsVal	Enables the input of the unit of the pulse volume (pulse per volume), e.g. cm^{3}, Litre, m^{3}
Output	Enables the input of the meter value of the pulse flow (0..9999)
$\mathbf{4 m A}$	Enables switching of the analogue output between $0 . .20 \mathrm{~mA}$ and $4 . .20 \mathrm{~mA}$ (optionally (0..10 V and $2 . .10 \mathrm{~V}$)
$\mathbf{2 0 ~ m A ~}$	Defines the momentary value at which 4 mA should be output
	Defines the momentary value at which 20 mA should be output

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 - 42897 Remscheid • Germany Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de • info@honsberg.com

GHD-HONSEERG

Product Information

Sensors and Instrumentation

GHM-HONSEERG

Product Information
Sensors and Instrumentation

OMNI-C Counter

diaphragm

- Rotor
- Turbine
- Gear
- Screw
- Calorimetry
- MID
- Vortex
- Simple totalisation
- Simple filling counter with programmable end signal
- Control switchover at present value
- Automatic, dynamic change of display unit and decimal places in the graphics display
- Antivalent outputs
- Simple guided menu via graphics display

Characteristics

The totaliser of the OMNI flow rate system enables a totalisation or measurement of consumption for all HONSBERG device families (for fluids and gases) with which the OMNI system is compatible; this is independent of the input signal, pulse or analogue input, and of the measurement process.

Simple filling control is also possible. Here, the counter can be set to count upwards or downwards.
When the preset point is reached, a switching signal is emitted which is available in antivalent form to two outputs.
Resetting can be carried out by means of a signal input or also by a programming ring.

The state of the counter is indicated in an LCD display with only four digits. Here, the number of decimal places and the unit displayed is continuously matched to the current state of the counter. In this case, the smallest value which can be displayed is $0.001 \mathrm{ml}(=1 \mu \mathrm{l})$, and the largest is $9999 \mathrm{~m}^{3}$. The counter therefore has 13 places, of which the four most significant are displayed at any one time. The display resolution at all times is therefore at least 1 per thousand of the displayed value, or better, and this generally exceeds the accuracy of the connected flow transmitter. The nondisplayed digits of the counter are in that case irrelevant to the accuracy of the measurement.
The automatic dynamic changeover of units in the display in relation to the state of the counter makes the value easy to read in spite of a display with only four digits. In addition, user configuration of the counter is unnecessary.

In addition to the totalised value, the present flow rate can be displayed.

Technical data

Counter range	0.000 ml to $9999 \mathrm{~m}^{3}$ with automatic setting of the decimal places and of the applicable unit.
Switching signal outputs (Pin 4 + 5)	2 pushpull output, max. 100 mA, resistant to short circuits and polarity reversal, antivalent states, configurable on the device as a wipe or edge signal
Counter reset signal (Pin 2)	Input 18..30 V resistant to short circuits and reversed polarity PIN 2, wiper signal, positive or negative edge can be selected locally

Wiring

Connection example: PNP NPN

Before the connecting the supply voltage, it must be ensured that this corresponds with the data sheet! The use of shielded cabling is recommended

Sensor connection to OMNI-C-TA, see dimensions.

GHD-HONSEERG

Product Information

Sensors and Instrumentation

Handling and operation

Installation

For assembly, please observe the handling instructions for the different device versions.

After assembly, it is possible to move the sensor head to the most optimal reading position opposite the sensor part using its rotating function.

Programming

On the display, the counter indicates the state of the totaliser as a value and unit. The units $\mathrm{ml}, \mathrm{L}, \mathrm{m}^{3}$ are set automatically.

For operation as a totaliser, no configuration by the user is necessary.

To use the other functions, configuration may be required. This is carried out using the programming ring located on the device.

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to 1 = continue (STEP)
Set to 2 = modify (PROG)

Neutral position between
1 and 2

The ring can be removed to act as a key, or turned through 180° and replaced to create a programming protector.

Operation is by dialogue with the display messages, which makes its use very simple.

The control display of the present flow rate depends on the metering range of the selected flow transmitter, and has already been set appropriately in the factory ($\mathrm{ml} / \mathrm{min}, \mathrm{l} / \mathrm{min}, \mathrm{l} / \mathrm{h}, \mathrm{m}^{3} / \mathrm{h}$). It is activated by turning the ring to position 1
After 10 seconds, the display automatically returns to the totaliser mode.

For operation as a preset counter, the following must be set:

1. The preset point
2. The type of output signal ("Preset has been reached"):

Signal edge / wiper pulse
width of the wiper pulse, if required
3. The unit of the preset point:
(ml , litre, m^{3}).

Starting from the normal display (total and unit), if 1 (Step) is selected repeatedly, then the counter shows the following information:

- Normal display is total and unit (e.g. litre)
- Display of present value (e.g. $\mathrm{I} / \mathrm{min}$)
- Preset point incl. type of switching output.
- Code

The code gives access to various input levels into which parameters can be entered (so that this does not occur inadvertently, the code must be entered!).

Code 111:

- Gate time (available only for sensors which transmit frequency)
- Filter time
- Direction of count (pos / neg)
- Unit for switching value reset point
- Decimal place for switching value / reset point
- Switching type for switching value (edge / wiper signal)
- Pulse duration (for wiper signal)
- Reset method (manual / via signal)

Code 100:

- Manual reset for totaliser

The detailed flow chart for operation is available in the "Operating instructions for OMNI-C".

GHM Messtechnik GmbH - Location Honsberg Tenter Weg 2-8 - 42897 Remscheid • Germany Fon +49-2191-9672-0 - Fax -40
www.ghm-messtechnik.de • info@honsberg.com
Product Information
GHM-HONSEERG

Sensors and Instrumentation

Gear
 VHZ.

Dynamic diaphragm XF..

GHD-HONSEERG

Sensors and Instrumentation

Device Configurator ECI-1

- Can be used on site for:
- parameter modification
- firmware update
- adjustment of inputs and outputs
- Can be connected via USB

Characteristics

The device configurator ECI-1 is an interface which allows the connection of microcontroller-managed HONSBERG sensors to the USB port of a computer.
Together with the Windows software "HONSBERG Device Configurator" it enables

- the modification of all the sensor's configuration settings
- the reading of measured values
- the adjustment of inputs and outputs
- firmware updates

Technical data

Supply voltage	$12 . .30 \mathrm{~V}$ DC (depending on the connected sensor) and via USB
Power consumption	$<1 \mathrm{~W}$
Connection Sensor Lead USB	cable bushing M12×1, 5-pole, straight length approx. 50 cm device connector M12 USB bushing type B
Operating temperature	$0 . .50^{\circ} \mathrm{C}$
Storage temperature	$-20 . .+80^{\circ} \mathrm{C}$
Dimensions of housing	$98 \mathrm{~mm} \mathrm{(L)} \times 64 \mathrm{~mm} \mathrm{(W)} \times 38 \mathrm{~mm} \mathrm{(H)}$
Housing material	ABS
Ingress protection	IP 40

Handling and operation

Connection

The device configurator is intended for temporary connection to the application. It is connected between the the existing sensor lead and the sensor. Power supply is via the supply to the sensor and the computer's USB port. When inactive (no communication), the configurator behaves completely neutrally; all signals from the sensor remain available to the application. During communication between computer and sensor, the signal wirings are separated in the configurator, so that in this state the sensor's output signals are not available.

To connect 4-pole leads without a middle hole to the installed 5 -pole device connector, adapter K04-05 is included. 4-pole leads with a middle hole can be used without an adapter.

Ordering code

Device configurator (for scope of delivery, see the diagram below)
ECI-1
Scope of delivery
1. Device configurator ECI-1
2. USB cable
3. Adapter K04-05
4. Plug KB05G
5. Cable K05PU-02SG
6. Carrying case
Incl. software
Accessories: Mains connector 24 V DC (with fitted round plug connector, 5-pole, incl. international plug set)
Replacement parts:
M12x1 adapter 4- / 5-pole

Product Information

Options

Special connections

Examples:

FW1
with M24×1.5 and conical nipple

HR1M
with Parker connections special body and special switching head.

Customer-specific connections are available
e.g. male thread, female thread NPT, hose connections or system connections.

Higher pressure stages

In order to reach higher pressure stages, the wall thickness of the device is increased, materials with greater rigidity are used and a different seal shape is selected for the brass construction.

FW1-015GM

In order to reach a pressure stage of PS 800 with the device, the materials, construction and weight are changed.

- Material change at PN 800 - aluminium bronze instead of brass
- Additional weight
- 0.45 kg
- Installation sizes:
- Square 33
- Height +4 mm

H1O1, H1O, H1Z1, H1Z, HD1K, LABO-HD1K, FLEX-HD1K, OMNI-HD1K H2O1, H2O, H2Z1, H2Z, HD2K, LABO-HD2K, FLEX-HD2K, OMNI-HD2K

In order to reach a pressure stage of PN 500 with the devices, the materials, construction and weight are changed.

- Materials coming in contact with the media - Additional aluminium bronze
- FKM instead of NBR

Example: HD1K008GM

- Other materials
- Additional PC
- Additional weight
-0.7 kg with H. 1
-1.1 kg with H. 2
- Installation sizes:
- Length of the devices 164.5 mm with H. 1
- Length of the devices 171.5 mm with H. 2
- Wrench size 46
- Heights and widths +2.5 mm

MR1K

In order to reach a pressure stage of PN 500 with the device, the materials, construction and weight are changed.

- Materials coming in contact with the media
- Additional aluminium bronze
- FKM instead of NBR

Other materials

- Additional PC
- Additional weight
$-0.7 \mathrm{~kg}$
- Installation sizes:
- Length of the devices 155 mm
- Wrench size 46
- Heights and widths +2.5 mm

Product Information

Reinforced piston

A special piston design made of brass / stainless steel is available for demanding applications with sudden load changes. These pistons have a higher pressure loss than the standard piston.

FW1

DN	Range $[1 / \mathrm{min}]$ water	Q $_{\text {max. }}$ recommended	Pressure loss [bar] at
Qmax. water			

M1J, MR1K

Range $[I / \mathrm{min}]$ water	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss [bar] at $\mathbf{Q m a x . ~ W a t e r ~}$
$0.4-4$	10	0.4
$1.0-10$	20	
$2.0-20$	30	0.7
$3.0-30$	40	1.0
$4.0-40$	60	2.3
$6.0-60$	80	4.1

H1O1, H1O, H1Z1, H1Z, HD1K, LABO-HD1K, FLEX-HD1K, OMNI-HD1K

Range $[I / m i n] ~ w a t e r ~$	$\mathbf{Q}_{\text {max. }}$ recommended	Pressure loss [bar] at $\mathbf{Q}_{\text {max. }}$ water
$0.1-1$	6	0.4
$0.5-5$	10	
$1.0-10$	20	
$2.0-20$	30	0.7
$3.0-30$	40	1.0
$4.0-40$	60	2.3
$6.0-60$	80	4.1

Temperature up to $150^{\circ} \mathrm{C}$

HD1F, HD2F, HR1MV, LABO-HD1K, LABO-HD2K, LABO-HR1MV, FLEX-HD1K, FLEX-HD2K, FLEX-HR1MV, OMNI-HD1K, OMNI-HD2K, OMNI-HR1MV

In order to operate in a higher temperature range, additional space is provided with an air cushion between the hydraulic part and the electronic component. This area may not be thermally insulated.

Example: OMNI-HD1K

Product Information

Temperature display A

HD1F, HD2F, HD1K, HD2K, HR1MV

Temperature display from $0-120^{\circ} \mathrm{C}$ mounted on the side

Example: HD1K

Adjustment scale

HD1K, HD2K, HM1K, HM2K

In order to enable a more precise setting, an individual scale can be created for the switching head.

Gooseneck

FLEX-HD1K, FLEX-HD2K, FLEX-HR1MV, OMNI-HD1K, OMNI-HD2K, OMNI-HR1MV
A gooseneck between the electronics head and the primary sensor
 provides freedom in the orientation of the sensor. This option simultaneously provides thermal decoupling between the two units. The length of the gooseneck is 140 mm .

Plug DIN 43650-A / ISO 4400 with diodes

Diode red

| Wiring | changeover with
 diode No. 0.208 |
| :--- | :--- | :--- |
| Switching voltage | max. $12 \mathrm{~V} \mathrm{AC}, 24 \mathrm{~V} \mathrm{AC}, 48 \mathrm{~V} \mathrm{AC}$,
 115 V DC or 230 V DC
 (when ordering please state) |

Red / green diode

Wiring	changeover with diode No. 0.347
Switching voltage	max. 12 V AC, 24 V AC, 48 V AC, 115 V DC or 230 V DC (when ordering please state)

professional Instruments "MADE IN GERMANY"

Mechanical Accessories

Filter

Type ZV

Type ZE

The HONSBERG filters are offered for the protection of the devices from dirt or as independent components for coarse and fine filtration of liquids.

For more information, see additional product information.

Manifold block VB

For further information, see
For more information, see additional product information.

Metal cover for displays

for display O1
for display Z1

Electrical Accessories

Round plug connector 4 / 5-pin

$0 . .10 \mathrm{~V}$
$4 . .20 \mathrm{~mA}$
Frequency

Converter with the same data as the OMNI in situ electronics; but as an external panel-mounting variant with IP 67 housing.

Product Information

Product Information

Product Information

Product Information

Product Overview

„Industrial Sensors and Instrumentation"
Temperature
Flow
Level / Filling Height
Analysis
Humidity
Pressure
Weighing Instruments

"Process Instrumentation "Hygienic Design"
GHMadapt
Temperature
Flow
Level / Filling Height
Analysis

"Laboratory Instrumentation"

"Measuring Data Acquisition"

Data Logging and Monitoring
Test Bench Measurement Technology Renewable Energies

„Industrial Electronics"
Displays / Controller
Transmitter / Signal conditioning Isolating converters
Safety and Monitoring Devices Power Electronics
Calibration and Testing

